System level memory optimization for hardware-software co-design

Koen Danckaert

Francky Catthoor

Hugo De Mani

IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
TProfessor at the Katholieke Universiteit Leuven

Abstract

Application studies in the areas of image and video process-
ing systems indicate that between 50 and 80% of the area
cost in {application-specific} architectures for real-time multi-
dimensional signal processing (RMSP) is due to data storage
and transfer of array signals. This is true for both single- and
multi-processor realizations, both customized and {embedded)
programmable targets. This paper has two main contributions.
First, to reduce this dominant cost, we propose to address
the system-level storage organization for the multi-dimensional
(M-D) signals as a first step in the overall methodology to map
these applications, before the HW/SW-partitioning decision.
Secondly, we will demonstrate the usefulness of this novel ap-
proach based on a realistic test-vehicle, namely a quad-tree

based image coding application.

1 Introduction and related work

In multi-media applications and others that make use of
large multi-dimensional array-type data structures, a con-
siderable amount of memory is required which is dominant
in the system cost. This is especially true for embedded
systems [12].

A system designer crafting an image or video processing
system faces a large design space at the specification level.
Up to now, only few hardware synthesis systems (see refs
in [12]) try to reduce the storage requirements for array-
type data structures, always focussed on single-processor
realizations and with (severe) model limitations. Also in
our own previous work on ATOMIUM [12], we have fo-
cussed mainly single-processor storage, dealing with loop
transformations, memory allocation and in-place storage
reduction for complex M-D array signal processing. Only
recently, we have started studying the effect in a parallel
processor context [4], but then focussed on the paralleli-
sation issue and not on the hardware-software (HW /SW)
co-design aspects.

Many papers have been published on the HW/SW
co-design issues, including modeling and simulation [10],
generic integration and interfaces [3, 5, 7], custom
HW/SW synthesis [8], and especially partitioning. The
latter category includes manual approaches: coarse-grain
[2] or fine-grain [1], and automatic approaches: starting
from hardware allocation first [9] or from software alloca-
tion [6]. All of these approaches ignore however the heavy
impact of the data storage cost if they would be applied
on data-dominated applications as In Image processing.

0-8186-7895-X/97 $10.00 © 1997 IEEE

As a result, the number of transfers to large memories
or the amount of cache misses in the software part is not
minimized at all. Consequently, there is a large potential
loss 1n power consumption and a significant overhead in
cycles (due to cache misses or off-chip access). This is
especially undesirable in an embedded application.

System

Locally optimized
Globally optimized

o —.
=> explorationt e \'\~\
~—_
; Standard Subsystem |
| subsystem: New resembles a ‘
“1 detailed soiution complex standard solution .
| locally optimized subsystem ! but needs small |
{ by expert*# Buffer e Butfer fxﬂaptations J

E.g.: 2D convolution E.g.: format conversion E.g. DCT for MPEG

Figure 1: Data transfer and storage exploration for het-
erogeneous data dominated multi-process systems: possi-
bilities for design support and optimization

Conventional HW /SW co-design approaches tackle the
partitioning and load balancing issues as the only key
point so they perform these first in the overall method-
ology. Tor the typical image processing system in fig-
ure 1, this means that all the submodules are first as-
signed to the best matched processors, and afterwards
they are treated fully separately where they will be com-
piled in an optimized way onto the corresponding HW or
SW processor. This strategy leads to a good load balanc-
ing solution but unfortunately, it will wypically give rise
to a significant buffer overhead for the mismatch between
the data produced and consurned in the different submod-
ules. To remedy this situation, the system-level memory
management (SLMM) oriented methodology presented in
this paper, first applies storage and transfer oriented op-
timizations between the different systemns. Initially, all the
submodules containing M-D processing are combined into
one global specification model, and then optimized as a
whole in terms of SLMM. It has to be stressed that it is
indeed not required that the actual processor organiza-
tion or even the processor partitioning is known initially
in order to apply this SLMM methodology. We also ap-
ply more aggressive loop and data flow transformations
than previously done. These transformations are able to
significantly reduce the storage requirements for statically
allocated memory 1 a multi-processing context.

