Interface Optimization During Hardware-Software Partitioning

Laurent Freund, Denis Duponi, Michel Israél

LaMI, Université D’Evry
Bld des Coquibus
91025 Evry Cedex-France
{name} @lami.univ-evry.fr

Abstract

This paper presents an approach allowing communica-
tion optimization during the hardware-software partition-
ing task. Our methodology focuses on systems represented
by a data flow graph whose nodes are elements of libraries.
1o abstract the communication constraints, we include com-
munication nodes in this graph. Consequently, assignment
and scheduling of communications and operations can be
determined together by the same partitioning algorithm.
During partitioning, protocol optimization and bus schedul-
ing are realized. We illustrate with a telecommunication
system example the feasibility and the usefulness of our
methodology.

1. Introduction

The design of telecommunication systems, like that
of other embedded systems, combines hardware (ASIC,
FPGA,...) and software (running on a processor) imple-
mentations. Developing such high-performance, and low-
cost, systems is often called hardware/software codesign.
While hardware leads to better performances, software re-
duces cost and facilitates modifications. But system cost
and performances also depend on the additional communi-
cation overhead. Thus, a critical part of the design is to find
the best trade-off between hardware, software and commu-
nications. During this task, different objectives can be tar-
geted: minimization of system cost, minimization of execu-
tion time, or minimization of hardware-software communi-
cations. Our work focuses on the minimization of the sys-
tem cost under timing constraints that take communication
overhead into account. Indeed, the cost and the execution
time of communications cannot be neglected in telecommu-
nication systems since the data can be vectors or matrices
and the hardware-software interface requires buses, arbitra-
tion logic and intermediate storage.

Telecommunication systems are generally data flow sys-

0-8186-7895-X/97 $10.00 © 1997 IEEE

Frédéric Rousseau
ESIM
Technopole de Chateau-Gombert
13451 Marseille cedex 20, France
rousseau @ismea.imt-mrs.fr

tems, easily represented by a Directed Acyclic Graph
(DAG) whose nodes stand for computation tasks and whose
edges describe data and control precedences between nodes
(communications) and where all delays are considered de-
terministic. In recent publications [11] {1}, a partitioning
algorithm developed in our laboratory has been introduced
that determines the assignment and the scheduling of the
node operations of the DAG. In this paper we improve on
that formulation and introduce a technique for optimizing
the communications during—and not after—the partition-
ing task. First, we justify this approach by the description
of the consequences on system architecture of performing
interface optimization after partitioning. Second, in view
of these consequences, we extract the fundamental charac-
teristics which can be optimized during partitioning and we
define our communication model. Last, we show that this
model allows to perform the assignment and the schedul-
ing tasks for communications and operations in concert. An
acoustic echo cancellation system has been designed with
this methodology and is given as example. Thus, the out-
line of the paper is as follows: Related work is discussed
in Section 2. In Section 3, we describe communication
concepts, how they are modeled and the consequences on
the partitioning methodology. The methodology including
communication during partitioning is presented in Section
4. Results of the example are given in Section 5, followed
by the conclusion.

2. Related Work

Hardware-software codesign approaches differ from one
another by their target architectures and by their objectives.
However, all these approaches can be grouped in three cat-
egories.

The first one includes the approaches which allow au-
tomatic synthesis of the interface. Thus, the interfacing of
components with incompatible protocols or different num-
bers of data pins is described in [9]. The interfacing of a
processor to several devices by I/O port allocation or by

memory mapped I/O is realized in [10]. Interface synthe-
sis is treated by refinement tasks in [5]. After the designer
selects among four implementation models covering a mix
of global and local memories and buses, refinement proce-
dures automatically generate the interface details. In [6],
data FIFOs and a control FIFO are proposed to interface
systems including unbounded delay operations.

The second category comprises approaches for optimiz-
ing communications after partitioning. The first optimiza-
tion technique seeks a better scheduling than the one given
by the partitioning task. This rescheduling of operations al-
lows the conversion of some communications from block-
ing to nonblocking [4]. Thus, the control logic for hand-
shaking and the number of queues for buffered communica-
tions can be minimized. The second optimization technique
separates the specification of the communication from the
implementation {12} and chooses from a library the best
implementation with respect to the specification. Thus,
communication realization is cast into an allocation prob-
lem [3]. Algorithms choose the communication units which
minimize the cost of communications and satisfy technical
constraints (protocol, bandwidth,...).

