
Synthesis of Speed-Independent Circuits from STG-unfolding Segment1

A. Semenov, A. Yakovlev E. Pastor, M. A. Pe˜na, J. Cortadella
Department of Computing Science Department of Computer Architecture

University of Newcastle Universitat Polit`ecnica de Catalunya
Newcastle upon Tyne, NE1 7RU England 08071 Barcelona, Spain

Abstract

This paper presents a novel technique for synthesis of speed-in-
dependent circuits. It is based on partial order representation of
the state graph calledSTG-unfolding segment. The new method
uses approximation technique to speed up the synthesis process.
The method is illustrated on the basic implementation architecture.
Experimental results demonstrating its efficiency are presented and
discussed.

Introduction

The problem of synthesis of speed-independent circuits from their
Signal Transition Graph (STG) specifications has been approached
by many researchers. Several tools exist today, such as SIS [10],
Assassin [12], Forcage [3] and Petrify [2], which are capable of
synthesising circuits of moderate size. All but Forcage use some
form of State Graph (SG) representation to obtain truth tables of
the implementation logic. Petrify uses Binary Decision Diagrams
(BDDs) to representSG symbolically and can thus synthesise cir-
cuits from larger descriptions. Forcage, on the other hand, uses
Change Diagrams (partial order model) to derive an implementa-
tion but is restricted to specifications without choice.

Construction ofSG hits available computational limits due to
state explosion. A structural method in [6] can implementSTGs
avoiding exhaustive state exploration. It uses concurrency relation
between transitions of theSTG to obtain an initial approximation
of the implementation. If this approximation does not satisfy cor-
rectness criteria, then iterative refinement is performed using State
Machine (SM) decompositions. Although powerful, this method it
is restricted toSM-decomposable specifications.

The main goal of this work is to develop a method for imple-
mentingSTGs that cannot be synthesised by the above techniques
due to the large size of theirSG. A way to achieve this goal will
be analogous to the one in [6] – it will draw upon relations at the
event-based, rather than state-based, description level. This method
will, however, be free from the limitations of [6].

The solution to this problem is found in the use of a partial or-
der approach, already known to have given positive results inSTG
verification. It is based on an implicit representation ofSG in the
form of a finiteSTG-unfolding segment [9]. It was shown [9] that
such a segment can often be built for those examples where the
construction ofSG fails. While the segment is being constructed
it is also verified for correctness. Thus, after the verification stage
is completed, an implementation can be derived from an already
built STG-unfolding segment. Two approaches are possible within
the new synthesis method: exact and approximate. The former ob-
tains an implementation equivalent to that derived from theSG. At
the end of the synthesis procedure this approach produces an im-
plementation by recovering binary states from the segment (similar

1This work was supported in part by the SERC grant No. GR/J 52327, grant CI-
CYT TIC95-0419 and ESPRIT ACiD–WG Nr.21949. Collaboration between Univer-
sity of Newcastle and Universitat Polit`ecnica de Catalunya was supported by British-
Spanish joint research programme (Acciones Integradas) between the British Council
and Spanish Ministry of Education and Science, grant Nos. MDR(1996/97)1159 and
UK HB1995-0203.

Permission to make digital/hard copy of all or part of this work for personal or class-
room use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage, the copyright notice, thetitle of the publication and
its date appear, and notice is given that copying is by permission of ACM, Inc. To
copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior
specific permission and /or a fee.
c 1997 ACM 0-89791-920-3/97/06 ..$3.50 DAC97 - Anaheim, CA, USA

to the approach of [5]). Although it benefits from the unfolding
methodology which restricts the set of states needed to examine for
each signal, the exact approach may suffer from exponential explo-
sion of states. To battle the complexity, the latter approach uses
concurrency relation to initially approximate and then to refine an
approximated implementation. The structural method of [6] works
on theSTG level, assuming that two transitions are concurrent if
they can ever fire simultaneously. Loose approximation may re-
quire several computationally costly refinement iterations. On the
contrary, our method works with a partial run of theSTG speci-
fied behaviour. Thus it is possible to pin-point when exactly any
two transitions become concurrent. This local information gives a
more accurate initial approximation and a more precise refinement.
Therefore the implementations can be obtained faster and be better
optimised.

The aim of this paper is to suggest andillustrate synthesis of
speed-independent circuits from theSTG-unfolding segment built
for their specifications. The method is illustrated on the atomic
complex gate per signal architecture and is compared with the ex-
isting approaches.

Synthesis of Speed-Independent circuits

General synthesis approach We assume that the reader
is familiar with the basics of the Petri net theory [7]. Amarked
Petri net (PN) is a tupleN = hP;T; F;m0i whereP andT are
non-empty sets of places and transitions, respectively,F is a flow
relation andm0 is an initial marking. ASignal (Transition) Graph
(STG) [8, 1] is a tupleG = hN;A;Li (labelledPN) whereN is
a marked PN,A is a set of signals andL : T ! f+;�g � A
is a labelling function.STGs are a special case of labelledPNs,
used for low level descriptions of asynchronous circuits. The set
of transition labels represents changes of signals:+ai (for up) and
�ai (for down). Notation�ai indicates a transition labelled with a
change ofai regardless of the direction of this change.