Our SLMM techniques are complementary to the ex-
isting partitioning and load balancing techniques (as dis-
cussed earhier}. In that way, they typically have little ef-

fect on the finally obtained partitioning or load balancing
properties, whereas a large storage size and/or data trans-
fer gain can be obtained. They are also fully complemen-
tary to the traditional high-level synthesis step known as
"register allocation/assignment” [11]. The latter should
be applied after partitioning still because they are too
much related to the detailed scheduling stage.

It should be emphasized too that decisions made at
the SLMM level do transiate into constraints on the M-D
signal access, which directly influence the search space of
the subsequent partitioning and processor mapping tasks.
This is for instance true due to the restrictions on loop
ordering and index expressions. Still, only the relative
ordering of blocks of statements is decided and not yet
the fully sequential execution or the “scheduling”. Typi-
cally, these restrictions do not negatively affect the final
outcome itself (see section 3)!

The overall approach will be illustrated with a real ap-
plication in section 3. The application is described first
in section 2.

2 The QSDPCM algorithm

2.1

QSDPCM (Quadtree Structured Difference Pulse Code
Modulation) is a compression technique for video [13]. Tt
involves a motion estimation step, and a quadtree encod-
ing of the motion compensated frame-to-frame difference
signal. The algorithm optimizes both the displacement
vector and the quadtree mean decomposition jointly such
that the total frame-to-frame update information can be
coded with a minimum number of bits. In this paper,
we will assume that the images are in CIF format (528 x
988 for the luminance/chrominance signals together), and
that the frame rate 1s 25 Hz.

A global view of the algorithm is given in figure 2.
In a first step, the actual image is 4 x 4 mean subsam-
vled, and matched with a 4 x 4 subsampled version of
the reconstructed previous image. The initial guess of the
displacement is computed using a 4 x 4 block matching
{BM) algorithm with a search interval of +/- 4 pixels (full
search) in the subsampled images. The resulting displace-
ment vector is used as an inital displacement in the second
stage, where an 8 x 8 BM algorithm with a search inter-
val of +/- 2 pixels is applied on 2 x 2 mean subsampled
versions. The displacement vector obtained in this way
provides the initial guess for the QSDPCM algorithr.

The optimum displacement vector and the best
quadtree decomposition are finally determined in a joint
optimization procedure. For each displacement in a +/- 1
interval around the initial guess, the 16 x 16 difference sig-
nal is computed and 2 x 2 mean subsampled. The result-
ing 8 x 8 difference signals are quadtree encoded {with the
local block means being Huffman coded). The displace-
ment which requires the minimum number of bits for the
quadtree decomposition is selected.

In a bottom-up quadtree decomposition of a two-
dimensional signal, four adjacent subblocks are tested if
they can accurately be represented by their mean value.

Algorithm description

56

ot

X
SubSamp4 |i

ComputeV4
SubSamp4é]

o N

0 M
SubSamp2 |i

L

. .. g wed
SubSamp2

,v
: Proc 10-12
~—~————~———{ AdUpSamp2

Proc.§
Reconstruct

Figure 2. The QSDPCM video encoding algorithm and
one processor partitioning option

If so, they are merged to a 4x larger subblock. The pro-
cedure can then be repeated recursively until the largest
possible block size (8 x 8) is reached.

2.2 Algorithm code and cycles

From figure 2, it is clear that many submodules of the al-
gorithm operate in a cycle with an iteration period bound
(IPB) of 1 (i.e. one frame). Indeed, to compute the mo-
tion vectors in the 4 x 4 subsampled images, the previous
frame must already have been reconstructed (and 4 x 4
subsampled too). The following submodules are not in
this critical cycle: the computation of the 4 x 4 and 2 x 2
subsampled versions of the initial image, and the Huffman
coding of the displacement vectors and quadtrees.