The third category includes methodologies dealing with
communications during the partitioning task. Some of
them consider communications as a criterion for hardware-
software partitioning, but do not consider the sharing of
communications resources (e.g. buses). Consequently, they
include a constant communication cost and timing over-
head in the partitioning model [8], {7]. Bus sharing dur-
ing partitioning is solved by the MILP partitioning approach
[2], which schedules transfers on one bus. The scheduling
and the minimization of the communication cost for system
components running at different clock rates is determined
during partitioning in [13].

However, in the last two approaches the communication
cost is restricted to the bus cost (i.e. the number of buses)
and while some methods perform optimization after parti-
tioning, the minimization and the sharing of the memory
elements (for buffered transfers) during partitioning are not
treated. Thus, we propose a communication model includ-
ing bus scheduling and memory elements that allows opti-
mization during partitioning.

3. Qur Communication Approach

3.1. Communication Constraints

This section describes the impact of communications
on partitioning and the two main reasons for choosing to
implement and schedule communications during—and not
after—this task.

First, the assignment to hardware or software for system
nodes must depend on communication delay and communi-

76

cation cost (cost of memory, control logic and bus). Oth-
erwise, the gain obtained by a hardware assignment can be
lost in the time to transfer data to the node. Moreover, com-
munication cost overhead can be too high.

Second, node scheduling and communication protocol
are interdependent. The protocols taken into consideration
in our study are the blocking protocol, which allows syn-
chronous transfers, and the non-blocking, buffered or un-
buffered, protocol for asynchronous transfers. The blocking
protocol requires control logic for handshaking and it pro-
longs the execution time of the sender node until the transfer
is done. The buffered protocol requires a storage element
(FIFO) but the sender does not wait for the receiver. The
unbuffered protocol does not require control logic and stor-
age elements but the “write” operation of the sender must
coincide with the “read” operation of the receiver.

Figure 1 gives an example of the difference between
communication synthesis after partitioning and communi-
cation synthesis during partitioning. This example depicts
two schedulings (a.l, b.1) obtained by a partitioning al-
gorithm which minimizes cost under a timing constraint
(T'maz). Partitioning approaches neglecting the cost of

4 9 DAG Non-blocking protocof o
ax

S5 e |

- Tmax f ! m }/ H2 [iAsiC

Partitioning / | {

:_—,-;_——-J [S1 / [s / Pracessor
A a.%) : :
[tace syt / e i w2]

S JFIEO for S1 output
[sk 3 /
e Trax Ta
Pamt}:onmg / Blockirg protocol
Interface synthesis b.1) Tmaz
“M—._T:m::;:.«:" / H4 J H2 /
. 54
[sip BlockingSt /i s3]
" T.bi

cost (8.2) »>> cost{b.1)

Figure 1. Scheduling and protocol

protocol during partitioning will choose solution a.1 since
the execution time of the system is shorter (T.a < T.b).
However, the resulting scheduling of node 3 imposes a non-
blocking buffered protocol (FIFO) for the transfer between
node 1 and node 2.

An algorithm accounting for communication cost during
partitioning will have to choose solution b.1, which allows
a blocking protocol without FIFO cost overhead (cost (a.2)
>> cost (b.1))

Like the interdependence between scheduling and com-
munication protocol, there also exists an interdependence

between scheduling and transfer unit. We distinguish a
transfer directly addressed by the processor from a transfer
addressed by a DMA co-processor. CPU transfer is gener-
ally faster than DMA (because of the channel initialization)
but DMA releases the processor during the transfer. Thus, a
good scheduling and a good choice of communication unit
allow to optimize the execution time of the system.

These two reasons show the necessity of accounting
for communications during the partitioning task. Conse-
quently, our work focuses on the possibility of modifying
our methodology in order to assign and schedule nodes re-
lating to communication constraints, and to determine pro-
tocols and transfer units during partitioning.

