
Incorporating Imprecise Computation into System-Level Design of

Application-Speci�c Heterogeneous Multiprocessors

Yosef G. Tirat-Gefen� Diogenes C. Silva and Alice C. Parker
Dept. of EE-Systems (USC) Dept. of EE-Systems
and Mentor Graphics Corp. Univ. of Southern California (USC)
Wilsonville, OR 97070-7777 Los Angeles, CA 90089-2562

Abstract { This paper introduces a basic mixed

integer-linear model (MILP) to design application-

speci�c heterogeneous multiprocessors (ASHM) al-

lowing imprecise computation of tasks executed in

a non-preemptive mode. The proposed model was

used in the development of a genetic algorithm inte-

grated into the tool set MEGA that uses soft com-

puting techniques for design of optimal/near-optimal

ASHMs subject to constraints on performance, cost

and output-data quality.

1 Introduction
The term imprecise computation was proposed by Liu et

al. [7] to model real-time computations such as video process-

ing, where it is possible to make a trade-o� between quality

of data (image) and computation time of particular video

processing algorithms (e.g. video compression).

In the non-preemptive imprecise computation model as-

sumed in this paper, each task Si is divided in two parts:

a mandatory (Smi) and optional (Soi), as seen in Figure 1.

These parts correspond to subtasks subject to the following

constraints:

i. The optional part must follow the mandatory part with-

out interruption.

ii. They are allocated to the same processor.

iii. The mandatory part must be allowed to execute until

completion.

iv. The output and input data volumes for the task are

independent of the amount of processing allowed for the

optional part.

�
Formely known as J. C. DeSouza-Batista

This work was supported by the Advanced Research Projects

Agency (ARPA) under contract no. 53-4503-9319 and moni-

tored by the Federal Bureau of Investigation (FBI) under contract

no. J-FBI-94-161 and the second author was partially funded by

Brazilian National Council of Sciences (CNPq) under grant no.

201211/91.2.

Permission to make digital/hard copy of all part of this work

for personal or classroom use is granted without fee provided that

copies are not made or distributed for pro�t or commercial ad-

vantage, the copyright notice, the title of the publication and its

date appear, and notice is given that copying is by permission of

ACM, Inc. To copy otherwise, to republish, to post on servers or

to distribute to lists, requires prior speci�c permission and/or a

fee.

DAC97, Anaheim, California

(c)1997 ACM 0-89791-920-3/97/06..$3.50

The result of a task is said to be a precise result if its

optional part is allowed to compute until completion. By

allowing imprecise computation of some tasks, it may be pos-

sible to meet hard time deadlines with a low implementation

cost. The imprecise execution model assumes that the qual-

ity of the output data being produced by a task is a non-

decreasing function of the amount of processing allowed for

the optional part. The imprecise computation paradigm al-

lows a extra �ne-grain trade-o� between overall data quality,

performance and cost.

Typical applications of imprecise computation include

compression algorithms such as fractal compression, digital

signal processing transforms such as those used for �nding

the wavelet components of a non-periodic signal, or sub-band

decomposition of video/audio signals. All these applications

can model the output data quality as a function of the pro-

cessing time expended by their respective algorithms.

Ergonomic studies have shown that human beings [1] are

more sensitive to audio quality than to video quality. At

the same time, luminance quality is more important than

chromatic quality for video. These �ndings may be helpful

when designing low-cost mass-production application-speci�c

multiprocessor systems for real-time video/audio processing.

Imprecise computation is able to represent these issues in a

sound mathematical form.

Di�erently from Liu et al. [7], who developed scheduling

algorithms for the preemptive mode of execution, this paper

assumes that tasks are executed in a non-preemptive way

in order to allow the development of low-cost application-

speci�c AHSM implementations. The use of preemption

would lead to some overhead of software and hardware, po-

tentially increasing the overall cost of the design.

Consumer electronics products in areas such

as video/audio processing are becoming increasily complex,

and demanding high-performance implementations that uti-

lize the available parallelism at a reasonable cost. Typical

digital signal processing applications in video/audio can be

speci�ed as task-
ow graphs, where di�erent tasks usually

have di�erent associated algorithms that are best mapped

to processors of di�erent types. Application-speci�c hetero-

geneous multiprocessors (ASHMs) that mix custom and o�-

the-shelf processors are often the best option for such appli-

cations.