Conventionally, to obtain an implementation for anSTG G a
correspondingSG is built. TheSG S, also calledState Transi-
tion Diagram (STD), is derived by constructing the reachability
graph (representing all reachable markings) of the underlyingPN
and then assigning binary codesvi to each vertexs. The binary
codes must be assignedconsistently, i.e. :

� every arc is labelled with exactly one signal transition, and

� for each pair of statess1 ands2 connected with an arc la-
belled with�ai the following is true:

– v1[i] = 0 andv2[i] = 1 if � = +

– v1[i] = 1 andv2[i] = 0 if � = �

Once a consistent state assignment was performed, truth tables are
obtained for each output signal and an implementation is produced.
The process of obtaining a truth table depends on the implementa-
tion architecture chosen (for this particular signal).

Correctness criteria for synthesis of speed-independent circuits
can be divided intogeneral correctness criteriaandarchitecture
specific correctness criteria. The former are behavioural properties
of an STG, which characterise anSTG to be implementable. In
addition to the consistent state assignment, they also include:

� Boundedness, which guarantees that the behaviour specified
by anSTG can be implemented into a finite size circuit;

� Semi-modularity(also called “output signal persistency”),
which implies that excited output signals cannot be disabled
by some input signal change and thus cause a hazard.

The latter group of properties is usually checked during the ac-
tual logic synthesis process. These are generally referred to ascod-
ing conflictsand indicate that although theSTG is implementable
“in principle”, some binary state may be associated with different
markings which makes them indistinguishable at the circuit level.
TheComplete State Coding(CSC) condition introduced in [1] re-
quires any two states with equal binary codes to have the same set
of excited output signals. It was shown in [1] thatSTGs satisfying
CSC property are implementable as speed-independent circuits.

An implementation is obtained by building a cover function.
A boolean function with a variable corresponding to each signal
is said to becoveringa statesj if it evaluates to TRUE when the
variables have the values equal to the elements of binary codevj
assigned tosj. A function C covering a set of states is called a
cover function(or simply cover) for this set of statesfsig; each
term of the cover is calledcube.

A cover is not required to beexact, i.e. to coveronly the states
in fsig. It could be obtained explicitly from their binary codes.
However, if a cover is obtained somehow differently (e.g. using
an oracle), it may cover some other states. For example, a method
described in [6] use structural information to obtain covers. Such
cover is calledapproximated cover, and needs to be checked for
correctness. There are different requirements for correctness of
covers according to the implementation architecture chosen.

The following three architecture types are normally considered:

� Atomic complex gate per signalimplementation;

� Atomic complex gate per excitation functionimplementation;

� Atomic complex gate per excitation regionimplementation.

The first architecture can be considered as a basic type. The
other two aim at reducing the size of customised complex gates.
In these architectures it is assumed that the output signal is im-
plemented using a memory element. The Set and Resetexcitation
functions for this memory element are implemented as atomic com-
plex gates (the former) or a network of atomic complex gates (the
latter). Depending on which memory element is used, the imple-
mentations are divided intoi) Standard C-elementimplementation,
which uses Muller C-element as the memory element, andii) RS-
latch implementation, where an RS-latch is used.

To demonstrate the novel technique we chose the atomic com-
plex gate per signal architecture. Our method, however, can be
easily adapted to the other architectures.

Atomic complex gate per signal implementation This
is a basic architecture for speed-independent circuits studied in [1].
The circuit is implemented as a network of atomic gates. Each
gate uniquely implements one output signal. Its boolean func-
tion can be represented as Sum-Of-Products (SOP) or Sum-Of-
Functions(SOF). An example of such gate is shown in Figure 1(b).
Each gate is allowed to be sequential (latch), i.e. contain an internal
feedback with a zero delay. The delay between its internal “AND-
ing” and “ORing” parts is also assumed to be negligible. The gate
depiction is used to denote the implemented boolean function as
the actual implementation is resolved on the transistor level.

Two sets of the reachable states are distinguished in theSG, on-
setOn(ai) andoff-setOff(ai), which include all states in which
the value of the output signalai is implied to be TRUE and FALSE,
respectively. The remaining (unreachable) subset of combinations
of the boolean values of signals forms theDon’t careset (DC-set).

The implementation is derived by building the on-set1. Each
state can be represented by a term which hasjAj variables, each
corresponding to one and only one signalai. The term becomes
TRUE only when the values of the variables are equal to those in
the binary code assigned to the state. The coverC for implementa-
tion is obtained from the terms included into the on-set. The DC-set
can be used for optimising the size ofC. This is done in standard
minimisation tools, such as Espresso [10].

1Here and further, for simplicity, it is assumed that the on-set is constructed. Usu-
ally, the simplest from the on- and off-sets is chosen for implementation.

a1

an

ao

+b

-a

-b

-c

+c

+a +c

+b

p1

p2 p4p3

p5 p6

p7
p8

p9

p2p3
100

p3p5
110

p2p6p8
101

p5p6p8
111

p7p8
011

p4
001

000
p1

p9
010

abc

+a +c

+c

+c

+b

+b

-a

-b

-c

+b

(a)

(b)

(c)

Figure 1: An example of anSTG and a correspondingSG.

The synthesis for this architecture is illustrated in Figure 1(c)
for anSTG shown in the Figure 1(a). Suppose that signalb is to
be implemented. The on-set ofb is found as:On(b) = f(p2; p3);
(p3; p5); (p2; p6; p8); (p5; p6; p8); (p7; p8); (p4)g. The cover func-
tionC(b) is obtained as:C(b) = a�b�c+ab�c+a�bc+abc+�abc+�a�bc =
a+ c. The DC-set in example in Figure 1(c) is empty so no further
minimisation can be done.

