Exact Coloring of Real-Life Graphs is Easy

Olivier Coudert
Synopsys, Inc., 700 East Middlefield Rd.
Mountain View, CA 94043

Abstract

Graph coloring has several important applications in VLSI CAD. Since graph coloring is NP-complete, heuristics are used to approximate the optimum solution. But heuristic solutions are typically 10% off, and as much as 100% off, the minimum coloring. This paper shows that since real-life graphs appear to be 1-perfect, one can indeed solve them exactly for a small overhead.

1 Introduction

Coloring a graph consists of assigning a color to every vertex so that no two vertices linked by an edge have the same color. The associated optimization problem consists of minimizing the number of colors. Graph coloring is used in microcode optimization [15, pp. 168–169], scheduling [8, pp. 248–252], resource binding and sharing [8, pp. 277–294] [15, pp. 230–233], (un)constrained state encoding of (a)synchronous finite state machines [15, pp. 323–327], and planar routing [6]. Other non-CAD applications include code compilation, frequency assignment, and network optimization. Because graph coloring is NP-complete, heuristics are used to produce an approximate solution.

This paper shows that since real-life coloring instances appear to be 1-perfect, one can solve them exactly in no more time than heuristics, while heuristics are on average 10% off, and as much as 100% off, from the optimum.

This paper is organized as follows. Section 2 gives some definitions and notations. Section 3 presents the well-known sequential coloring algorithm, and pinpoints its main weakness. Based on experimental evidence, it then explains why solving the maximum clique problem is a decisive factor when coloring real-life graphs. Section 4 introduces original pruning techniques to solve maximum clique. Section 5 gives experimental results. It shows that all the real-life application instances we had access to (> 600) are solved exactly in a few seconds.

Figure 1: Max. clique, max. independent set, min. coloring, and min. clique partition.

2 Notations

A simple (i.e., undirected and self-loop free) graph G is denoted by $(V(G), E(G))$, where $V(G)$ is its set of vertices, and $E(G)$ its set of edges. We denote by $N(v)$ the set of neighbors of a vertex v in a given graph G, i.e., $N(v) = \{v' \in V(G) | \{v, v'\} \in E(G)\}$. The degree of a vertex is its number of neighbors, $|N(v)|$. Given a set of vertices V, we will often use the notation $G[V]$ to denote the subgraph induced by $(V(G) - V, E(G))$. When the context is not ambiguous, we will denote a subgraph by its set of vertices.

In the sequel, n is the number of vertices, and k the number of colors used by a coloring. The saturation number of a vertex v is the number of colors used by its neighbors (i.e., the number of forbidden colors for v). We say that a color is saturated if it cannot be used anymore to extend a partial coloring.

A clique is a set of vertices that are all linked to each other by edges. An independent set is a set of vertices that are not connected by any edge. Partitioning the set of vertices into cliques is nothing but coloring the complementary graph. Fig. 1 illustrates these NP-complete problems [9]. An independent set is maximal if it is not a proper subset of another independent set.

Let $\gamma(G)$ be the size of the maximum clique of G, and $\chi(G)$ be the chromatic number of G, i.e., the minimum number of colors needed to color G. Since every vertex of a clique must be assigned a different color, $\gamma(G) \leq \chi(G)$. When $\gamma(G) = \chi(G)$, we say that G is 1-perfect1.

3 Exact Coloring

Coloring a graph can be done in two ways. One can determine a color class one at a time: this consists of enumerating maximal independent sets. Or one can color the vertices one at a time; this is called sequential coloring.

1 G is perfect iff every subgraph of G is 1-perfect. Exact coloring of perfect graphs is polynomial [10], but much too slow in practice.
function \(SC(G) \);
\(C \leftarrow \text{a clique of } G \);
\(k \leftarrow 0 \);
foreach \(v \in C \) { /* color the clique */
\(k \leftarrow k + 1 \); /* a color is an integer \(\geq 1 \) */
color \(v \) with \(k \);
}
return \(SCrec(G, k, |V(G)| + 1, |C|) \); /* \(G \) is a graph partially colored, using \(k \) colors, and */ /* \(\text{best} \) is the chromatic number found so far */
if \(G \) is entirely colored return \(k \); /* new best coloring */
v \leftarrow \text{an uncolored vertex of } G \;
for \(e \leftarrow 1; e \leq \min(k + 1, \text{best} - 1); e \rightarrow e + 1 \) { /* for each potential color */
if \((\forall v' \in N(v), \text{color}(v') \neq e) \) /* \(c \) is non-conflicting */
\text{best} \leftarrow SCrec(G, max(e, k), \text{best}, lb); /* \(C \) is a color assignment */
uncolor \(v \); /* \(lb \) is non-conflcting */
if \(lb = \text{best} \) return \(\text{best} \); /* \(\gamma(G) = \chi(G) \) abort */
}
return \(\text{best} \);

Figure 2: \(SC \), the exact sequential coloring.