Mixed integer-linear programming (MILP) models allow

a detailed representation of system behavior and provide a

sound formal basis for the development of heuristics, as for

example in the representation of the problem of concurrent

task scheduling and processor allocation in ASHMs. How-

ever, attempts to use MILP to �nd optimal designs have

been limited due to the computational cost (CPU-time) [10]

which is prohibitive for large task-
ow graphs. MILP solvers

are also very sensitive to the linearization techniques used to

derive a MILP model to be optimized.

Genetic algorithms are able to handle nonlinear constraints

without need of linearization, which decrease the chances of

non-convergence as well as allow handling of large task-
ow

graphs without a high computational cost. The price to be

paid is that genetic algorithms are not always guaranteed to

�nd an optimal solution.

This paper introduces an MILP model for system-level

(task/processor level) design of ASHMs where tasks are non-

preemptively executed and imprecise computation is allowed.

This MILP model is used to derive a genetic algorithm for

�nding an optimal/near-optimal design.

Si
m Si

o ui = 1TSS(Si) TSE(Si)

ωix
m ωix

oωix
p εi

Figure 1: Modeling non-preemptive imprecise computa-

tion
2 Related work
The main results in imprecise computation theory are due

to Liu et al. [3] [7] who developed polynomial time algorithms

for optimal scheduling of preemptive tasks in homogeneous

multiprocessors without communications costs. Ho et al. [5]

proposed an approach to minimize the total error, where the

error of a task being imprecisely executed is proportional to

the amount of time that its optional part was not allowed

to execute, i.e., the time still needed for its full completion.

Polynomial time-optimal algorithms were derived for some

instances of the problem of preemptive scheduling in homo-

geneous multiprocessors [7].

Chu et al. published one of the �rst mixed integer linear

programming (MILP) models for the problem of simultane-

ous scheduling and allocation in existing multiprocessors. Re-

cently the program SOS (Synthesis of Systems) [10], a com-

piler of MILP models, was developed. It takes a description of

an task-
ow graph, the processor library and some cost per-

formance constraints, generating a output �le with a MILP

model to be optimized by available commercial MILP solvers.

The SOS tool generates MILP models for the design of non-

periodic (non-pipelined) heterogeneous multiprocessors, not

supporting imprecise computation.

Genetic algorithms are becoming an important tool for

solving the highly nonlinear problems related to system-level

synthesis. Holand and his students at the University of

Michigan in the late 1960s [8] introduced the �rst genetic

algorithms by emulating the natural selection mechanism in

biological systems, as discussed in Darwin's evolution the-

ory. The use of genetic algorithms in optimization is well

discussed by Michalewicz [8]. Research works involving the

use of genetic algorithms to system-level synthesis problems

are starting to be published, as for example Hou et al. [6] for

scheduling of tasks in a homogeneous multiprocessor with-

out communication costs; Wang et al. [9], Singh and Youssef

[9], and Shro� [9] for scheduling of tasks in heterogeneous

multiprocessors with communication costs but not allowing

cost versus performance trade-o�, i.e., all processors have

the same cost, and Ravikumar and Gupta [11] for mapping

of tasks into a recon�gurable homogeneous array processor

without communication costs.

3 The MEGA tool set

This section describes the basic structure of the set of ge-

netic algorithms implemented in the MEGA system, which

is a soft-computing tool set for design of application-speci�c

heterogeneous multiprocessors with non-negligible communi-

cation costs.

The version of MEGA discussed in this article supports a

non-periodic non-preemptive mode of execution and two com-

putational paradigms: precise, where all tasks are executed

until completion, and imprecise, which allows the use of the

imprecise computation model [7].

Task-
ow graphs (TFGs) are used in MEGA to specify the

application to be implemented as an ASHM. The vertices of

the TFG correspond to tasks and the edges to data transfers.

Each task S has a performance trade-o�s list, which is a set of

of triples (pt; !
m
pt(S); !

o
pt(S)), where pt is a processor type and

!mpt(S) (!
o
pt(S)) is the computation time of the mandatory

(optional) part of task S in a processor of type pt,

!pt(S) = !
m
pt(S) + !

o
pt(S) (1)

where !pt(S) =1 denotes that task S cannot be executed

on processor of type pt.