Obtaining exact covers usually means that all states in the on-
or off-set must be known. An approximation algorithm produces
approximated covers of the on- and off-sets. Therefore, in this im-
plementation architecture, covers of on- and off-sets must satisfy
the following condition:

Definition 1 Two coversC�On(ai) andC�Off(ai) are said to be cor-
rect iff C�On(ai) andC�Off(ai) coverOn(ai) andOff(ai) respec-
tively andC�On(ai) � C

�
Off(ai) � DC-set. 2

If the covers do not satisfy the above condition, then the ap-
proximation is too loose and needs to be refined. If, on the other
hand, the covers are exact but still intersect outside the DC-set, then
this STG hasCSC problem. In this case it should be corrected by
changing the specification, e.g. by inserting additional signals.

Slices inSTG-unfolding segment

STG-unfolding segment Analysis of STGs usingSTG-
unfolding segment was studied elsewhere [9]. AnSTG-unfolding
segment is a tupleG0 = hT 0; P 0; F 0; L0i whereT 0, P 0 andF 0 are
sets of transitions, places and the flow relation, respectively, and
L0 is a labelling function which labelseach element ofG0 as an
instance of elements ofG. G0 is a partial order obtained from an
STG G by the process of its unfolding which starts from the initial
marking. The unfolding process uses the structural properties of
the constructed partial order to determine the relations ofconflict,
concurrencyandprecedencebetween instances. These relations are
used to decide where to instantiate the next element. The following
key notions were introduced in [4]:

� The min-set of transitions needed to firet0, including t0, is
calledlocal configurationof t0 and is denoted asdt0e.

� A set of place instances reached by firing all transitions in
dt0e is calledpostset ofdt0e and is denoted asdt0e�. Mapping
a postset onto places of the originalSTG is calledfinal state
of dt0e and gives a marking of the originalSTG.

� Any non-conflicting and transitively closed set of transitions
of T 0 is calledconfigurationC. The postset of a configura-
tion, denoted asC�, is found from the postsets of transitions
comprising it.

The unfolding algorithm examines only states reached through fir-
ing of an instancet0 excited by a minimal set of causes. It is based
on the fact that no new information about the behaviour of the sys-
tem can be obtained once the states started repeating. Thus the
algorithm constructs no new instances after any instancet0c whose
firing reaches an already examined state. Transition instancet0c is
called acutoff transitionof the unfolding.

In contrast toPN-unfolding [4], theSTG-unfolding takes into
account signal interpretation ofPN transitions and keeps track of
the binary codes reached by transition firing. However, it still ex-
amines only a subset of all reachable states and thus is more effi-
cient thanSG analysis for a vast number of examples.

Each instancet0 of STG-unfolding segment is assigned with
a binary code�dt0e which is reached by firing transitions in dt0e.
Similar to its postset, the binary code corresponding to a config-
urationC is calculated from�dt0e of transitions comprising it. It
was shown in [9] that all states of theSG are represented in the
STG-unfolding segment as postsets of some configuration. For
each instancet0 labelled with signal transition�ai a set of tran-
sitionsnext(t0) is defined as a set of instances labelled with�ai
reachable fromt0 without any intermediate transitions of ai. Set
first(ai) is a set of transitions ofai first reached from the begin-
ning of the segment. A special transition, calledinitial transition,
is introduced in the unfolding to represent the initial state of the
STG. This transition, denoted as?, has a postset which maps onto
the initial markingm0 and has an assigned binary code�d?e equal
to the initial binary statev0 of theSTG.

It was demonstrated in [9] that anSTG-unfolding segment can
only be constructed for anSTG specification satisfying bounded-
ness and consistent state assignment criteria. The last general cor-
rectness criterion, semi-modularity, can be checked on theSTG-
unfolding segment in linear time.

Cuts To represent a state ofSG we define a cut.A cut ofSTG-
unfolding segmentis a maximal set of concurrent placesp0 2 P 0.
Each cutc of an STG-unfolding segment thus represents some
reachable marking of the originalSTG. A sequence relation is de-
fined between two cutsc1 � c2 if 8p0i 2 c2;9p

0
j 2 c1 : p0j � p0i.

For each instancet0 the following four types of cuts are found.

� A minimal excitation cutcmin

e (t0), which represents a state
at whicht0 becomes first enabled.

� A minimal stable cutcmin

s (t0), which represents a state which
is reached by firing oft0.

� A maximal excitation cutcmax

e (t0), which represents a state
from which, in a correctSTG no advancement can be made
unlesst0 is fired.

� A maximal stable cutcmax

s (t0), which represents a state which
is reached after firing oft0 from which firing of any transi-
tion leads to a state enabling the next change of the signalai
labellingt0.

Each instance of theSTG-unfolding segment uniquely identifies
cmin

e (�a0i) andcmin

s (�a0i) and thesetsof cmax

e (�a0i) andcmax

s (�a0i).
Thus each instance identifies states bounding the subset of the on-
set (or off-set) ofai which is found for this particular instance.