Figure 3 illustrates the algorithm structure as Silage
code. In the main function, we see that the incoming and
the reconstructed image are first 4 x 4 and 2 x 2 subsam-
pled. Then, the estimated motion vectors are computed,
first in the 4 x 4 and then in the 2 x 2 subsampled image.
Based on these, the final motion vectors are computed
with pixel accuracy. First, the nine possible 2 x 2 sub-
sampled difference images are computed, and then they
are quadtree encoded to determine which one requires the
fewest bits. Finally everything is Huffman coded. The im-
age is then reconstructed, and 2 x 2 adaptive upsampled.
It is this upsampled image which will be the reference
image for the next frame to be encoded. Also a 2 x 2
and 4 x 4 subsampled version of this reference are needed.
Only when these reference images are available, we can
start computing the motion vectors of the next frame.
The following table gives the number of arithmetic oper-
ations in each function, for one block (first line) and for a
whole image (second line).

(TSubd [Subz | VA T" NI T VE [Quad | Hec | AdUp2]
272 320 2673 3228 5184 2646 384 1608
| 161K 1S0K | 1387K 1915% 307K 15T1K 228K 2T3TK

3 SLMM approach illustration

3.1 Design based on initial description

When a design is made based on this initial description
and when flexibility is desired in the final implementation,

func main(image: PINI[H]) : P =
begin
sub2[J[J=SubSanp2 (image[1[1); sub4d[I[I=SubSamp4(image[I[1);
(v4x[3[],vay[1[1)=Compute¥s (subd(I[],recsIJe1);
(v2x 3], voyf{l[])=ComputeVv2(sub2[]{] . rec2(1(l01,v4x[I],v4y(30]};
(@iffFs I 00NN =VIDiff (image[I1 (], rec {10101, v2x[I[],vay(I(1);
(quadmeans [J[I[11], quadcode[J[IL], wix[J[1, viy(311) =
QuadConstruct (diffs[IIIINI0ILD)
buffcode[] = RuffCoding(quadmeans{I{I[I{], quadcode[I[I[],
wix[303, viyf(I01);
Reconstruct{quadmeans [1[J[3{], quadcedal[J[1{],
rec2f)[Je1, vix[J0}, viy[J[});

recsub{][1 =

rec[][} = AdUpSamp2(rec2{1{]};:
rec2{1[] = SubSamp2(rec{1[1); rec4[l[] = SubSampt{rec{J[l);
end;

func SubSamp?(image: P[NI[HI) sub: P[I{] =

begin
(i: 0 .. N div 2 -1)
{(3: 0 .. K div 2 -1}
sublil[j] = (imagel[iJ{jl + imagel[i+11{j] + ...}/4;
and;

func ComputeV2(act?2, prev2: PN div 21[K div 2};
véx,vdy: A[N div §b][B div Hb])) wv2x, v2y: &A{J[] =

begin
(xb : 0 .. N div Nb ~1) :: /% for each block #/
(yb : 0 .. H div Nb -1} ::

(vafxb} [ybl, vylxbl{ybl) = V2 block(act2[][]},
prev2{1{], xb, yb, vdx[xbl, vaylybl);
end;

func V2_block(act2, prev2: PIN div 2J[K div 2]; xb, yb: A;

véx, v4y: A) v2x, w2y : A =
begin
{vx : -2 .. 2) :: [# Scan through search region #/
{vy : »2 .. 2) :: /» Keep 8x8 current block ¢ 8x12 region #/
begin /¥ of prev frame in Tereground #/
(i : 6 .. 7) 11 /= khccumulate differences over #/
{3 0 ..7) :: f& 8x8 block w/

SumhbsDiffLva] [vyllizg+341] =
SumabsDiff [vx) {vyl (148431 + abs{act2[xbe8+i][ybs8+3]
~prev2{xb*8+vaxs2+vrei] [ybr8evays2¢vy+3]);
/% Select vx,vy with minimum SumAbsDiff ¢/
and;
end;

Figure 3: Original Silage code

typically some submodules will be implemented in hard-
ware and some in software. In this case, the submodules
in the cycle can be assigned to hardware due to the high
computation complexity and the high throughput require-
ment in this critical cycle. An exception can be made for
SubSamp?2, SubSamp4 and Reconstruct because these do
not contaln many operations.