3.1 Chromosome representation for precise

computation

MEGA has two types of genes:

i. Discrete genes whose domains are isomorphic to �nite

subsets of N , the set of positive integer numbers. They

are used to represent the allocation and relative ordering

information.

ii. Continuous genes whose domains are closed intervals of

R, the set of real numbers. They correspond to the tim-

ing variables of the MILP model introduced by Prakash

and Parker [10].

3.1.1 Allocation

The �-genes and #-genes correspond to the Boolean variables

representing task allocation in the MILP model.

De�nition 3.1 The �-genes set f�1; : : : ; �i; : : :g represents

the task to processor instance mapping. �i = x denotes that

task Si is assigned to processor px.

De�nition 3.2 The #-genes set f#1; : : : ; #i; : : :g represents

the processor to processor type mapping, where #x = t de-

notes that processor px is a processor of type t.

In a similar way, �-genes and $-genes correspond to the

Boolean variables dealing with the allocation of non-local

data transfers to buses.

3.1.2 Relative ordering

The �-genes (Gen�) and �-genes (Gen�) sets are directly re-

lated to the Boolean variable types �i j and �i j of the MILP

model [10], where the �i j (�i j) variables are only de�ned

between parallel tasks (data transfers). The interpretation

of these variables is the following:

i. �ij is true(false) if Si and Sj are in the same processor,

and Si �nishes before (after) Sj .

ii. �ijrs is true (false) if data-transfer Dtij = Si ! Sj
is parallel to data-transfer Dtrs = Sr ! Ss, Dtij and

Dtrs are in the same bus, andDtij �nishes before (after)

Dtrs.

3.1.3 Timing

Each timing variable of one of the MILP models discussed has

an associated continuous domain gene. These genes, called

timing genes, inherit all the properties of the timing variables.

Therefore the same name used for a timing variable Tx(�) in

the MILP model is used to identity its corresponding gene.

For a given chromosome, their values are a function of the

cost/performance parameters and the particular assignment

to the discrete genes.

3.1.4 Genetic operators

MEGA uses mutation and crossover operators tailored to the

system-level design problem, which were carefully designed in

order to decrease the chances of creation of infeasible solu-

tions.

3.1.5 Mutation

There are six types of genes in the chromosome represen-

tation used in MEGA for representing precise computa-

tion (Section 5 discusses the extension for the imprecise

paradigm). Therefore, a mutation will correspond to a ran-

dom change of one these genes.

Mutation of � and # genes

Let task Si be assigned to processor pj with type ptk , i.e.

�i = pj and #j = ptk , for solution Solq .

De�nition 3.3 FA(Si; Solq) is the set of available proces-

sors in solution Solq to which Si can be reallocated without

creating an infeasibility, where an infeasible choice can be one

of the following:

i. Processor py has a type to which Si cannot be assigned.

ii.It is not possible to assign a bus (data link) between py
and other processors to (from) which Si sends (receives)

data transfers due to topologic constraints of the inter-

connection network.

In both cases

py 62 FA(Si; Solq) (2)

De�nition 3.4 The mutation of the gene �i is a random

choice of a new allocation of Si to one of the processors in

FA(Si; Solk)�pj, where pj is the current processor to which

Si is assigned.

De�nition 3.5 The set FT (pj; Solq) is set of feasible types

of processor pj in solution Solq to which all tasks Su; : : : ; Sv
assigned to pj can execute, i.e.

FT (pj ; Solq) = f types pti j #j = pti =)

!pj (Su); : : : ; !pj (Sv) <1g (3)

De�nition 3.6 The mutation of the gene #j is a random

choice of a new type for pj from one of the available types in

FT (pj ; Solq)� ptk , where ptk is the current type.

In order to keep this paper brief, the de�nition of the mu-

tation of � and $ genes, very similar to the � and # cases, is

omitted.

Mutation of genes in Gen� and Gen� sets

A valid mutation of a gene �i j 2 Gen� or �i j 2 Gen� is

given by

�i j � 1� �i j �i j � 1� �i j (4)

if this does not introduce a cycle in the corresponding overall

schedule of tasks and data transfers of the task
ow-graph G

being mapped to an ASHM design.