Slices To represent a (connected) set of states we introduce a
notion of a slice of theSTG-unfolding segment. Aslice ofSTG-
unfolding segmentis a set of cutsS = hcmin;Cmaxi defined with
amin-cut of the slice, cmin, and aset of max-cuts, Cmax, such that
8c i 2 S the following is true:cmin � c i and9cmax

j 2 Cmax :

c i � cmax

j . No two cuts in the set of max-cuts are sequential.
In other words, a slice is defined between one min-cut and a set

of max-cuts. Every cut in between the min-cut and a max-cut is
encapsulated in the sliceS. Furthermore, for any two cutsci and
c j encapsulated byS, if ci � cj , then all cuts betweenci andcj
are also encapsulated byS. Since each cut represents some state in

p’1

p’2

p’5

p’’7

p’6 p’’8

p’3 p’4

p’7 p’8

p’9

-a’
011

110
+b’’

+a’
100

+c’’
101

-c’
010

011
+b’

+c’
001

000
-b’

p’’1

000
p’1

p’2

p’5

p’’7

p’6 p’’8

p’3 p’4

p’7 p’8

p’9

-a’
011

110
+b’’

+a’
100

+c’’
101

-c’
010

011
+b’

+c’
001

000
-b’

p’’1

000

(a) (b)

Figure 2: An example of anSTG-unfolding segment and illustra-
tion of slices and cuts.

theSG, for any two statessi andsj represented as sequential cuts
in a slice, all states on any path fromsi to sj are also represented
as cuts encapsulated intoS. The number of cuts in the set of max-
cuts corresponds to the number of configurations (non-conflicting
runs of theSTG) which include configuration producing the min-
cut. The elements of theSTG-unfolding segment, i.e. places and
transitions, bounded by instances in min-cut and max-cuts are said
to belong to the slice.

A slice represents a subset of reachable states found in theSG
for any STG bounded by the cuts defining it. As discussed ear-
lier, the synthesis of speed-independent circuits is based on finding
subsets of reachable states. Therefore, slices of theSTG-unfolding
segment can be used to identify and represent these subsets.

Cuts and slices are illustrated in Figure 2. Consider a cutc =

(p07; p
0
8) in Figure 2(a). This cut is a minimal excitation cut for the

transition�c0 and is a minimal stable cut for+b0. Another cut,
c = (p02; p

0
6; p

00
8) is a maximal stable cut for transition instance

+a0. At the same time this is a maximal excitation cut for the
instance+b00. This example also illustrates the relations between
cuts. Intuitively, if a transition�a0i causes�a0j , then the minimal
stable cut of�a0i is the minimal excitation cut of�a0j and vice versa.

Slice S1 = h(p01); f(p
0
7; p

0
8)gi (Figure 2(b)) encapsulates cut

c = (p04). Another sliceS2 is defined between a min-cut(p02; p
0
3)

and a set of max-cutsf(p05; p
0
6; p

00
8)g and includes all cuts between

them. It is also possible to define a slice between(p02; p
0
3) and

f(p03; p
0
5); (p

0
2; p

0
6; p

00
8)g. In this case the slice will include all cuts

but one enabling�a0. This slice, therefore, represents all states at
which signala is stable at “1”.

Each cut is produced by some configuration of theSTG-un-
folding segment. Hence, the binary codes of theSG states repre-
sented by cuts encapsulated in a particular slice can be recovered
by examining its cuts.

Synthesis fromSTG-unfolding segment

Obtaining exact covers First, consider the problem of syn-
thesis from theSTG-unfolding segmentG0 by finding exact covers
for the on-(off-)set. To implement an output signal of anSTG as an
atomic gate, its on-set2 is required. Since itsSG is represented as
anSTG-unfolding segment, the problem is to find a set of slices in
this segment which represents all states in the on-set, i.e. an on-set
partitioning ofG0 for ai.

To define each slice we need to identify a min-cut and a set of
max-cuts. From all instances in theSTG-unfolding segment only
instances of+ai may change the value of corresponding element
in the binary codes. Furthermore, for each instance+a0i its min-
imal excitation cutcmin

e (+a0i) represents the first state at which
+a0i becomes excited. Any cut at which+a0i is excited or stable at
“1” must be sequential tocmin

e (+a0i). A special case is the initial

2Off-set if an off-set implementation was chosen. In this case instances of�ai

should be considered.

S (+b’)1

On

p’1

p’2

p’5

p’’7

p’6 p’’8

p’3 p’4

p’7 p’8

p’9

-a’
011

110
+b’’

+a’
100

+c’’
101

-c’
010

011
+b’

+c’
001

000
-b’

p’’1

000

S (+b’)
Off

S (+b’’)2

On

Figure 3: Illustration of synthesis from theSTG-unfolding seg-
ment.

transition? ofG0. If in the initial state of theSTG the correspond-
ing bit of binary code was “1”, then the setfirst(ai) will consist
of the down instance�a0

i
. In this case, the minimal stable cut of

? is the first cut from which this slice can be defined. Thus the set
of minimal cuts, which is used to define a set of slices, is taken as
a set of minimal excitation cuts of instances+a0i and the minimal
stable cut of?, if the signalai is at “1” in the initial state. Thus a
set of transitions, calledentry transitions, is identified on theSTG-
unfolding segment which includes all instances of+ai and may
include? if ai is at “1” in the initial state.

For complete definition ofeach slice we need to determine a set
of max-cuts for each slice. The minimal excitation cut of any in-
stance�a0i represents the first state at which�a0i becomes excited.
This cut belongs to the off-set.

