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Abstract

QOur focus in this paper is the software implementation
of control oriented systems. Such a task is one of the least
automated portions of the contemporary CoDesign process.
In systems that must respond to external events, often several
asynchronous tasks are implemented on the same processor.
We are studying such systems because often, they utilize a
dynamic multi-rate  scheduling technique using a
multitasking real time kernel. Based upon the MCSE
functional model as a specification input, we propose a set
of transformation rules one can apply to the functional
structure to reduce the complexity of the software design
prior to implementation. We further show that after such
optimizations, the microprocessorinterrupt system can often
be used as an efficient priority-based scheduler, thereby
removing the need for a real time kernel. The resulting
implementation is  described using a software
implementation diagram from which it is easy to prove the
timing constraints are satisfied. We use a simplified control
system to illustrate our approach and to show a smooth
incremental CoDesign path with a better integration of
software estimates into the partitioning decision.

1: Imtroduction

The objective of the CoDesign process is to achieve high-
quality designsinless time and at areduced cost. The process
begins with a system-level design that defines the portion of
the system for which the performance must be optimized.
The first step is to develop the functional and non-functional
specifications. From such specifications, designers must
decide upon a physical architecture and then proceed with
the complete implementation. CoDesign usually consists of
two phases: 1)Hw/Sw partitioning and allocation (often a
mixture of automatic, semi-automatic, or interactive
techniques) and 2)hardware, software and interface
synthesis [5].

The state of the art in hardware synthesis permits the
complete hardware solution to be implemented using a
synthesizable language. By analogy, one can imagine that
the software portion could be similarly generated.

Herein, we focus on the software implementation in
contro] oriented systems. Such systems must often respond
to external events. Often in such systems, a multitasking
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solution is selected because of the many asynchronous
functions (or processes, or threads). Up to now, most of the
research in CoDesign has focused on partitioning, defining
the hardware/software interfaces, and on the synthesis of the
hardware portion. Research on software side has primarily
considered one main thread [10], or the static scheduling of
several threads [3],[4],[8],[9]. Such an implementation is too
restrictive for systems in which several asynchronous tasks
must respond to external events and must be implemented
on the same microprocessor.

In this paper, we study the problem of implementing a
set of asynchronous tasks on a single microprocessor. We
presentatechnique forefficiently implementing the software
portion of embedded systems. The result is a good basis for
evaluating software performance and size. Section 2
describes our approach. Section 3 briefly presents an
example to describe the specification model from which the
design is synthesized using a series of transformations and
evaluations. Section4 describes one implementation
technique using a real-time kernel. Section 5 presents a set
of optimization techniques for reducing the number of tasks.
Section 6 gives an improved implementation without real-
time kernel. Section 7 illustrates our proposal in an example.
The work is summarized in the last section.

2: Presentation of the method

The final quality of real-time embedded systems depends
upon the development process, the description models, and
the techniques and tools used. In CoDesign, the objective is
to find a global optimal solution that satisfies a given a set
of constraints. The design decistons are often interdependent
and contradictory. The hardware/software partitioning is an
important step and must be based on accurate estimates. One
can pose the questions: is it better to start from a skeletal
software implementation and move unsatisfiable constraints
into hardware or to start with a rough partition and move in
both directions? Can we produce an accurate estimation of
the software characteristics for partitioning without first
defining the software?

Partitioning and implementation activities are highly
interdependent. The implementation is produced by tools
such as VHDL synthesizers, interface generators or
synthesizers, and software generators and compilers. For the
software portion, several factors affect the quality of the



result. With a multitasking real-time kernel, its size,
performance, and cost can have a significant impact on the
design. Today, the state of the art in software tools lags the
hardware tools. Research into software implementation is
becoming increasingly essential.

Our approach in this paper considers:

- using MCSE for system design as a CoDesign front-end

development process [1],

- using the MCSE functional model as the specification
input for the CoDesign activity,
- using interactive and manual coarse-grain partitioning

with the help of estimators, [2],

- the tasks on each processor can be implemented
independently.

The expected result is an optimized software design on
each microprocessor from which accurate timing and size
parameters can be evaluated and analyzed.

The CoDesign process is comprised of two phases, in
each verification by co-simulation enables one to incorporate
corrections or to continue. Our CoDesign flow is shown in
Figure 1. The implementation of the functional portion of the
software is a part of the synthesis activity.