When we take into account that programmable digital
signal processors (SW) run at about 50 to 100 MHz, that
the frame rate is 25 fr/s and that the arithmetic operation
efficiency of these DSP processors is usually about 25-
50% (the rest is lost in overhead for condition and address
handling and the like), we arrive at a maximal load of 1
million operations per frame per SW processor. (Given the
operations in table 2.2, we need about 12 SW processors
for the operations in the critical cycle. On the other hand,
the functions which are not in the cycle can be combined
into a single SW software processor.

Several approaches are feasible now for the critical cy-
cle. We will illustrate that the data storage cost has a
major effect on the cost related to HW /SW partitioning.
indeed, in the initial description of this algorithm, each
submodule operates on a whole frame of the incoming
video stream. This means that between two submodules,
buffers are needed to store the results for a whole frame.
For example, between SubSamp4 and ComputeV4, the

57

two 4 x 4 subsampled images (actual and reconstructed
previous frame) must be stored in a buffer. This has to
be a background buffer as it is too big to be stored in
foreground. If we have assigned SubSamp4 to software
and ComputeV4 to hardware, then this buffer cannot be
optimized away anymore. In the global initial QSDPCM
description this leads to an overhead of buffers for 742K
words, and an overhead of 2245K transfers operating on
these frame size buffers. This number already assumes
that a memory hierarchy is present, and that it is used
in an optimal way. Without memory hierarchy {caching),
there would be even 9599K background memory transfers.

If we do not need the flexibility, one or more dedi-
cated hardware processor(s) can be designed to perform
the functions which are in the cycle. How many will de-
pend on the used hardware synthesis methodology. The
IPB of I precludes simple pipelining. However, by per-
forming a pipeline interleaving combined with loop fold-
ing operation such that each of the processors works on
1/12 of the frame successively, it is still possible to break
this cycle which allows more freedom in processor parti-
troning.

When the flexibility is needed in all the functions, we
again have several options. We can use data level paral-
lelism by partitioning the frame into 12 equal parts and
distributing the processing of these pixels over 12 proces-
sors. The advantage of this approach is that it is simple
to program but the memory overhead is high, namely still
T42K (540K with in-place mapping) words in total i.e. 61K
(45K) per processor. The amount of transfers is 2245K.
Moreover, each processor has to run the full code for all
the functions. Alternatively, we can use task level paral-
lelism by the more complex pipeline interleaving manipu-
lation and by assigning the different functions (or parts of
them) in chunks of 1 million operations over the different
SW processors. This leads to the processor partitioning
mdicated in figure 2 by the processor numbers. The ad-
vantages are that the code size per processor is relatively
low and especially that we need only 325K words with
our memory managernent approach. The reason for this is
that most buffers need only be present between two stages
(although double-buffered). E.g. the buffer which con-
tains the array diffs, is 342/12 = 28 A" ,and is only present
(twice) between V1Diffs and QuadConstruct. In the data
parallel case, each processor needs this 28K (although not
double-buffered), which equals 342K total. The disadvan-
tage is that the design time will be much higher due to the
complex processor partitioning and memory management.

In summary, if we do not take into account the opti-
mized storage related costs during the evaluation of the
processor partitioning decisions, the data parallel option
could have been selected. If later on the individual pro-
cessor designers are faced with the given partitioning they
would not be able to return to the much less costly task
parallel case.