For each instance+a0i the slice must be bounded by a set of cuts
which can be reached from min-cut without exciting�ai. The slice
is bounded by the maximal excitation cuts of immediate predeces-
sors ofnext(+a0i), i.e. cuts at which an immediate predecessor of
a transition fromnext(+0ai) is the only transition to fire. This is
the furthest state to which advancement of the system can be made
from +a0i without enabling�ai. In the case of initial transition the
set of max-cuts for the first slice is chosen usingfirst(ai).

Due to the unfolding algorithm, a particular configuration may
contain no instances of�ai. This may happen if the configuration
contains a cutoff transition, or simply leads to a deadlock. In this
case the cut reached by such configuration bounds the slice.

Consider synthesising signalb from an example in Figure 1.
The on-set partitioning of the segment is shown in Figure 3. There
are two instances+b0 and+b00 and one instance�b0. Thus there
are two slicesS1

On(+b
0) = h(p04); f(p

0
7; p

0
8)gi andS2

On(+b
00) =

h(p02; p
0
3); f(p

0
5; p

0
6; p

00
8)gi representing states from the on-set and

one sliceSOff = h(p09); f(p
00
1)gi. Once the slices are defined,

the set of states represented by these slices is found:On1(b) =

f100; 101; 110; 111g andOn2(b) = f001; 011g. The on-set cover
is obtained from slices asCOn = On1(b) [On2(b) = f100; 101;
110; 111; 001; 011g which after standard boolean transformation
givesCOn = f1��;��1g = a+c. If the off-set implementation
were chosen, then the cover would beCOff = f010; 000g = �a�c.

Deriving cover approximation from STG-unfolding
segment The synthesis procedure described in the previous Sub-
section suffers from one drawback. If many concurrent transitions
belong to a slice, then obtaining the binary codes for all cuts will
suffer from exponential explosion of states. To battle this an ap-
proximation method is suggested.

Two types of nodes can be identified in the on-set of signalai:
those which have+ai excited and those at whichai is stable at
“1”. The former is traditionally calledexcitation region(ER) and
the latterquescient region(QR) of +ai. A set of states at which
a particular placepl is marked is called amarked region(MR) of

p’4

+d’

p’7

+g’

p’5

p’8

+b’

+e’

p’11
-a’

p’9

+f’

p’6

+c’

p’3 p’2

+a’

p’1

p’10

p’4

+d’

p’7

p’10

+g’

p’5

p’8

+b’

+e’

p’11
-a’

p’9

+f’

p’6

+c’

p’3 p’2

+a’

p’1

+e’

p’1

+a’

+d’

p’3

p’5

p’8

+b’

+c’

-a’

p’2

p’4

p’7

p’9

p’6

(a) (b) (c)

Figure 4: Illustration of cover approximation and refinement.

this place. It was pointed out in [6] that a cover for any set of
states can be found as an intersection of covers for places which
are marked at each state. Thus a set of states at which a particular
transition is excited can be found as an intersection ofMRs of its
preceding places. However, at the unfolding level the instances
of transitions are known. The minimal excitation cutcmin

e (�a0
i)

for each instance�a0i indicates where this instance becomes first
enabled.

Any state reachable fromcmin

e (�a0
i), preserving the excitation

of �a0i, can only be reached by firing transitions which are concur-
rent to�a0i. If a signal transition instance�a0j is concurrent to�a0i,
then the value of its corresponding element in the binary code may
take values of both “0” and “1”. A cover approximationC�e(a

0
i) is

found from the binary code� assigned to the cutcmin

e (�a0i). Lit-
erals corresponding to signals whose instances belong toSe(�a0i)
and are concurrent to�a0i are substituted by “–” (don’t care). Ap-
proximation reduces the number of literals in coverC�e(a

0
i) and in-

creases the number of combinations covered byC�e(a
0
i). However,

such approximation guarantees that no marking at which�a0i is ex-
cited was lost. Furthermore, for aCSC-compliantSTG, C�e(a

0
i)

will only cover those reachable states where�a0i is excited.
For example, consider calculation ofC�e(+d

0) for the instance
+d0 in Figure 4(a). The binary code corresponding to its minimal
excitation cutcmin

e (+d0) = (p02; p
0
3; p

0
4) is found from the binary

code of its local configurationd+d0e as� = f1000000g (the order
of signals isabcdefg). There are four signalsfb; c; e; fg whose
instances belong to the slice and are concurrent to+d0. Thus the
ER cover approximation for+d0 will be C�(+d0) = f1 � �0 �
�0g = a �d�g.

The rest of the states in the on-set which are represented as
cuts encapsulated bySOn(�a

0
i) can be approximated by taking

cover approximations forMRs of places belonging toSOn(�a
0
i)

and sequential to the entry transition of the slice.
For each placep0l its MR approximation coverC�mr(p

0
l) is ob-

tained from the binary code�dt0
k
e assigned to its preceding tran-

sition. Similar toER approximation, any marking at whichp0
l

is
marked can only be reached by firing transitions concurrent top0

l
.

Thus literals corresponding to signals whose instances belong to
SOn(�a

0
i) and are concurrent top0l are replaced by “–”.

