A Hardware/Software Codesign Method for a General Purpose
Reconfigurable Co-Processor

Shinji Kimuraf, Mitsuteru Yukishitat, Yasufumi Itouf, Akira Nagoyaf,
Makoto Hiraof, Katumasa Watanabet

1: Nara Institute of Science and technology

I: NTT Communication Science Laboratory

{kimura, yasufu-i, watanabe}@is.aist-nara.ac.jp
{yuki, nagoya}@cslab.kecl.ntt.co.jp

Abstract

This paper shows a hardware/software codesign
method for a computer system with a reconfigurable
co-processor. The reconfigurable co-processor is con-
structed from FPGA'’s, internal cache and a control
part, and is connected to the system bus of the com-
puter system. This paper shows the architecture of
the reconfigurable co-processor, a hardware/software
separation method and a co-operation method via
the DMA based memory sharing. We also show co-
operation examples and the effectiveness of our ap-
proach for the fast execution of user processes.

1 Introduction

With recent development of hardware technology, re-
configurable hardware devices have been devised. Es-
pecially, Field Programmable Gate Arrays (FPGA’s)
are widely used in logic emulators, rapid hardware
prototyping, etc.

Several researches have been studied on computer
systems including reconfigurable hardware for speed-
up of applications [1], [2], [3], [4], [5]. In these
researches, the data communication line between
a main processor (a central processing unit in a
computer system) and a reconfigurable hardware is
rather narrow, and a reconfigurable hardware devices
are used for operations with little data transfer, or
all data are transmitted to the hardware device and
operations are executed off-line.

In the paper, we propose a novel reconfigurable co-
processor architecture, a method of the co-operation
between the main processor and the reconfigurable
co-processor, and a hardware/software co-operation
method for the computer system with the reconfig-
urable co-processor.

The co-processor is based on the bus of the com-
puter system for the accessibility to the main mem-
ory and other peripherals on the co-operation. On

0-8186-7895-X/97 $10.00 © 1997 IEEE

147

the memory access, the co-processor uses the direct
memory access and includes cache/local memory to
escape the bus bottleneck. ~

We have implemented and tested the co-processor
for SUN SBus, and have shown the effectiveness of
our codesign method.

2 Bus Based Reconfigurable
Co-Processor Architecture

2.1 Co-Processor Architecture

The architecture of the reconfigurable general pur-
pose co-processor is shown in the section. The co-
processor architecture has three main parts as shown
in Fig. 1.

¢ the internal bus with 50 MHz clock,

e the reconfigurable FPGA’s connected to the in-
ternal bus,

e the external bus interface which manages the
connection between the internal and the exter-
nal buses.

The internal bus has 32-bit data lines, 32-bit ad-
dress lines, and 10-bit control lines. We have de-
signed the co-processor for SUN SBus, and the in-
ternal bus specification is the same as the external
SBus specification. The following control signals are
used on SUN SBus: the request and the acknowledge
signals for the bus access, the number of data bytes,
and the memory access type.

Hardware modules implemented in FPGA’s can
access to the external bus via the internal bus, and
are designed to be executed under the internal bus
clock. Note that the hardware modules can access to
the main memory and other peripherals connected to
the external bus.

Connection Lines among FPGA's
{ | I} | [1

ALTERA ALTERA ALTERA ALTERA 128Kbyte
Configuration
FPGA FPGA FPGA FPGA RAM
Internal BUS
| Coptrol Bus 10,
i Dais Bus E
' Address Bus 2
R Sy G
1 Mbyte
Cache Cache SBus controller
memory
= |]
ERyRalra
l 5Bus
1 ¥ '
Control signals ;

Physical Address Data

(Sel®, Siz, Rd. AS®.etc.)

Figure 1: The structure of a general purpose co-
processor for SUN SBus.

Table 1: Access time for the cache memory

Access type [[# CLK | Exec. time
local read/write 2 40 nsec
cache hit read /write 3 60 nsec
cache miss read (4byte) 17 340 nsec
cache miss read (32byte) 36 720 naec
non-cache read (read through) 15 300 nsec
non-cache write (write through) 3 60 nsec

Since the co-processor is connected to the bus, the
main processor can access to the co-processor via the
bus address, which is usually called memory mapped
I/O. We can define control behaviors, such as the
reset of the co-processor, the configuration of FPGA,
etc., for specific bus addresses.

The co-processor has 1 MByte of 2 way associative
cache/local memory, where we use SRAM with 17
nsec access time. When the cache is used as the
local memory, the access needs 2 global clocks (with
50 MHz clock). Cache hit access needs 3 clocks, and
cache non-hit access needs 20-40 clocks depending
the external bus status. Access times are shown in
Table 1.