3.2. Communication Model for Partitioning

According to Section 3.1, a model should capture the
following properties to be well adapted to partitioning:

o Communications have a cost: storage elements (FIFO),
bus and synchronization logic cost.

e Communications are not immediate. Their execution time
depends on volume of data, protocol and transfer unit.

e Communications call for resource sharing. For example, a
transfer realized by the processor unit requires the processor
resource. In the same way, buses and FIFOs are sharable
resources.

In the DAG, a cost, an execution time and a set of re-
sources are associated to each node corresponding to an op-
eration. These standard properties are precisely those ap-
pearing in our characterization of communications. Conse-
quently, we decided to use the same model for the commu-
nications as for the functional units of the system: nodes in
the DAG. Thus, transfer is represented by a communication
node set between two operation nodes.

As for other nodes, each implementation of a commu-
nication node consists in a sequence of used resources.
Thus, we have defined a generic model that consists in
three phases: blocking sender or data memorization into a
FIFQ, transfering on the bus (CPU / DMA), and blocking
the receiver. To each phase correspond resources. Conse-
quently, the interface synthesis during partitioning consists
in determining the transfer unit resource (CPU / DMA),
and scheduling the bus transfer resource (T'bus) and the
hardware interface resource (blocking / FIFO). This generic
model for software — hardware communications and three
examples of resource implementation and bus scheduling
are represented in figure 2. Hardware — software commu-
nications are similarly modeled.

The protocol and the cost of the communication are de-
termined by the bus scheduling in the [T's, T'r] interval.

e Thus +d = Tr: blocking protocol — control logic cost.
e Ts Tbus: non-blocking buffered protocol — FIFO
cost.

77

Software -> Hardware, generic communication model
ASIC

Processor Ef DMA: - /

Sender fi{Blocking sender J{[CPU | }ChOice ?

Ts Tous Tous+d Tr

CPU, blocking ASIC

Receiver

Some examples of
communication implementation
and bus scheduling

Processor |
Sender [{" Blocking sender_ J 1._CPU_

Ts Tr = Thus+d

DAMA, non blocking communication

DMA, non blocking buffered communication
ASIC
FReceiver

m{C:ﬁEQi:‘”mf -
S /

Tr=Thus+d

Ts=Thus - :I:l‘
Figure 2. Resources of the communication models

e Thus +d = Tr,Thus =
protocol — no cost.

Moreover, with this model, communication cost can be
taken info account when calculating the sharing of commu-
nication resources. For example, if two bus resources have
the same scheduling, the corresponding cost will be the cost
of two buses. Alternatively, if bus accesses are sequenced,
the cost will correspond to the cost of only one bus.

T's: non-blocking unbuffered

4. Partitioning Methodology

The methodology including communication is depicted
in figure 3. This methodology is based on library elements
characterized by a cost, an execution time and a set of re-
sources. For instance, we only consider uniprocessor archi-
tectures.

Of course, when direct successors or direct predecessors
of a communication node are not implemented, communi-
cation overhead is not taken into account. This is why we
include communication nodes as “potential” nodes before
partitioning.

We see three main advantages to treating communica-
tions in a homogeneous way, employing the same model
for communications and operations:

e We do not need a specific algorithm to deal with com-
munications. The HW/SW partitioning algorithm is well
adapted to this.

e During partitioning, the codesign objectives (minimiza-
tion of cost and execution time) are also applied to commu-
nications.

e The communication model is independent of the parti-
tioning algorithm. This makes possible the use of multiple
heuristics, each adapted to a different objective.

- Libraries
- DAG
}i{ Operators Communications
c1” 2 CMOS 0.8 OPYU
/ \ . DSPE6002) DMA
<D 3 m
«\’\ - FFT block
€ N .
o3 c4 cs area 4 area
N { ,.L.\ 1H time o time
(4;/ (\5 P TLFFT nonBlock
. 7 o 4 area area
(D Operation 1 time L] time
© Potential communication

Partitioning
! with communications

T

AAAAA

Figure 3. Methodology, including communications

during partitioning

The only new restriction for the partitioning heuristics is
that now a particular node ordering must be respected. The
ordering captures the fact that the assignment and schedul-
ing of a communication node cannot be done before the as-
signment and scheduling of its direct predecessor and direct
successor nodes. Consequently the partitioning methodol-
ogy has two stages within each iteration:

e First, choose assignment and scheduling for a node.

e Second, choose assignment and scheduling for the com-
munication nodes whose successor and predecessor nodes
have just been implemented during the first stage.
Partitioning iterations proceed until all nodes are allocated.