An MR cover approximation for a particular placep0l will cover
all states at whichp0l is marked with any other concurrent place
p0j . Thus only mutually non-concurrent subset of places belong-
ing toSOn(�a

0
i) can be considered. A set of such places is called

approximation setP 0
a. Furthermore, anMR cover approximation

must not cover markings enabling instancest0j 2 next(�a0i). Thus,
the MR cover approximation for any such placep0

l
is found as

C(p0l) =
P

C�
t
0

k

(p0l) whereC�
t
0

k

(p0l) is a cover approximation found

for p0l with a set of concurrent signal instances excluding an in-
stancet0

k
immediately precedingt0j. To reduce the size ofMR

cover approximations, it is also convenient to chooseP 0
a so that

it includes one input place from each instance innext(�a0i). The

cover approximation for each sliceSOn(+a
0
i) representing the

states from the on-set of signalai is therefore calculated as:

C�On(a
0
i) = C�e(+a

0
i) +

X
C�mr(p

0
l); p

0
l 2 P

0
a

whereC�e(+a
0
i) may be empty if the entry transition ofSOn(+a

0
i)

is the initial transition of the segment.
Consider approximation of the on-set cover for signal+a0 shown

in Figure 4(b). The slice representing states from the on-set is found
asSOn(+a

0) = h(p01); f(p
0
7; p

0
8; p

0
9); (p

0
6; p

0
8; p

0
10); (p

0
5; p

0
9; p

0
10)gi.

To approximate states represented by this slice an approximation
set is chosen asP 0

a = fp04; p
0
7; p

0
10g. The initial values forMR

cover approximations for placep04 andp07 are found using� of their
predecessors+a0 and+d0 respectively. Both places have the same
set of concurrent instances of other signals. TheirMR cover ap-
proximations are found asC�mr(p

0
4) = f1��0��0g = a �d�g and

C�mr(p
0
7) = f1 ��1��0g = ad�g. Placep010, on the other hand,

is an input to�a0 2 next(+a0). Therefore itsMR cover approxi-
mation is found asC(p010) = C�

f 0(p
0
10) + C�

e0
(p010) = f1 ��1 �

01g[f1��10�1g = ad �fg+ad�eg. There is only one state in the
ER of +a0 which is covered by a coverC�(+a0) = f0000000g =

�a�b�c �d�e �f�g. The cover approximation representing the on-set ofa is
found asC�On(a) = �a�b�c �d�e �f�g + a �d�g + ad�g + ad �fg + ad�eg.

Cover refinement Due to the approximated nature of the cov-
ers, an on-set cover found from theSTG-unfolding segment may
implement an incorrect function. Indeed, if a output signal is imple-
mented using an on-set cover approximation which covers a state
belonging to the off-set, then the output will change to “1” where
it is suppose to be “0”. Thus cover approximations obtained using
the algorithm described before need to be checked. To check cover
correctness both on- and off-set cover approximations are required.

Suppose that both approximated covers for the on- and off-set
of ai were obtained. Suppose also that their intersection is non-
empty. The covers’ intersection may only belong to the DC-set.
However, to find the DC-set all codes in both on-set and off-set
must be known. Therefore, to ensure the covers implement the
logic functions correctly we check a stronger condition: approxi-
mated covers for on- and off-set are said to be correct if their in-
tersection is empty. The approximation produces semi-optimised
covers. Exact covers have their intersection empty by construc-
tion. Therefore, if the covers’ intersection is non-empty, then they
need to be refined until their intersection becomes empty, possibly
restoring the exact covers. Thus the use of a stronger condition
only affects the quality of optimisation rather than correctness of
covers. If after complete refinement on- and off-set covers still
intersect, then thisSTG has aCSC problem and cannot be imple-
mented without changes to the specification. Correct refined covers
can be optimised using any known minimisation technique.

The pseudo-code of the algorithm for deriving covers for on-
and offsets is shown in Figure 5. The initial on- and off-set cover
approximations are found as described in the previous Subsection.
If the approximated covers’ intersection is not empty, then these
covers are refined. Only concurrency relation was used for finding
approximated covers. Other relations between transitions concur-
rent to�a0i were ignored. The general idea behind refinement is
that using these relations some of the information about the cover
is restored. Covers are refined until “they are good enough”, i.e.
covers’ intersection becomes empty.

The on- and off-set covers’ intersection may become non-empty
due to approximation ofMR cover for some places in the approxi-
mation set. TheseMR cover approximations may intersect with the
ER cover approximations of some instances of the opposite signal
transition. In this case only cover approximations for these places
(but not all in the approximation set) and the instance of opposite
signal transition need to be refined. The set of signalsSig which
cause the intersection is also known. These are exactly those sig-
nals whose value is undefined in one of the cubesB 2 C�. Thus
we need to consider a problem of refining a cover approximation
for an elementx0 of STG-unfolding segment withSig.

To restore some of the relations arefining setP 0
r is constructed

from non-concurrent places belonging to the sliceSOn(�a
0
i) such

for each implementable signalai do
Find sets of on- and off-slicesSj

On
andSk

Off

for eachsliceSj
On

do
Find approximation setP 0

a

C�
On

= C(t0e) +
�P

C�mr(p
0
l
) : p0

l
2 P 0

a

�

end do
for eachsliceSk

Off
do

Find approximation setP 0
a

C�
Off

= Ck(t0
e
) +
�P

C�
mr

(p0
l
) : p0

l
2 P 0

a

�

end do
/* initial approximations found */
while C�

On
� C�

Off
6= ; then do

for eachC�mr(p
0
l
) andCk(t0e) : C�mr(p

0
l
) � Ck(t0e) 6= ; do

Find the set of offending signalsSig
Choose offending signalaj fromSig

Find refining setP 0
r for p0

l
w.r.t. aj

C�new(p
0
l
) = C�mr(p

0
l
) �
�P

C�rmr(p
0
k
) : p0

k
2 P 0

r

�

Find refining setP 0
r for t0e w.r.t. aj

C�new(t
0
e) = C�(t0e) �

�P
C�rmr(p

0
k
) : p0

k
2 P 0

r

�
end do

end do
end do

Figure 5: Algorithm for deriving on- and off-set cover approxima-
tions fromSTG-unfolding segment