2.2 Structure of Reconfigurable Part

The reconfigurable part of the co-processor is made
from 4 EPF81188 FPGA’s. EPF81188 is a LUT-type
FPGA, includes 1008 logic cells, 180 I/O pins, 1180
flip-flops. Each logic cell in EPF81188 can imple-
ment any logic function with up to 4 inputs and 1
output, and EPF81188 can implement circuits up to
12,000 gates. EPF81188 can execute 24-bit accumu-
lator with 87 MHz and 16-bit up/down-counter with
125 MHz.

148

FPGA’s are connected to each other with inter-
nal connection lines. Each FPGA has 180 I/O pins.
To maximize the number of connection lines, the ad-
dress line of the internal bus is connected only one
FPGA. Thus 32 (address or data) + 10 (control) I/O
pins in each FPGA are used for the connection to the
internal bus and 45 I/O pins are used for the inter-
nal connection among FPGA’s. The network among
FPGA’s is symmetric, and we can use each FPGA in
symmetric manner.

We have designed a library for basic operations
specific to Altera FPGA’s. The library includes an
n-bit addition, an n-bit subtraction, an n-bit com-
parison, and multipliers up to 16-bits. The delay of
each modules is estimated as follows:

module (# bits) delay | # clocks | # LUT’s
add (n < 16) < 15 ns | 1 clocks n
add (16 ... 32) < 30 ns | 2 clocks n
shift (use wiring) | < 15 ns | 1 clocks 0
comp (n < 16) < 15 ns | 1 clocks n
comp (16 ... 32) | < 30 ns | 2 clocks n
W-mult (n < 8) | <30ns | 2clocks < 64
W-mult (8 ... 16) | < 70ns | 4 clocks | <240

3 Codesign for the Reconfig-
urable Co-Processor

3.1 Overview of the Codesign

The co-processor can implement functions in C pro-
grams using the bus based architecture and the SBus
DVMA (Direct Virtual Memory Access) mechanism.
C functions in a user program are implemented in the
reconfigurable part of the processor, and the main
program on the main processor and the functions on
the co-processor are co-operated.

The flow of codesign of hardware and software is
as follows:

1. Parsing of C program and Control/Data flow

graph generation
Hardware module generation for each function

Estimation of execution clocks and hardware re-
sources

At first, C program is parsed and block structures
are extracted, which is usually called control/data-
flow graph. In the control flow-graph, each node rep-
resents a data-flow graph. Thus one state is assigned
for each node of the control flow graph, and sub-state
is assigned to the data flow graph based on the result
of the scheduling.

Hardware/software separation is investigated
based on C functions. Each C functions are esti-
mated the size of hardware modules and the number

of execution clocks. The estimation of hardware size
and speed is based on the property of FPGA ele-
ments. The execution time is measured as the num-
ber of clocks executing the behavior, and the hard-
ware size is measured as the number of LUT’s of
FPGA.

Functions suitable for hardware execution (fast ex-
ecution time and reasonable hardware size) are im-
plemented on the FPGA’s, and the codesign com-
piler generates hardware description language such
as VHDL or SFL [6]. The number of hardware im-
plemented functions is depend on the total hardware
size of the reconfigurable part.

For the functions implemented as hardware mod-
ules, C program is converted as follows:

1. the hardware-implemented function is replaced
to a command to set the start signal for the co-
processor, and

2. the program should monitor the end signal from
the co-processor with adequate interval.

Note that the C program can do some operation
when the co-processor is working. Thus the re-
scheduling for the parallel execution is needed.

The DVMA mechanism on SBus makes it possible
to access from the co-processor to the user area via
the virtual address of user process. We can map the
user area to the DVMA area using the kernel memory
map operation. We should set some flags for the user
area not to swap-out by the context switch.

At present, we use 256 KByte of user buffer for
the communication between the co-processor and the
main process. The limit depends on the UNIX kert-
nel (SUN OS 4.1.3). We should change the buffer
window to sweep memory area more than 256 KByte,
which is invoked via the signal from the co-processor.
Several top bytes of the buffer is used for such con-
trol signals to change the buffer window, the end of
the work of the co-processor, etc. It takes about 12
msec to change from one buffer to another buffers
(256 KBytes each), and it takes about 80 msec to
read and then write the data in the 2566 KByte buffer
from the co-processor.

3.2 Hardware Modules Implementing
C Functions

C functions are converted to FPGA modules as fol-
lows. The function invocation is executed using the
bus access from the main processor. The parameter
is passed using also the bus access.