However, this is not the end of the story. This way
of partitioning a system based on the initial description

func main(image: P{H]J[ED) : P =

begin
(xb : O .. N div Wb ~1) /¢ for each block #/
(yb : 0 .. H div Fb ~1)
begin

sub2[xb1{yb1{1{] = SubSamp2 block{imagelll],xb,yb};
sub4[xb] [yb1{3 1] = SuoSampé_block(imege[1[],xb,yb):

(vax[xb]{ybl, vecéylxbllyvl) = V4_block{sub4[xb] [ypl[1{],

rec4lxbI {ybl1L{101);
(e2x[xbliybl, vec2ylxbliybl) = V2_block{sub2[xbl [ybl (1],
rec2{xb] [ybI{I[],vaxlxblLyb], véylxbIlybl);

Figure 4: Globally transformed code

and only afterwards evaluating the data storage cost will
lead to suboptimal designs. Typically it still gives rise to
large buffers between the different submodules, even if it
is already optimized towards memory as described above.
Unfortunately, if the HW/SW partitioning is performed
first in the design trajectory, these remaining buffers af-
terwards cannot be optimized away anymore.

For the QSDPCM application, we can do much better
still by applying aggressive storage oriented transforma-
tions before the HW/SW partitioning.

3.2 Global optimizations

To apply our system-level memory optimizations, all func-
tions (submodules) are first taken together in one big func-
tion. In this way, global transformations can be done
which have a very big impact on the memory cost {and
thus on the power and area cost).

We can apply a loop merging operation to this descrip-
tion, so that we have two outer loops that iterate over the
block indices (see figure 4). Indeed, there are no depen-
dences between two blocks of the same frame at all, so it
is easy to see that this is a valid transformation’.

Now we have an algorithm that operates block per
block. All computations are done on the first block before
we begin processing the second one. In this way, buffer
memory for only one block (instead of one frame) will be
required between the submodules. This reduces both the
area and power requirements of the application because
these small buffers can be stored in foreground memories.

The pipeline interleaving transformation is still possi-
ble. This will now allow pipelining at the level of blocks.
While ComputeV4 is being executed on block z, Com-
puteV?2 is executed on block r — 1, and so on.

3.3 Optimizations between modules

Between VIDIff and QuadConstruct, nine difference
blocks have to be kept in memory. It is obviously much
better to merge the loops which iterate over the nine pos-
sible displacements in these functions. Then after com-
puting one difference block, it is immediately quadtree en-
coded. Note however, that these quadtrees (which occupy
less mernory) have to be written to background anyway

{only one of them will have to be read back}. A possible

INote that also a loop tiling transformation of the loops in
SubSamp? and SubSamp4 has been applied to make the global
loop merging possible. Hence, the subsampled images are now 4-
dirensional signals.

8

choice would be not to write them to background. but
only remember how many bits they took. and to recom-
pute the best one afterwards. Then however, the 16 x 16
and 18 x 18 blocks from which the difference image was
computed. would have to be read back, so here this Is not
good.

In ComputeV4, it is possible to interchange the loop
which iterates over all possible displacements and the loop
which scans over the 4 x 4 block itself. If the displacement
loop is the outer one, the 4 x 4 block of the actual image
and a 12 x 4 region of the previous image must be kept in
foreground {if we work row-wise or column-wise} to avoid
duplicate transfers from background memory to the data-
path. If the block-scanning loop is the outer one, we can
compute for each individual pixel the contribution to the
mean absolute difference, and this for all 9 x 9 = 81 po-
sitions (see figure 5). This will obviously not be the best
solution in this case, as it requires 81 values to be kept in
foreground instead of 16.

words in foreground
oldframe: 12x 12 = 144 — optimal: 12 x 4 = 48
newframe: 4 x 4 =16

V4

positions: 9 x 9 =81

words in foreground:
oldframe: 12 x 12 = 144 — optimal: 12x 8 =96
newframe: 8 x 8 =64

V2

¥ positions: 5 x 5 =25

words in foreground
oldframe: 18 x 18 =324 — optimal 18 x 16 =288
newframe: 16 x 16 = 256