We apply this restriction to the heuristic we propose
to solve the scheduling and assignment problems with re-
source optimization (refer to [11] for further details). Our
heuristic is an extension of the Force-Directed scheduling
algorithm, adapted to hardware-software partitioning.

For each node i and each possible time step 7, a pair of
forces, called repel forces (F;, (1)), are calculated, one for
the software implementation and one for the hardware im-
plementation.

FJ (i) = Self_force]

impl impl

(i) + anduced.ﬁforce(k)
ket
The higher the repel force, the higher the cost. Each
repel force is the sum of a Self_force and a total
Induced_force. The Self_force reflects the local cost of
the implementation and the Induced_force represents the
global cost. The total Induced_force for node ¢ expresses
the sum of the constraints induced by node ¢ on all the other

78

nodes. Once all the forces have been calculated, the heuris-
tic chooses the implementation and schedule for the node
that minimize the forces. The procedure continues until all
nodes have been implemented. The heuristic in two stages
is summarized below.

/* first stage */
while there are unimplemented nodes
foreach implementation, scheduling for node # coms
Fip = Self force() + > Induced force()
Choose Min (Fimpt)
Implement_schedule_node()
/* second stage */
while there are new communication nodes
foreach implementation, scheduling for node = coms
Fimpt = Self force() + y_Induced force()
Choose Min (Fimpt)
Implement_schedule_communication_node()

5. Example: GMDFo

Our example is the implementation of the GMDFa
(Generalized Multi-Delay Frequency Domain Filter) algo-
rithm, used for acoustic echo cancellation to improve the
quality of hand-free telephones. Its DAG is represented in
figure 4 and a detailed description of its implementation is
givenin [1]. To partition this system,we use a DSP56002 for

X(ZP;# ? BN
XREIN

Figure 4. DAG of the GMDFa algorithm

the software part and an ASIC in 0.5um CMOS technology
for the hardware part. The maximum execution time for this
system is Tynae = 6.25ms, imposed by the sampling rate
of the audio signal.

First, this system was partitioned with this Ty,e, value
and without any communication constraint. The execution
time obtained for the system is Tsysr = 5.84ms. Then,
we synthesized communications with DMA/CPU optimiza-
tion and we obtained Tyyst + Teom = 6.42ms. However,
this total execution time does not respect the timing con-
straint (Thae = 6.25ms). The resuits of this partitioning,
DMA/CPU optimization (bold-face numbers), the protocol
used for each transfer and the FIFO size for non-blocking

soft-hard DMA CPU block | non-block | n-b. buff.
10 (80) 50 X
4—6 (60) 30 X
T.1e6 (50) 50 X
7.1—8.i 80*7 (50*7) X
7.8—8.8 (50) 50 X
8.i¢-2 (80*7) 50%7 14N
8.8 2 (80) 504 X
no Optim. 940 930 14N
optim. 580 us 4N

Table 1. Communication synthesis after partitioning:
Toyst + Teom = 6.42ms, cost = 3.44mm?

soft-hard DMA CPU block | non-block | n-b. buff.
0—2 80 (50) X
644 80 (50) X = (2N)
7.1 50*8 | (30%8) N
6—7.1 (80) 50 X
6—7.1 8@ (50) 2N
81«71 (80) 50 X
8.a¢7.1 80%7 | (50%7) X = (14N)
812 80%7 | (50%T) 14N
8.8¢2 86 (50) X = (2ZN)
no Optim. 160 740 (35 N)
optim. 166 ps 17N

Table 2. Communication synthesis during partition-
ing: Toystt+com = 5.15ms, cost = 4.17Tmm?

protocol are shown in Table 1.