The structure of a hardware module is as follows:
the main structure is the 7 state automaton corre-
sponding to the access from the CPU (Fig. 2). At
the initial state, the modules waits the access signal

149

slava=1

User defined behavior

Figure 2: Basic control structure of a hardware mod-
ule.

if (ack=1 f then rf«data ack=1
rege=1 req<=0 req<=1 req<=0

read oparation write opration

Figure 3: Basic control structure of a hardware mod-
ule. :

from the main processor (slave=1 in the figure), and
chieck the address and do the defined behavior. Usu-
ally, parameters of the function is passed from the
CPU and then invoke the function via some address.
“address” in the figure denotes the bus address and
“data” denotes the data passed via the bus. In the
example, only one parameter is passed via the ad-
dress “0x0000000”, and the co—processor is invoked
via the address “0x00000001”.

A hardware module can access to the main memory
using the usual request/acknowledge protocol, which
can be implemented using the following automaton in
Fig. 3. Note that the read/write automaton can be
used as a hardware subroutine. Before calling these
subroutines, the address (and the data for write) is
set.

3.3 Optimization Techniques
3.3.1 hardware Independent Qptimization

In the optimization of hardware modules, we tested
the necessary bit length of each variable, since the
size of hardware modules greatly depend on the bit-
length.

The minimum v,, and maximum values vps are as-
sociated to each variable v, and v,, and vy is mod-
ified depending on operations on the variable. The
number of bits for the variables is set to log(vpr —vm),
which may be less than the defined bit-length.

The modification of v,, and vy is as follows:

e Constant assignment and constant addition
=0; /[*2y=0,2p0=0%/
X=x+1 /*em=02p=1%

¢ Variable assignment
X=Y; [* Tm = Ym, Tu = yu */

e Assertion for the variable
if (x < 128) J¥ zp =129 %/

The effect of the reduction is large for loop control
variables. The number of bits for flag variables are
also reduced using the above method, but that may
reduced automatically by logic synthesizer.

3.3.2 Hardware Specific Optimization

FPGA elements may have special hardwares for some
operations, such as the addition and the comparison.
Altera FPGA has the fast carry chain and the fast
cascade chain, and the ripple carry adder is faster
than the carry-look-ahead adder. An n-bit adder can
be implemented with n LUT modules. These hard-
ware specific properties are settled using hardware
module library.

Another point is the high cost of the selector im-
plementing with the LUT module. In the adder im-
plementation, there is no free input variables in LUT
modules, and if we set a selector before an adder,
there need n extra LUT modules, which is the same
amount of LUT’s implementing the adder.

Thus we do not use the operation sharing for ad-
dition and subtraction. Operation scheduling is very
easy since there is no sharing. Next, we count the
number of LUT’s for the hardware size and for the
hardware delay. The delay of LUT module for Altera
is 2 nsec, but the wiring delay between two LUT’s is
about 15 nsec. The depth should be one for control
logic which is executed in 50 MHz clock.

Multiplication cost is large and 16 or less bit multi-
pliers can be implemented. Constant multiplication
is converted to shift and add operations to reduce the
final hardware size. For example, if z * 10 is in the
C-program, then that is implemented as z*8+z *2.

3.4 Module Allocation and Schedul-
ing

On Altera FPGA'’s, the sharing of operation is not

effective, thus the allocation of operational modules

is rather simple. A good result can be obtained using

the ASAP scheduling.

Before the allocation, operations are rescheduled
and balanced on the data-flow graph. In C program,
the execution of consecutive additions and subtrac-
tions can be rescheduled freely. For example,

x=a+bhb+c;
y=x - z;
W=y +Zx;

are converted to

v=2%(a+b) +2%c-2z;

150

Note that “2 *” is the shift operation. In the case, =
and y are eliminated and new registers are inserted,
since the number of inputs of an adder is two.

tmpl = a + b;
tmp2 2 ¥ ¢ -z
w = tmpl + tmp2;

The computation of tmpl and tmp2 can be executed
in parallel.

In the scheduling, small operations are merged and
clocked registers are inserted. The clock is 50 MHz
and the delay of one LUT and wiring is 15 ns or so,
thus the one hot state assignment is used.)

Some operations such as 32 bit addition are exe-
cuted using 2 clocks, which is implemented to control
the timing of the assignment to the output register of
the operation. Note that the maximum delay of the
combinational logic is greater than the clock cycle,
but the circuit behaves correctly. We have devised
the delay estimation method for such part.

3.5 FEvaluation of the Hardware Cost
and Performance

In the section, we show an investigation method of
the execution time of C functions. As described
above, the C program is parsed and the control/data
flow graph have been generated.

On the software implementation, the number of
clocks to execute a simple block can be obtained as
the number of operations in the disassembled com-
piled code. We assume that there is no pipeline haz-
ard, and all operations are executed with one clock.