that8p0k 2 P 0
r : x0kp0k . Furthermore, the set is chosen so that for at

least one signalaj from Sig for each its instancet0k 2 SOn(+a
0
i)

one of the successors oft0k is in P 0
r. Thus each refining step will

refine at least one signal fromSig. A refined coverC�new(x
0) is

obtained from the old approximation as:C�new(x
0) = C�(x0) ��P

C�rmr(p
0
k)
�
; p0k 2 P 0

r. CoverC�rmr(p
0
k) is a restrictedMR cover

for p0k where only those literals are set to “–” whose instancest0lkp
0
k

belong toSOn(�a
0
i) and are successors ofx0.

Informally, at each step the refinement procedure restores the
marking component of reachable states represented by the slice.
It finds a set of places which can be marked together with each al-
ready partially restored marking. The cover function is then changed
reflecting the fact that partially restored markings now include found
places. Thus in the end, when the procedure terminates, the covers
correspond to fully restored markings and cover only states with
these marking components.

Since each step refines the value of at least one variable and
the set of signals is finite, the refinement procedure will terminate
in finite number of steps producing an exact cover for the states
represented the sliceSOn(�a

0
i).

Consider a fragment ofSTG-unfolding segment shown in Fig-
ure 4(c). Suppose that on-set cover approximationC�On, found
with approximation setP 0

a = fp01; p
0
3; p

0
5; p

0
8g, intersects withC�

Off
for some signal. Suppose also that a cubeB = d�e which is anMR
cover approximation of placep05 causes this non-empty intersec-
tion. The set of offending signals is found asSig = fa; b; cg.
Let a be the signal chosen for refinement. Its only instance which
should be used in refinement is�a0. A refinement set is chosen
asP 0

r = fp02; p
0
4; p

0
7; p

0
9g. Consider calculation of the restricted

MR cover approximation forp02. The only instances which can be
used in approximation is+e0 as other concurrent instances,+a0

and+d0, precedep05. ThusC�rmr(p
0
2) = f1001�g (the order of

signals isabcde). Similar,MR cover approximations are found for
other places inP 0

r. The refined cover approximation is thus found
as:C�new(p

0
5) = f���10g\[f1001�g[f1101�g[f1111�g[

f0111�g] = a�cd�e+ bcd�e.
The resulting cover is an exact cover ofMR for placep05. Note

that if simplyMR cover approximationC�mr(p
0
2) = �b�cwere chosen

for p02, then refinement would not refinea.

Benchmark Sigs PUNT ACG Other tools
UnfTim TotTim LitCnt Petrify SIS LitCnt

imec-master-read.csc 18 0.39 77.00 83 125.66 630.52 69
nowick.asn 7 0.02 0.97 17 1.44 0.51 20/17

nowick 6 0.02 0.57 15 1.10 0.23 14
par 4.csc 14 0.03 3.63 36 12.31 168.55 36

sis-master-read.csc 14 0.16 5.78 48 27.09 130.66 48
tsbmSIBRK 25 0.44 42.70 72 299.90 141.51 72

pn stg example 6 0.01 1.77 19 4.20 6.84 19
forever ordered 8 0.03 1.46 20 5.24 8.81 16
alloc-outbound 9 0.05 0.85 16 1.75 1.53 16
mp-forward-pkt 20 0.02 0.83 17 1.50 0.22 17

nak-pa 10 0.02 0.96 20 2.28 0.29 20
pe-send-ifc 17 0.12 2.53 68 19.50 1.16 75/72

ram-read-sbuf 11 0.02 1.08 25 3.28 0.26 22
rcv-setup 5 0.02 0.25 8 0.72 0.14 8

sbuf-ram-write 12 0.04 1.48 23 4.04 0.38 23
sbuf-read-ctl.old 8 0.03 0.86 15 1.29 0.19 15

sbuf-read-ctl 8 0.02 0.71 15 0.99 0.16 15
sbuf-send-ctl 8 0.02 0.88 19 1.95 0.21 19

sbuf-send-pkt2 9 0.02 0.99 19 2.16 0.23 19
sbuf-send-pkt2.yun 9 0.04 1.07 31 3.43 0.26 31

sendr-done 4 0.02 0.23 6 0.33 0.14 6
Total 228 1.72 146.78 592 520.16 1092.77 580/574

Table 1: Experimental results

10

100

1,000

(sec)

No. signals252015105 30 40 50

SIS
Petrify
PUNT

cfpp

Time

10,000

Figure 6: Experimental results for Muller pipeline.

Experimental results

The method suggested in this paper was implemented on the basis
of the unfolding tool “PUNT”. Experiments are divided into two
major series.