Vi

% # positions: 3 x 3 =9

Figure 5: Memory requirements for ComputeV4,2.1

in ComputeVZ however, this loop interchange trans-
formation is beneficial w.r.t. memory. If the displacement
loop is the outer one here (figure 3), an 8 x & block of
the actual image and a 12 x 8 region of the previous im-
age must be kept in foreground. If the block-scanning
loop is the outer one (figure 6), we need only storage for
5 x 5 = 25 positions of the displacement vector. More-
over, only a 12 x 5 region of the previous image must be
in foreground (because each new pixel must be compared
with all old pixels in a 5 x 5 square).

Another advantage of this modification 1s that, by
merging the block-seanning loop (which is now the outer
loop) with the block-scanning loop of SubSamp2, the 2x 2
subsampled values do not have to be stored in background
memory between SubSamp? and ComputeV2. Note that
this would also not be possible if we had assigned these
functions to different chips in the initial partitioning. On

func V2. block{act2:P[81[8];prev2: P[Nj[H];vax,vdy:4) v2x,v2y: A=

begin
(i: 0 .. 7) :: /% For each pixel in current block, compute */
(3+ 0 .. 7) :: /¢ contrib to 5x5 poszible SumAbsDiff values #/
begin
(vx + -2 .. 2) /¢ Scan through seeich region */
(vy = =2 .. 2) /+ Keep bx& SumddeLif? values + 5x12 =/
bagin /% region of prev frame in foreground #/
SumAbaDiff[vx] [vy]l[i*84j+1] = SumAbsDiff[vx]{vy][i*8+]j]
+aba(act2[i1[jI-prevalxbs84vaxs2eva+i] [ybsBevay+2evy+jl);
end;
and;
/* Select vx,vy with minimum SumhbsDiff =/
end;

Figure 6: Transformed code for V2. block

the other hand, it influences the way we will partition the
new transformed algorithm: SubSamp2 and ComputeV2
must now be kept together.

In V1diff and Quadconstruct, this analysis is a bit more
difficult to make, as for every possible displacement, not
the mean absolute difference is computed (which would
require only 3 x 3 = 9 values), but the quadtree decom-
position. So if we want to reduce the required memory
(18 x 18 pixels of the previous and 16 x 16 of the actual
image), we have to merge the loops which compute the
difference signal and the quadtree decomposition.

If we work line per line, when 2 lines of the differ-
ence signal have been computed, the first level of the
bottom-up construction of the quadtree can already be
applied, and the results written to background memory.
Only four values are needed for the further construction
of the quadtree (and must be kept in foreground). So we
need to keep 2 rows of & values, 2 rows of four values,
and 2 rows of 2 values in foreground, and this for all nine
possible quadtree decompositions. Instead of a 16 x 16
block, we then only have to keep two rows (2 x 16) of
the actual image block in foreground (note that one line
is not enough because the quadtree is constructed on the
2 x 2 subsampled difference signal). Likewise, we need
only four rows (4 x 18) of the previous image block.

3.4 Memory optimized design

The only background memories we still need are the actual
and previous frame buffer (2 x 152K, which can be reduced
to 166K in total by appropriate in-place mapping between
these two frames). The number of transfers to background
has been reduced from 2245K to 1238K.

If we choose for a data parallel solution in this case,
each of the 12 processors will be working on another block.
So each processor has much code to execute. The frame
memory has to be organised such that it allows simulta-
neous accesses from all processors. One solution is to use
a 12-port memory. A much better solution is to use 12
memories, and store 1/12 of the number of blocks in each
memory, in an interleaved way.

In our optimizations, we have imposed the constraint
that following pairs of functions must be on the same
chip (so without pipelining between them): Subd &
V4, Sub2 & V2, V1 & Quad. This means that a
purely algorithmic parallel solution is not possible here.
A mixed data/algorithmic parallel solution is possible

59

though, where e.g. two processors execute Sub2 & V2,
each on another block. Between the pipelined functions,
double buffers are still needed. but our optirnizations have
made those very small.