Partitioning and allocation are based on an interactive
coarse-grain procedure. Hardware and software estimations
can be used if available. If the grain of the decomposition is
too coarse, the process can be continued. Once an appropriate
partition is reached, we recommend focusing on the software
portion. The hardware and the software are then produced
by synthesis. A final verification of the design can be done
by co-simulation.
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-Figure 1 - The CoDesign process focussing on software
implementation.

Qur process permits designers to follow a smooth design
path with better integration of the software into partitioning
decisions. In this way the review cycle becomes shorter.
Without such an approach, performance verification is
possible only after a full implementation and detailed co-
simulation.

3: Recall of the functional model

The specification model recommended in MCSE [1] is
a functional model describing a system as a set of interacting

functional elements. Depicted using a hierarchical, graphical
model, functions interact using three types of relations: the
shared variable, the synchronization relation, and message
transfer. The physical architecture is described with the
executive model based on physical components and their
interconnections. Partitioning leads to a mapping between
the functional and executive viewpoints. Each micro-
processor becomes the software execution resource for
implementing the set of functions and relations.

Figure 2 shows the specification model for a simple servo
system we will use to illustrate our proposed synthesis
technique. On the left hand side is the functional structure
that results from the design step, refer to [1]. The physical

architecture with two processors is given on the right.
a) Functional structure b} The physical architecture
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-Figure 2 - Example of a functional specification for the speed
control of a motor.

The Supervision function receives commands Cmd from
the application management function (not represented here).
Depending on each of the more elementary Order messages
received from Supervision, the MotorControl function
specifies the command On/Off and the speed set point
SpeedRef. The SpeedTemplateControl function generates the
speed set point used by the ServoControl function to
command to the motor (CmdMotor) based upon the actual
measured speed MortorSpeed. These two functions are
synchronous to the Clkl event. SpeedCalculation is
necessary for estimating the actual speed from the value NC
(number of clock periods) and the Inc. event generated by a
shaft encoder. Divider is used to derive the period for CIk].
From this functional model, the reader can easily understand
the behavior of the design and imagine the algorithmic
description of each function. Supervision is considered to be
a permanent cyclic process. All other functions are
temporarily sequential cyclic processes synchronized to their
input event (Clk, Inc, Clkl) or a message input (Order).

4: Implementation with a real-time kernel

The quickest software approach for implementing of aset
of asynchronous functions is to use a real-time kernel (RTK).
A real-time kernel manages the tasks according to a
scheduling policy. The simplest and most frequently used is
rate-monotonic scheduling [11].



The semantics of the MCSE functional model make the
implementation of such a system very simple. From the
functional model, the relative priority of each task is easily
defined. Observe that the 3 functional relations have direct
procedures in the RTK library. The only procedures needed
for a set of static tasks are:

- Signal(Ev) and Wait(Ev) for event synchronization. A
boolean semaphore is used.

- WriteSharVar(Val, V) and ReadSharVar(V, Val) for the
exclusive accesses to the shared variable V. A shared
variableis acommonresource protected withasemaphore.

- Send(Mess, Pt) and Receive(Pt, Mess) for the message
transfer through the port Pt. Pt is implemented as a fixed-
size mailbox or a message queue.

The solution for the example in Figure 2 is clear:
Supervision and MotorControl are low priority tasks,
SpeedTemplateControl and ServoControl have higher
priority, Divider and SpeedCalculation are the highest ones.
The scheduling and verification of the timing constraints are
also straight forward; the RMA (Rate Monotonic Analysis)
details the complete technique [11].

It may be the case, however, that a real-time kernel is not
the most effective solution. The cost or the memory
requirements may be reasons for considering an alternate
approach, however, let’s examine system performance. The
execution of each RTK procedure takes time. If we consider
the Order message transfer between the two tasks
Supervision and MotorControl, the important time is the
delay between entering the Send procedure in Supervision
and exiting the Receive procedure in MotorControl. In the
case of a task switch, our experience shows us that the delay
ranges between 20 and 50 s or higher. Another problem with
RTKs is the difficulty of estimating an upper bound on the
execution time of each thread or task. Such values are
necessary to verify that tasks can be scheduled and all timing
constraints can be satisfied.