This section discusses the sequential coloring algorithm. We pinpoint the main weakness of this algorithm, and explain why the maximum clique problem is a key player when coloring real-life graphs.

3.1 Sequential Coloring

Fig. 2 outlines the exact sequential coloring algorithm \(SC \) [5]. It first generates a clique, which is used both as a lower bound and as a starting point for the coloring, since every vertex of the clique must be assigned a different color and does not need to be recolored afterwards. Then uncolored vertices are picked one at a time, and each is assigned a color (an integer \(\geq 1 \)) non-conflicting with its neighbors’ colors.

An efficient heuristic, the well known DSATUR algorithm [4], consists of picking the vertex that has the largest saturation number, and in breaking ties with the largest degree in the uncolored graph. The idea is to choose the vertex that is the most “difficult” to color, and that propagates as many constraints as possible. Fig. 3 (from left to right) shows how a simple graph is sequentially colored with this heuristic.

The reader is referred to [16] for an extensive description of some improvements and variations of sequential coloring (e.g., non-sequential backtracking [4, 18]).

Figure 3: Sequential coloring.

3.2 Why is Sequential Coloring Hard?

The way the lower bound is used in \(SC \) is largely ineffective. As a comparison, consider a branch-and-bound algorithm that solves maximum clique (e.g., Fig. 5). Based on the inequality \(\gamma(G) \leq \chi(G) \), a coloring is computed at each recursion and is used as an upper bound to prune the search tree of maximum clique. Conversely, a clique is a lower bound on the chromatic number of a graph. But the analogy ends here: a clique does not give any valuable information on a graph partially colored with unsaturated colors. Indeed, quickly estimating a lower bound on the number of colors necessary to optimally complete an unsaturated coloring is an open problem.

\(SC \) uses several unsaturated colors at the same time (e.g., the two gray colors used in the middle graph of Fig. 3), and thus has only one static lower bound which is not reevaluated at each recursion, unlike “standard” branch-and-bound algorithms. We therefore have the following fact (e.g., [13, pp. 220]):

Fact 1 If \(\gamma(G) < \chi(G) \), then the lower bound does not influence the length of the computation at all, because the search must exhaustively enumerate all potential (unsatisfactory) colorings that would improve on \(\chi(G) \), which can take exponential time.

Let us face the second fact ([2, 3], [13, pp. 243–247]):

Fact 2 Almost all graphs \(G \) satisfy:

\[
\gamma(G) < 4 \log n < \frac{n}{3 \log n} < \chi(G).
\]

This shows an actual large gap between \(\gamma(G) \) and \(\chi(G) \). Combined with Fact 1, this leaves little hope to address exact coloring in general.

3.3 Why is Maximum Clique Important?

However, Fact 3 gives a different perspective on exact graph coloring from the practical point of view:

Fact 3 All the practical instances we found (more than 600 real-life examples in scheduling, register allocation, planar routing, and frequency assignment) are 1-perfect graphs, i.e., \(\gamma(G) = \chi(G) \).

For instance, the graph of Fig. 3 is 1-perfect. Fig. 4 shows non 1-perfect graphs (the one on the right is mcsie3, see Section 5).
Improvements for solving maximum clique. One can add the following pluses, and the algorithm will not find the optimum solution.

Facts make maximum clique as important in practice as coloring itself. Fact mak es maximum clique as important in practice when coloring 1-perfect graphs, since the search is drastically reduced when coloring. Theorem 1 (q-color pruning) Let G be the graph at some point of the recursion, C the clique under construction, and best the current best solution. Let $\{I_1, \ldots, I_k\}$ be a k-coloring obtained on G. Then every vertex v that can be colored with q colors, where $q > |C| - \text{best} + k$, can be removed from the graph.

Figure 6: q-colorable vertices can be removed.