The goal of the first series was to demonstrate the quality of
the proposed method. Results of the synthesis procedure, tested
on a set of benchmarks, are shown in Table 1. The table presents
time breakdown (in seconds) for synthesis a speed-independentcir-
cuit from its STG specification in the atomic complex gate per
signal architecture (“PUNT ACG”). Column “UnfTim” shows the
time taken to construct theSTG-unfolding segment; column “Tot-
Tim” shows the total time taken to synthesise a particular circuit
(including Espresso optimisation). For comparison, same set of
benchmarks was synthesised using two known tools Petrify and
SIS. Their timings are grouped in the column “Other tools”. Literal
count (columns “LitCnt”) was used as a measure of the quality of
the new synthesis method. Theliteral count shows the total num-
ber of literals in the obtained covers of final implementations. The
number of signals (column “Sigs”), influencing the complexity of
the specification and its behavioural representation, is also given
for each specification.

As it can be observed, the synthesis technique based on the
STG-unfolding segment produces implementations comparable to
those produced by other tools. The timing results show that our
technique compares favourably to Petrify. It is also comparable
with SIS on the benchmarks with low count of signals and it be-
comes increasingly better with the growth of the signal count. These
results show that for small sized benchmarks, the overheads of con-
structing theSTG-unfolding segment and traversing it may out-
weigh the time spent on constructing a small reachability graph
with an efficient implementation. Using a stronger correctness con-
dition for approximated covers may produce a slightly worse im-
plementation due to the fact that the DC-set is partitioned.

The second series of experiments shows the feasibility of the
new method on a set of scalable examples such as Muller pipeline.
Experimental results are shown in Figure 6. As can be observed,
existing tools soon choke on the size of the specification either run-
ning out of memory or taking prohibitively long time. The literal

count for all three tools was the same. Both SIS and Petrify exhibit
doubly exponential growth of time taken. The first dependency is
due to the state space explosion, the second is due to the exponen-
tial complexity of the exact synthesis process used in both tools. In
addition, we synthesised a Counterflow pipeline specification [11]
which has 34 signals. From the existing tools, only Petrify was able
to synthesise it taking more than 24 hours. At the same time PUNT
was able to synthesise it in under 2 hours thus giving an order of
magnitude gain in speed. This is shown on the graph as a circled
dot.

Conclusions

In this paper we presented a new method for synthesis of speed in-
dependent circuits. Our approach is based on theSTG-unfolding
segment. It uses the segment as a model from which an implemen-
tation is obtained. As the size of theSTG-unfolding segment is
often smaller than the size of theSG, it is possible to synthesise
specifications of larger sizes. In addition, due to the smaller size of
the semantic model, the implementation can be achieved faster on
a number of moderate sized examples. We demonstrated applica-
bility of our method on an existing set of benchmarks.

Future development of this method can be directed into explor-
ing heuristics for the refinement procedure, which is the core of
our method. In addition, this method can be adapted to the other
implementation architectures. In this case, the approximation will
be used to obtain the excitation functions for memory elements
by finding the slices corresponding to the required regions of the
SG. Furthermore, the method can be enhanced by accommodating
checks for weaker correctness conditions for approximated covers.

REFERENCES

[1] T.A. Chu. Synthesis of Self-Timed VLSI Circuits from Graph-
theoretic Specifications. PhD thesis, MIT, 1987.

[2] J. Cortadellaet. al. Petrify: a tool for manipulating concur-
rent specifications and synthesis of asynchronous controllers.
In Proc. of the 11th Conf. Design of Integrated Circuits and
Systems, pages 205–210, Barcelona, Spain, November 1996.

[3] M. Kishinevsky, A. Kondratyev, A. Taubin, and V. Var-
shavsky. Concurrent Hardware: The Theory and Practice
of Self-Timed Design. John Wiley and Sons, London, 1993.

[4] K.L. McMillan. Symbolic Model Checking. Kluwer Aca-
demic Publishers, Boston, 1993.

[5] T. Miyamoto and S. Kumagai. An efficient algorithm for de-
riving logic functions of asynchronouscircuits. InProc. of the
Second International Symposium on Advanced Research in
Asynchronous Circuits and Systems (ASYNC’96), pages 30–
35, Aizu-Wakamatsu, Fukushima, Japan, March 1996.

[6] E. Pastor, J. Cortadella, A. Kondratyev, and O. Roig. Struc-
tural methods for the synthesis of speed-independent circuits.
In Proc. European Design and Test Conference (EDAC-ETC-
EuroASIC), pages 340–347, Paris(France), March 1996.

[7] W Reisig.Petri Nets, An Introduction. Springer-Verlag, 1985.
[8] L.Ya. Rosenblum and A.V. Yakovlev. Signal graphs: from

self-timed to timed ones. InProceedings of International
Workshop on Timed Petri Nets, Torino, Italy, July 1985, pages
199–207.

[9] A. Semenov and A. Yakovlev. Event-based framework for
verification of high-level models of asynchronous circuits.
Technical Report 487, University of Newcastle upon Tyne,
1994.

[10] E.M Sentovichet. al. SIS: A system for sequential circuit
synthesis. Memorandum No. UCB/ERL M92/41, University
of California, Berkeley, 1992.

[11] A. Yakovlev. Designing control logic for counterflow pipeline
processor using petri nets. Technical Report 522, University
of Newcastle upon Tyne, 1995.

[12] Ch. Ykman-Couvreur, B. Lin, and H. DeMan. ASSASSIN: A
synthesis system for asynchronouscontrol circuits. Reference
manual, IMEC, 1995.

	CD-ROM Home Page
	DAC97
	Front Matter
	Table of Contents
	Session Index
	Author Index