4 Conclusion

In this paper, we have demonstrated that the HW/SW
partitioning approach which is typically followed in con-
ventional HW/SW co-design papers does not lead to
good results for data-dominated applications as image and
video processing. Instead of performing the processor
partitioning prior to the hardware synthesis or software
compiling steps per processor, first a system-level mem-
ory management approach should be applied to the global
algorithm, leading to significant reshuffling and modifica-
tion of the initial processes or submodules. Only then the
partitioning step should be applied. The feasibility and
effect of this new approach has been substantiated on a
realistic image processing application, leading to a reduc-
tion of the storage size from 742K 12-bit words to 166K
words and a decrease of the number of memory accesses

from 2245K to 1238K.
References

{1] E.Barros. W .Rosenstiel, “A method for hardware/software parti-
tioning”, Proc. CompEuro Conf., Den Haag, The Netherlands,
May 1992

K Buchenrieder, A .Sedlmeier, C.Veith, “HW/SW codesign with
PRAMSs using Codes”, Proc. IFIP Conf. Hardware Description
Languages, Elsevier, Amsterdam, pp.55-68, 1993,

(2]

P.Chou, R.Ortega, G.Borriello, “The Chinook hardware/software
co-synthesis system”, Proc. 8th ACM/IEEE Intnl. Symp. on
System-Level Synthesss, Cannes, France, Sep. 1985

K.Danckaert, F.Catthoor, H.De Man, “System-level memory man-
agement for weakly parallel image processing”, Proc. EuroPar
Conference, Lyon, France, August 1996. "Lecture notes in com-
puter science” series, Springer Verlag, pp.217-225, 1996.

H.De Man, .Bolsens, B.Lin, K.Van Rompaey, S.Vercauteren,
D .Verkest, “Co-design of DSP systems”, NATO Advanced Study
Institute on “Hardware/Software Co-design”, Tremezzo, ltaly,
June 1995

R Ernst, J.Henkel, T.Benner, “Hardware-software cosynthesis for
microcontrollers” | [EEE Design and Test of Computers, Vol.10,
No.4, pp.64-75, Dec. 1983

D.Gajski, F. Vahid, $.Narayan, J.Gong, “Specification and design
of embedded systems”, Prentice Hall, 1994

G.Goossens, F.Catthoor, H.De Man, ‘“Integration of signal
processing systems on IC architectures with mixed hard-
ware/software” | JFIP Intnl. Workshop on Hardware/Software
Co-design, Grassau, Germany, May 1892

R.Gupta, G.De Micheli, “Hardware-software cosynthesis for digi-
tal systems”, [EEE Design and Test of Computers, Vol.10, No.3,
pp.29-41, Sep.1993

A Kalavade, E.Lee, “A hardware-software codesign methodology
for DSP applications”, JEEE Design and Test of Computers,
Vol.10, No.3, pp.16-28, Sep.1883

M.C McFarland, A.C.Parker, R.Camposanc, “The high-level syn-
thesis of digital systems”, special issue on computer-aided design
in Proc of the IEEE, Vol.78, No.2, pp.301-318, Feb. 1880,

L. Nachtergaele, F.Catthoor, F.Balasa, F Franssen, E.De Greef,
H.Samsom, H.De Man, “Optimisation of memory organisation and
hierarchy for decreased size and power in video and image pro-
cessing systems”, Proc. Intnl. Workshop on Memory Technology,
Design and Testing, San Jose CA, pp.82-87, Aug. 1985

P. Strobach, "QSDPCM - A New Technique in Scene Adaptive
Coding.” Proc. 4th Eur. Signal Processing Conf., BEUSIPCO-88,
Grenoble, France, Elsevier Publ., Amsterdam, pp.1141-1144, Sep
1588

[10]

1y

[12]

(13]

	Main Page
	CODES97
	Front Matter
	Table of Contents
	Author Index