Rules (a)-(c) are trivial to implement. Rule (d) is in $O(|V(G)|^3)$, which introduces too large an overhead compared to the practical gain. Rule (e) is not costly, but is more delicate to implement.

The following result presents an original pruning method which can be efficiently implemented, and which dramatically reduces the search space.

Theorem 1 (q-color pruning) Let G be the graph at some point of the recursion, C the clique under construction, and best the current best solution. Let $\{I_1, \ldots, I_k\}$ be a k-coloring obtained on G. Then every vertex v that can be colored with q colors, where $q > |C| - \text{best} + k$, can be removed from the graph.

Proof. Fig. 6 shows the k-coloring of G, i.e., the partition of the vertices of G into k independent sets I_1, \ldots, I_k. Assume that the vertex v can be colored with q colors. Without loss of generality, this means that $I_j \cup \{v\}$ is an independent set for $1 \leq j \leq q$. Let C_1 be the largest clique that can be obtained by forcing v in C. We then obtain:

\[
|C_1| = |C \cup \{v\} \cup \text{MaxClique}(N(v))| \\
= |C| + 1 + \gamma(N(v)) \\
\leq |C| + 1 + \chi(N(v)) \\
\leq |C| + 1 + k - q \\
\leq |\text{best}|
\]

Inequality (4) holds because $N(v)$ is necessarily a subset of $\bigcup_{q+1}^k I_j$, and thus $\{I_{q+1}, \ldots, I_k\}$ is a valid $(k-q)$-coloring of $N(v)$. Inequality (5) holds because of the assumption on q. Since one cannot find a larger clique by selecting v, one can remove it from the graph.

Even if k is too large (i.e., $|C| + k > |\text{best}|$) to produce a “normal” pruning, Theorem 1 shows that q-colorable vertices yield unsuccessful branches, and can be removed. This reduces the number of choice points, but the effectiveness of this pruning technique is its snowball effect. Removing vertices gives more opportunities to apply rules (a)-(d). Vertices that are removed are also uncolored, which frees some colors for their neighbors, which increases their own q’s, which infers more removal. Removing vertices can empty an independent set, which decreases k, which loosens the constraint on q and produces more removal. Eventually k becomes small enough to prune the recursion.
A notable aspect of this pruning technique is its no gain/no cost aspect. Using the SC algorithm without backtrack to find the k-coloring, the number of colors that can be used to color a vertex v is nothing but v’s number of unconstrained colors, i.e., k minus v’s saturation number, which is computed in $O(1)$. Using a priority queue that keeps the vertices in decreasing saturation number, one can test for the removal of the vertices from the tail of the queue up to its head. The first failure of the test indicates that one can stop the whole pruning procedure. Thus if no pruning is possible, the overhead is in $O(1)$. If r vertices can be removed (the last r vertices of the queue), the overhead is in $O(r \times \max(V(G)))$ for a potentially exponential benefit.

Experience shows that thanks to this original pruning technique, the search space is reduced by several orders of magnitude, drastically speeding up maximum clique (Table 1).

On real-life examples, this pruning technique quickly leads to the algorithm to a maximum clique. Where one previously needed about 1000 backtracks, and up to 10000 backtracks, less than 10 backtracks are now necessary to find (not necessarily prove) an optimum solution.

| name | $|V|$ | $|E|$ | γ | without | with |
|-------------|-----|-----|--------|---------|------|
| scheid_ash | 385 | 1670| 14 | 2414 | 338 |
| keller5 | 171 | 9435| 11 | 30047 | 4634 |
| scheid_0.7 | 200 | 13886| 18 | 200811 | 24780|
| brock97_2 | 200 | 14834| 21 | 777895 | 10000|
| scheid_0.7_2| 200 | 13886| 18 | 12996 | 696 |
| walt19_2 | 300 | 21928| 25 | 57761 | 1211 |
| hamming8-4 | 256 | 20864| 16 | 4147 | 1 |
| scheid_0.5_1| 200 | 17910| 70 | 1123823 | 507 |
| MANN_27 | 378 | 70551| 126 | - | 3451 |

Table 1: Solving Maximum Clique.