Performing crossover

The operator crossover in MEGA treats a chromosome as

a collection of zones, where each zone is associated with a

subset of the Boolean variables from one of the MILP models

for system-level design introduced by Prakash and Parker

[10]. The minimal amount of genetic information exchanged

during a crossover is a zone.

Task crossover

De�nition 3.7 Given two parent solutions (chromosomes)

Sol1 and Sol2, a task kernel KS(pi; pj) = fSa; : : : Szg is a

subset of the tasks in the TFG to be implemented, such that:

i. All tasks in KS(pi; pj) are respectively assigned to pro-

cessors pi and pj in solutions Sol1 and Sol2, i.e.

�a = : : : = �z = pi in Sol1 and

�a = : : : = �z = pj in Sol2 (5)

ii. KS(pi; pj) is maximal for the given pair of proces-

sors pi and pj , i.e. there is no other set K
0

S(pi; pj)

whose elements also respect restriction 5 and KS(pi; pj)

� K
0

S(pi; pj).

De�nition 3.8 Each task kernel KS(pi; pj) de�nes a zone

composed of genes �a = : : : = �z and the subset of �-

genes C�(KS(pi; pj)) = f�i j j Si; Sj 2 KS(pi; pj)

and Si is parallel (==) to Sjg.

De�nition 3.9 A task crossover is de�ned by the exchange

of the corresponding zones of one or more task kernels cho-

sen at random between two solutions (chromosome) Sol1 and

Sol2.

For the sake of brevity, the de�nition of the data-transfer

crossover operator, which is similar to the task crossover op-

erator, is omitted.

3.2 The graphical interface HERCULES

HERCULES is a GUI (Graphics User Interface) designed

to act as a front-end to MEGA. It is composed of two ma-

jor units: a dialog editor and a graphical editor. At least

one input �le must be de�ned: a library �le, that speci�es

the available bus and processor parameters. A second �le is

optional and contains parameters and constraints for a par-

ticular MEGA run. The output is a set of two �les: the

task
ow graph to be used by MEGA and and a graphical

information text �le for displaying the task
ow.

4 An MILP model for imprecise compu-

tation

As seen in Figure 1, the imprecise computation paradigm

assumes that each task Si in the task
ow graph can be

divided in two: a mandatory part Smi and an optional one

Soi , where the output data being generated by Si has a quality

factor Qi, which is a non-decreasing function of the utilization

factor ui, 0 � ui � 1, where ui = 1 means that Soi is executed

until completion.

The utilization factor is the ratio of execution time Soi is

allowed to execute over the time taken to completion. The

key point is to trade the overall quality factor QSY S for a less

expensive implementation.

QSY S =
X
i

Qi(ui) (6)

where Qi(�) is a non-decreasing function of the utilization

factor, which might be nonlinear.

4.1 An MILP formulation

Assuming Qi(ui) = kiui, this leads to

QSY S =
X
i

kiui (7)

The normalized overall quality factor is

NQSY S =

P
i
kiuiP
i
ki

(8)

NQSY S = 1 for ui = 1 8Si (9)

where ki is a measure of the relative importance of the ex-

ecution of Soi on the overall quality of output data to be

produced by the multiprocessor system.

Let

!(Si) = TSE(Si)� TSS(Si) (10)

TSE(Si) is the end of execution time for task Si
TSS(Si) is the start of execution time for task Si

!
p
Si

=
X
x

�i x!
p
i x (11)

Where !
p
i x is the computation time of task Si when allocated

to processor x and allowed to execute till completion, i.e., the

computation time of task Si in the precise computation mode

of execution.

!
p
i x = !

m
i x + !

o
i x (12)

and !mi x and !oi x are the mandatory and optional computa-

tion times for task Si when allocated to processor x, which

are assumed to be constant parameters supplied by the de-

signer.

ui =
!(Si)�

P
x
�i x!

m
i xP

x
�i x!oi x

(13)

where ui = 1 if
P

x
�i x!

o
i x = 0.

The utilization factor ui will be a nonlinear function of the

Boolean allocation variables �i x. In order to have a MILP

model for the problem the quality factor of a task Si can be

reformulated as a function of the processing error �i.