On the hardware implementation, the number of
clocks to execute a simple block can be obtained
as the maximum clocks of the scheduled data flow
graph.

The estimation of if-statement and loop-statement
is rather complex, since the condition check and the
number of iterations are decided at the execution
time. ‘

For if-statement, the condition is assumed to be
true with 0.5 probability, and the total clock is mea-
sured as the half of the addition of the clocks of the
true block and that of the false block.

For loop statement, if the loop has the fixed it-
eration, then the iteration number is used. If the
iteration cannot be measured, the iteration number
is used as the parameter of the evaluation, and the
designer decides whether the hardware implementa-
tion is useful or not.

On the memory access, the access time depends on
the bus speed, the bus width and the cache hit ratio.
On the estimation, the access from the co-processor
is considered as 4 times slower than that from the

main processor depending the present co-processor
architecture.

By summing up these evaluations, we can measure
the number of execution clocks for functions with
software and hardware. Then we can get the speed-
up ration by dividing these clocks.

4 Experimental Results

We have now implemented and tested our co-
processor board for SUN SBus and the co-design
compiler. In the section, experimental results are
shown. We have found that bit-level paraliel opera-
tions and parallel if-statement can be executed very
effective on the co-processor.

4.1 Measuring Examples

We have implemented our algorithms in C and tested
for two benchmarks in [9], one is the generation of
ECC (Error Correcting Code) for 8 bit data and the
other is GCD operation including 5 times iteration.

Data | # clk soft # clk hard ratio
ECC 1329 63 21.1
GCD 58 28 6.5

The real execution clocks on the co-processor is as
follows:

Data | # clk soft # clk co-proc ratio
ECC 1329 46 28.9
GCD 58 49 1.3

The reason of the difference on the GCD execu-
tion is that the memory access from the co-processor
needs fixed overhead.

4.2 Lexical Analysis

As an example of codesign systems, we have imple-
mented a converter from a specification description
of “lex” to a circuit for the co-processor. The spec-
ification description is analyzed and converted to a
finite automaton, and the the finite automaton is de-
scribed as a hardware description language.

A program to change 32 key words of C pro-
grams to upper case letters is used in the evalua-
tion. When applying the program to the source text
of gee ver.2.5.8, the substitution needs 16.3 seconds
on $510/51. The lexical analysis part of the trans-
lation operation is implemented as a circuit in the
co-processor and is evaluated with the same manner
as shown above. The operation needs only 1.26 sec-
onds. The real action to convert from a key word
to the upper case letters needs 0.92 seconds on the
main processor. Since the main processor and the

151

co-processor can operate in parallel, total execution
time is 1.26 seconds. We obtains about 13 times
speed-up.

5 Conclusions

We have described a hardware/software codesign
method for the general purpose reconfigurable co-
processor. In the hardware module generation, the
C function based method and several optimization
techniques are shown. We have also shown some ex-
periments for the execution of some functions on the
CO-processor.

References

[1] N. Suganuma, Y. Murata, S. Nakata, M. Tomita,
and K. Hirano. Reconfigurable Machine and Its
Application to Logic Diagnosis. In Proc. of IC-
CAD, pp. 538-543, 1992.

M. Gokhale, W. Holmes, A. Kopser, S. Lucas,
R. Minnich, and D Lopresti. Building and Us-
ing a Highly Parallel Programmable Logic Array.
Computer, Vol. 24, No. 3, pp. 81-89, Jan. 1991.

(2]

P. Athanas and H. Silverman. Processor Recon-
figuration Through Instruction-Set Metamorpho-
sis. Computer, Vol. 26, No. 3, pp. 11-18, 1993.

(3]

M. Wazlowski, L. Agarwal, T. Lee, A. Smith,
E. Lam, P. Athanas, H. Silverman, and S. Ghosh.
PRISM-II Compiler and Architecture. FCCM
93, pp. 9-16, 1993.

4

D. Thomas, J. Adams, and H. Schmit. A Model
and Methodology for Hardware-Software Code-
sign. IEEE Design & Test of Computers, Vol. 10,
No. 3, pp. 6-15, 1993.

(5]

High-Level Synthesis Design at NTT Systems
Labs. IEICE Trans. Info. and Systems, Vol. E76-
D No. 9, pp. 1047-1054, 1994.

(6]

Data Book. Altera Corporation, 1993.

[7]

H. Edward, Frank, and J. Lyle. SBus Specifica-
tion B.0. SUN Microsystems, Inc, 1990.

Benckmarks for the 1991 High Level Synthesis
Workshop. 1991.

[0l

	Main Page
	CODES97
	Front Matter
	Table of Contents
	Author Index