Second, the system was partitioned with our partition-
ing algorithm performing communication optimization. Re-
sults are shown in Table 2. Node assignment differs rad-
ically from the first partitioning and the total execution
time becomes Tsysrrcom = 5.15ms. Thus, this execution
time respects the timing constraint. With respect to node
scheduling, non-blocking buffered transfers require FIFOs
for 17N words (N=128 — 2176 words).

In order to quantify communication optimization, the
system was partitioned again without any communication
constraint but with a stronger timing constraint than the first
partitioning: Tpe, = 5.5ms. We obtain the same node as-
signment than with the second partitioning but now node
scheduling requires 35N words for non-blocking buffered
transfers (data volumes are represented between parenthe-
ses in Table 2). Consequently our partitioning algorithm
with communication optimization has replaced buffered
communications by blocking communications thus remov-
ing the memorization cost (FIFQOs) of 18N words.

Moreover, this partitioning shows us that the mix of CPU
and DMA transfers divides the communication time respec-
tively by 2 or 7 compared to the exclusive use of the DMA
unit or the CPU unit.

6. Conclusion

We have shown the importance of hardware-software
communications in telecommunication system codesign.
More precisely, we have demonstrated the effect of com-
munication on the partitioning task. We have described a
model for communication which allows to partition sys-
tems by treating communications and operations in a ho-
mogeneous way. This results in an optimization taking into
account communication cost, execution time, node assign-
ment, node scheduling and resources. This methodology
allows a single algorithm to carry out simultaneously the
partitioning task and the interface definition. The main lim-
itation of our methodology is that the communication nodes
increase the size of the DAG to which partitioning is ap-
plied. Partitioning time could become prohibitive for large
graphs. However, we follow an “open” methodology, al-
lowing multiple partitioning algorithms and communication
models. In particular, we plan to incorporate the shared-
memory model in our communication library.

References

[} M. Auguin, C. Belleudy, J. Bergé, L. Freund, G. Gogniat,
M. Israel, and F. Rousseau. A codesign experiment in acous-
tic echo cancelation: Gmdfa. Proc. of ISSS, Nov. 1996.

(2] A. Bender. Design of an optimal loosely coupled heteroge-
neous multiprocessor system. Proc of ED&TCI6.

[3] J.-M. Daveau, T. B. Ismail, and A. Jerraya. Synthesis
of system-level communication by an allocation-based ap-
proach. ISSS, sept. 1995,

[4] D.Filo, D. Ku, C. Coelho, and G. D. Micheli. Interface op-
timization for concurrent systems under timing constraints.
IEEE Trans On VLSI systems, sept. 1993.

[51 J. Gong, D. D. Gajski, and S. Bakshi. Mode! refinement for
hardware-software codesign. Proc. of ED&TC 96.

[6] R. Gupta and G. D. Michelli. Hardware-software cosynthe-
s1s for digital systems. IEEE Design & Test, sept. 1993,

{7} LHenkel, R.Emst, U. Holtman, and T. Benner. Adap-
tation of partitioning and high-level synthesis in hard-
ware/software co-synthesis. Proc. of ICCAD, Nov. 1994.

[8] A. Kalavade. System-level codesign of mixed hardware-
software systems. Ph.D. Dissertation, sept. 1995.

[9] S. Narayan and D. Gajski. Interfacing incompatible proto-
cols using interface process generation. Proc. of DAC, 1995,

[10] P.Chou, R. Ortega, and G. Borriello. Interface co-synthesis
techniques for embedded systems. Proc of ICCAD 95.

[11] F Rousseau, J.-M. Bergé, and M. Isracl. Hardware/software
partitioning for telecommunications systems. Proc. of
COMPSAC 96, Aug. 1996,

[12] D. Thomas, J. Adams, and H. Schmit. A model and method-
ology for hardware-software codesign. IEEE Design & Test
of Computers, sept. 1993.

[13] T-Y. Yen and W. Wolf. Communication synthesis for dis-
tributed embedded systems. Proc. of ICCAD, 1995.

	Main Page
	CODES97
	Front Matter
	Table of Contents
	Author Index