�i = !
p
Si
� !(Si) (14)

The quality factor will be some function Qe
i (�i) of the error

�i. The overall quality factor Qe
SY S will be

Q
e
SY S =

X
i

Q
e
i (�i) (15)

Assuming

Q
e
i (�i) = �k

�
i �i ; k

�
i > 0 (16)

The normalized value of Qe
SY S will be

NQ
e
SY S =

�
P

i
k�i �iP

i
k�i

= �
X
i

ai �i (17)

where ai =
k�iP
i
k�i

(18)

Therefore the MILP model for the case for imprecise compu-

tation of aperiodic non-preemptive tasks is given by

maximize NQ
e
SY S = �

X
i

X
x

ai�i x!
p
i x

+
X
i

X
x

aiTSE(Si)�
X
i

X
x

aiTSS(Si) (19)

subject to the other constraints of the MILP models for the

nor-periodic non-preemptive mode of execution as discussed

by Prakash and Parker [10].

5 A genetic algorithm approach
In order to allow the use of a genetic formulation for the

problem of system-level design with imprecise computation,

a set of a utilization factor genes is added to the chromosome

representation used in MEGA for the precise computation

paradigm.

De�nition 5.1 The utilization factor ui gene takes real val-

ues in the range [0; 1] and it is associated with the utilization

factor of task Si,

A naive de�nition of the operator mutation for a real val-

ued gene in the range [a; b] would be a random choice of a

real number in the interval. In a similar way, the crossover of

two real valued genes can be de�ned as the exchange (swap)

of their values.

Experimental results with an earlier version of MEGA us-

ing the naive de�nition of the mutation operator showed that

the chances to reach an optimal/near-optimal design (solu-

tion), with a particular utilization factor ui equal to 1:0 or

0:0, are minimal. Instead ui would assume fractional val-

ues of the form 1:0 � � or �, where � is a small number, e.g.

� = 0:05. In order to avoid that, the mutation operator is

rede�ned using the concept of trap function.

De�nition 5.2 For a given a random number x in the in-

terval [a; b], b > a, and z, the trap length, where 2�z < b�a.

The trap function ftrap(x; z; a; b) is de�ned as

ftrap(x; z; a; b) =

8>>><
>>>:

a if a � x < a+ z

(x�z�a)�(b�a)

b�a�2�z
+ a if a+ z � x < b� z

b if b� z � x � b

(20)5.1 Rede�ning mutation in MEGA

De�nition 5.3 The mutation of a utilization factor gene is

de�ned as a change of its value to ftrap(x; z; 0; 1), where x is

a random real number in [0; 1], and 0 � z < 0:5

5.2 Crossover

The same concepts of task and data-transfer crossovers,

as de�ned in Section 3.1.5, apply to imprecise computation.

However the associated zone of a task kernel is rede�ned as

De�nition 5.4 Each task kernel KS(pi; pj) = fSa; : : : Szg

de�nes a zone composed by genes �a = : : : = �z, ua; : : : ; uz
and f�i j j Si; Sj 2 KS(pi; pj) Si==Sjg.

5.2.1 Fitness value

The �tness value is a function of the cost, system latency

(TSY S) and overall data quality.

ffit(x) = Fmax �Wcost � Cost(x)�WTSY S
� TSY S(x)

�WQSY S
�QSY S(x) (21)

where Fmax is a su�cient large number to ensure ffit(x) � 0

for all possible solutions, Cost(x) is the overall cost of the

solution (design) x; and QSY S(x) is a function of the values

of utilization factor genes, not necessarily linear.

0 �Wcost;WTSY S
;WQSY S

(22)

5.3 Improving the quality by postprocess-
ing

Given a value assignment for the utilization factor genes

of a design implementing a directed acyclic task
ow graph

G = (V;E), it is possible to recalculate the start and end

times of tasks and data-transfers that are not in the critical-

path in such a way that the system-latency is kept the same

and the utilization factors of non-critical tasks are increased.

5.3.1 An overview of MEGA for imprecise com-

putation

The following algorithm illustrates the extension of MEGA to

the imprecise computation paradigm. The initial population

is generated with all utilization factors equal to 1:0, due to

the fact that previous experiments showed that it is di�cult

to reach an optimal solution in this region of the design space

if MEGA allows utilization factors with values less than 1:0

in the initial population P(0).