A heuristic coloring algorithm consists of using a greedy algorithm designed for maximum independent set (Fig. 8) to produce the maximal independent sets. It is guaranteed to find a coloring within $O(n/\log n)$ of the optimum [12]. Instead of looking for a large maximal independent set, one can look for a maximal independent set that minimizes the number of edges connected to uncolored

\[
\text{function } Color \text{WithIndSet}(G); \\
\hspace{1cm} I \leftarrow O; \\
\hspace{1cm} \text{while } G \text{ is not empty} \{ \\
\hspace{2cm} I \leftarrow \text{maximal independent set of } G; \\
\hspace{2cm} I \leftarrow I \cup \{v\}; \\
\hspace{2cm} G \leftarrow \text{graph induced by } V(G) - I; \\
\hspace{1cm} \} \\
\hspace{1cm} \text{return } I; \\
\]

Fig. 7 shows a heuristic coloring algorithm. It consists of adding a maximal independent set I (i.e., a saturated color class) to a coloring I under construction, removing I from G, and iterating this process until G is empty.

5 Experimental Results

This section presents experiments done with real-life applications, combinatorics instances, and (artificial) hard examples. The planar routing instances come from [6]. The other instances come from [7].

5.1 Heuristic Coloring

We compared three widely used coloring heuristics, $H1$, $H2$, and $H3$. $H3$ consists of forbidding any backtrack in the sequential coloring SC.

\[\text{function } Find\text{IndSet}H1(G); \]
\[\hspace{1cm} I \leftarrow O; \]
\[\hspace{1cm} \text{while } G \text{ is not empty} \{ \]
\[\hspace{2cm} v \leftarrow \text{vertex of minimum degree}; \]
\[\hspace{2cm} I \leftarrow I \cup \{v\}; \]
\[\hspace{2cm} G \leftarrow \text{graph induced by } V(G) - \{v\} - N(v); \]
\[\hspace{1cm} \} \]
\[\hspace{1cm} \text{return } I; \]

\[\text{function } Find\text{IndSet}H2(G); \]
\[\hspace{1cm} I \leftarrow O; \]
\[\hspace{1cm} \text{while } G \text{ is not empty} \{ \]
\[\hspace{2cm} \text{if } I = O \]
\[\hspace{3cm} v \leftarrow \text{vertex of maximum degree}; \]
\[\hspace{2cm} \text{else} \]
\[\hspace{3cm} v \leftarrow \text{vertex of max. removed edges, then min. degree}; \]
\[\hspace{2cm} I \leftarrow I \cup \{v\}; \]
\[\hspace{2cm} G \leftarrow \text{graph induced by } V(G) - \{v\} - N(v); \]
\[\hspace{2cm} \} \]
\[\hspace{1cm} \text{return } I; \]

Fig. 8: Color class for heuristics $H1$ and $H2$.
This heuristic, $H2$, reduces the number of conflicts with the uncolored vertices so that less color classes are needed to complete the coloring.

Table 2 compares these three heuristics. Clearly, $H2$ and $H3$ are better than $H1$, but none of them wins consistently. It happens that there is a large gap between the heuristic colorings and the exact solution, even on real-life examples, e.g., the scheduling problem school.nsh.

5.2 Exact Coloring

Table 3 gives the performance of exact coloring on real-life application instances (selected among more than 600 examples), and on combinatorics, hard, and random examples. The coloring algorithm is the sequential coloring described in Section 3.1, using the clique produced by algorithm of Section 4 in no more than 10 backtracks.

The combinatoric, artificial, and random examples are more difficult, especially when the graph is not 1-perfect; in that case, the algorithm has to enumerate all the optimum colorings before terminating, which can be exponential (Fact 1 of Section 3.2).

All the 600 real-life examples are solved exactly, even the large graphs (> 6000 nodes, > 500000 edges). This is because they are all 1-perfect, and because the clique algorithm introduced in Section 4 quickly finds the optimum lower bound. A way of comparing these results with the state-of-the-art consists of assuming that one finds a suboptimum clique (which is often the case with “standard” heuristics). Assuming that one only finds a clique of size $\gamma(G) - 1$, most of the examples cannot be solved in less than one hour, and many of them remain unsolved after 2 days (e.g., the scheduling examples and most of the resource allocation problems).