Algorithm 5.1 MEGA-� - a genetic algorithm for system-

level design of application speci�c multiprocessors allowing

imprecise computation.

Given a task
ow graph G = (V;E)

Detect parallelism among tasks (data-transfers) using

transitive closure [4]

Generate initial population P(0) with all utilization factor

genes equal to 1:0

t � 0

repeat

Perform mutation in a few solutions of P(t)

Perform crossover in a few solution pairs of P(t)

Find detailed timing of all solutions in P(t)

using a Bellman-Ford based ALAP algorithm.

Improve utilization factor of non-critical

tasks.

Evaluate �tness of population P(t)

Scale and normalize �tness values

Generate P(t+ 1) from P(t) by

a prede�ned selection scheme [8]

t � t+ 1

until near-optimal or optimal design (solution) is found

6 Experimental Results

The tool MEGA was written in C, and it has approxi-

mately 7,500 line of code, incorporating both precise and

imprecise computation paradigms. A set of benchmarks

[10] (Figure 3) was adapted to evaluate the performance of

MEGA. Tables 1, 2 and 3 provide detailed information about

the tasks of the two task-
ow graphs used as benchmarks

as well as information regarding available processor and bus

types. For the sake of simplicity, all data transfers are as-

sumed to have a data volume equal to 1, with a negligible

communication delay when local, where the overall delay of

a non-local data-transfer is given by

Delayremote(DT; bus) = �bus +
V olume(DT)

sbus
(23)

S1 S3

S4S2
S2 S5 S8

S1 S4 S7

S3 S6 S9
Task Flow Graph A

Task Flow Graph B

Figure 2: Task Flow Graphs

Processor

Tasks (Si)

Computation time

Type .Cost S1 S2 S3 S4

P1 4
mandatory part 1.0 1.0

--
1.5

optional part 0.0 0.0 1.5

P2 5
mandatory part 1.5 1.0 1.3 0.5

optional part 1.5 0.0 0.7 0.5

P3 2
mandatory part

--
3.0 0.7

--
optional part 0.0 0.3

Quality
coefficients (ki)

1.0 1.0 1.0 1.0

Table 1: Processor types - cost and performance infor-

mation for TFG A

In all experiments, an elitist selection scheme [8] was used

with mutation (pm) and crossover (pc) probabilities equal to

Processor

Tasks (Si)

Computation time

Type .Cost S1 S2 S3 S4 S5 S6 S7 S8 S9

P1 4
mandatory part 1.0 1.0 0.5 1.0 1.0 1.0 2.0

-
0.7

optional part 1.0 1.0 0.5 0.0 0.0 0.0 1.0 0.3

P2 5
mandatory part 1.5 0.5 0.5 3.0 1.0 2.0 0.7 1.3 0.7

optional part 1.5 0.5 0.5 0.0 0.0 0.0 0.3 0.7 0.3

P3 2
mandatory part 0.5 0.5 1.0

--
3.0 1.0 2.7 0.7 2.0

optional part 0.5 0.5 1.0 0.0 0.0 1.3 0.3 1.0

Quality
coefficients (ki)

2.0 2.0 2.0 1.0 1.0 1.0 0.5 0.5 0.5

Table 2: Processor types - cost and performance infor-

mation for TFG B

Bus

Type Cost Speed Latency

B1 10 1.0 0.0

B2 20 3.0 0.0

Table 3: Buses types - cost and performance information

0 20 40 60 80 100 120 140 160 180 200
2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

Number of iterations

F
itn

es
s

o z = 0.00 + z = 0.05

Figure 3: E�ect of the trap length z (TFG B)

Number of Processors
Number of

Buses
Trade-off points

Design TFG #P1 #P2 #P3 #B1 #B2 Latency Cost Quality

I A 0 1 0 0 0 4.33 5.0 0.05

II A 0 1 0 0 0 4.46 5.0 0.31

III A 0 1 0 0 0 4.71 5.0 0.45

IV A 0 1 0 0 0 7.0 5.0 1.0

V A 1 1 1 1 1 2.67 41 0.83

VI B 0 1 0 0 0 11.5 5.0 0.33

VII B 1 0 1 1 0 7.31 16.0 0.45

VIII B 1 0 1 1 1 5.33 36.0 0.95

IX B 1 0 1 1 0 15.33 26.0 1.0

X B 2 0 1 1 0 6.0 20.0 1.0

Table 4: Selected Designs

0.2 and a �xed size population of 100 chromosomes. Equation

10 is used in evaluating the overall output-data quality.