Table 2: Heuristic coloring

| name | $|V|$ | $|E|$ | γ | χ | $H1$ | $H2$ | $H3$ |
|--------|-----|-----|---------|------|------|------|------|
| RSJ125.1 | 125 | 756 | 4 | 5 | 8 | 7 | 6 |
| RSB125.1 | 500 | 3555 | 12 | 12 | 16 | 13 | 12 |
| MANX16 | 45 | 918 | 16 | 18 | 20 | 19 | |
| R1000.1 | 1000 | 14378 | 20 | 20 | 23 | 20 | 20 |
| R125.5 | 250 | 3838 | 36 | 36 | 51 | 39 | 38 |
| R250.1c | 250 | 30227 | 64 | 64 | 72 | 68 | 65 |
| e-fat100-1 | 200 | 1534 | 12 | 12 | 15 | 13 | 13 |
| d-socy-1.1 | 319 | 8534 | 61 | 61 | 63 | 61 | 63 |
| ex3n | 44 | 176 | 10 | 10 | 11 | 11 | 11 |
| ex3c | 54 | 336 | 12 | 12 | 13 | 13 | 13 |
| exam1 | 200 | 17124 | 126 | 126 | 137 | 127 | 126 |
| exam2 | 250 | 20081 | 141 | 141 | 154 | 147 | 142 |
| exam3 | 300 | 36801 | 162 | 162 | 177 | 164 | 162 |
| rats 00.60 | 1000 | 24300 | 14 | 50 | 104 | 110 | 113 |
| rats 00.80 | 300 | 21375 | 11 | 20 | 40 | 41 | 42 |
| fps02.1.2 | 451 | 8691 | 30 | 30 | 35 | 30 | 30 |
| lec50.25d | 450 | 16730 | 15 | 15 | 31 | 25 | 25 |
| lec50.25a | 450 | 8290 | 25 | 25 | 31 | 26 | 26 |
| lec50.20c | 450 | 17334 | 25 | 25 | 38 | 30 | 28 |
| lec50.35c | 450 | 9805 | 5 | 5 | 9 | 9 | 9 |
| lec50.5d | 450 | 9735 | 5 | 5 | 8 | 10 | 10 |
| quecn6 | 36 | 290 | 6 | 7 | 8 | 9 | 9 |
| quecn7 | 49 | 476 | 7 | 7 | 10 | 10 | 10 |
| quecn8 | 64 | 728 | 8 | 9 | 12 | 11 | 13 |
| quecn9 | 81 | 2112 | 9 | 10 | 13 | 12 | 12 |
| quecn11 | 121 | 3960 | 10 | 11 | 16 | 16 | 14 |
| quecn13 | 169 | 6656 | 13 | 13 | 18 | 18 | 17 |
| san220.1.7.2 | 200 | 13908 | 18 | 18 | 20 | 20 | 20 |
| sgdq2.2.1 | 182 | 3254 | 26 | 26 | 29 | 26 | 28 |
| school | 385 | 19055 | 14 | 14 | 36 | 30 | 17 |
| school.nsh | 352 | 14612 | 14 | 14 | 32 | 25 | 26 |

For each graph, we give: its number of vertices ($|V|$), its number of edges ($|E|$), its clique number (γ), its chromatic number (χ), and the number of colors obtained with heuristics $H1$, $H2$, and $H3$. Heuristics are 10% off, and as much as 100% off, the optimum solution.

6 Discussion & Conclusion

This paper has explained how to improve on graph coloring, which is a key application in scheduling, resource allocation, constrained encoding, multi-layer topological routing, etc. When a graph is 1-perfect, and providing that one finds a maximum clique, the coloring is easy. Despite our effort, we did not find a real-life example that is not 1-perfect. Based on this experimental fact, and thanks to an improved maximum clique computation algorithm, a sequential coloring algorithm can solve all our real-life instances exactly in a matter of seconds.

This tends to show that, in practice, and in particular for CAD applications, one can afford to solve graph coloring exactly: for roughly the same CPU time, one is rewarded with an optimum result, while heuristic solutions are typically 10% off, and as much as 100% off, the minimum coloring.

References

For each graph, we give: its number of vertices (|V|), its number of edges (|E|), its clique number (\(\gamma \)), and its chromatic number (\(\chi \)). Note that all the real-life examples are 1-perfect. We give the number of backtracks (\#back) performed to solve the minimum coloring. The CPU time is given in seconds on a 60 MHz SuperSparc (85.4 SpecInt), and includes: reading the graph description, building the internal data structure, solving the minimum coloring problem, and finally freeing the memory.

Table 3: Coloring of real-life application graphs (left), and of hard artificial graphs (right).