It can be seen from Figure 4 that the use of a small trap

length z is helpful in speeding up the convergence to an

optimal/near-optimal solution. This e�ect is more pronunci-

ated for larger task-
ow graphs (TFG B). Table 4 gives an

idea of the design space for task-
ow graphs A and B. Low

quality solutions have associated low costs and latencies. An

increase in quality requires more hardware resources. For a

�xed cost, It is possible to have a lower latency by sacri�c-

ing the output-data quality. The run-time of MEGA was

around a few minutes (< 5 min) in SUN-SPARC4 to gener-

ate all points in Figure 6 against hours using the SOS [10]

approach, i.e optimization of MILP models restricted to the

precise computation paradigm.

7 Conclusion
An MILP formulation was introduced modeling the

system-level design problem when imprecise computation is

incorporated. The extensions of MEGA based on this MILP

approach were presented. A new gene set was introduced: the

set of utilization factor genes, along with their respective mu-

tation and crossover operators. The objective function was

rede�ned by adding data quality to the possible trade-o�s. A

postprocessing heuristic to improve (increase) the utilization

factors after performing detailed timing was proposed. The

overall structure of MEGA for the imprecise computation

paradigm was shown.

References
[1] BRAND, S., \The Media Lab : inventing the future at MIT",

Kluwer Academic Pub., New York, 1988.

[2] CHU, W. W., HOLLAWAY, L.J. and EFE, K., \Task Allo-

cation in Distributed Data Processing", Computer, Vol. 13,

No. 11, pp. 57-69, Nov 1980.

[3] CHUNG, J.Y. , LIU, J. W. S. and LIN, K-J., \Scheduling

Periodic Jobs that Allow Imprecise Results", IEEE Tr. on

Computers, vol. 39, no. 9, pp. 1156-1174, Sept. 1990.

[4] CORMEN, T. H., LEISERSON, C. E. and RIVEST, R. L.,

\Introduction to Algorithms", McGraw-Hill Book Company,

New York, 1989.

[5] HO, K., LEUNG, J. Y-T. and WEI, W-D., \Minimizing Max-

imum Weighted Error for Imprecise Computation Tasks",

Technical Report UNL-CSE-92-017, Dept. of Computer Sci-

ence and Eng., University of Nebraska, Lincoln, 1992.

[6] HOU, E.S.H, ANSARI, N. and REN, H., \A Genetic Algo-

rithm for Multiprocessor Scheduling", IEEE Tr. on Parallel

and Dist. Systems, Vol. 5, No. 2, pp. 113-120, Feb. 1994.

[7] LIU, J.W.S. LIN, K.-J., SHIH, W.-K., YU, A. C.-S., CHUNG,

J.-Y. and ZHAO, W., \Algorithms for Scheduling Imprecise

Computations", IEEE Computer, Vol. 24, No. 5, pp. 58-68,

May 1991.

[8] MICHALEWICZ, Z., \Genetic Algorithms + Data Structures

= Evolution Programs", Springer-Verlag, Berlin, 1994.

[9] PETERSON, L. (editor), Proc. of the 1996 Heterogeneous

Computing Workshop, IEEE Computer Press, 1996.

[10] PRAKASH, S. and PARKER, A. C., \SOS: Synthesis of Ap-

plication Speci�c Heterogeneous Multiprocessor Systems", J.

of Par. and Distributed Comp., No. 16, pp. 338-351, Dec.

1992.

[11] RAVIKUMAR, C. P. and GUPTA, A. K.,\Genetic Algorithm

for mapping tasks onto a recon�gurable parallel processor",

IEE Proc. in Comp. Dig. Tech., vol. 142, no. 2, pp. 81-86,

March 1995.

	CD-ROM Home Page
	DAC97
	Front Matter
	Table of Contents
	Session Index
	Author Index