5: Optimization of the implementation

Inthissection we propose applying aset of transformation
rules to the functional structure to reduce complexity before
deciding on a software implementation. We interpret
complexity as the number of software tasks and
interdependencies oneach processor. Even whenusinganRT
kernel, our method should be considered as a step for
simplifying the implementation, enhancing the resulting
performance, reducing cost, and allowing one to reconsider
the need for an RT kernel.

The first step is to correctly identify the links between the
software tasks and the hardware environment; an accurate
specification of the hardware /software interface is essential.
Thenextsteptriestoreduce the number ofasynchronoustasks.
For clarity, we use the word Function for a cyclic sequential
process in the functional specification and the word Task for
the same kind of process as an implementation unit.

5.1: Transformations on Hw/Sw Relations (Rule 1)

Based upon the functional model, the links between each
software task and its hardware environment are: evént
synchronization, shared variable, and message transfer. In
this section we show now a transformation rule aids in the
implementation of hardware/software interfaces.

a- Case of an eveni and a shared-variable

An event input is implemented as a Boolean input to the
microprocessor that can be polled or used as an interrupt
input. An event output is also a Boolean. A shared-variable
is implemented as a shared register or shared memory.

b- Case of a message transfer

A port linking two functions on different processors
requires a hardware interface. The result of a transformation
of the port into the two preceding relations is shown in
Figure 3. A shared variable Mx.Buff is used to buffer one
or several messages. Synchronization is implemented as a
boolean variable in the software to hardware direction and
as an event in the opposite direction. Thus software tasks
F2 and F3 can be activated by interrupt signals M1.Req and
M2.Ack.

Using this technique, we conclude Rule /- a functional
description to be implemented on each processor is only
linked to its environment through events and shared
variables. Therefore the implementation of the set of tasks
can be determined separately from the environment.
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-Figure 3 - Transformation rule for Hw/Sw message transfers.
5.2: Minimum number of software tasks

Examining theresult after applying Rulel, an interesting
question arises: for a given problem, is there a minimum
number of tasks and if yes, what is the value? Figure 4
represents the general case. Let the functional description
contain N functions and K event inputs. Normally all event
inputs are mutually asynchronous because each is generated
by the environment. Thus, the minimum number of tasks is
K + 1. The added task is the processor background task.

Consider the example in Figure 3. FI and F4 are
asynchronous external functions. Applying Rule 1 gives the
2 asynchronous events M1.Req and M2 . Ack. F2 and F3 are
therefore asynchronous and cannot be merged. This justifies
the need for the relation through the port M acting as a FIFO
buffer. Removing the need for M2.Ack permits F2 and F3
to be merged into a single task.
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-Figure 4 - General case for a functionaj description (o be
implemented on a microprocessor.

It is thus observed, that multitask decomposition of
software depends only upon the asynchronous nature of event
inputs. This is important because it gives designers a guide
for functional decompuosition. Designers tend to decompose
adesigninto too many tasks because they have no termination
rules. Later, the tasks must be merged to reduce
implementation complexity.

Asynchronous software tasks can be linked through
shared variables. In such cases only the coherency of each
variable has to be ensured. For small data structures this is
accomplished by task prioritization or by interrupt masks.
This is a major reason why the MCSE methodology
recommends finding essential shared data and then functions
during the functional design step.

5.3: Function merging (Transformation rule 2)

Based on the previous results, we observe that when the
number of functions in the functional solution is greater than
the minimum, transformations can be applied to reduce the
number of tasks. Because an elementary function is a
sequential cyclic process and thus equivalent to a single
thread, the reduction means the serialization of several
threads [61,{71].

If we consider 2 functions F1 and F2 linked through an
event or a port (Figure 5), according to rate-monotonic
scheduling, 2 different priorities must be assigned. Two
possibilities exist. If Priority (F2) > Priority(F1) (Rule 2), the
2 functions can be merged in a single task because when F1
sends a message in Pt or signals the event EV to F2, the
processor must be released and given to FZ. The most
efficient implementation is a procedure call in F2. Figure 8
illustrates a solution, the notation and the behavior. The
interpretation of the timeline is exactly the same as for an
interrupt except that task switching is controlled by the
software. As explained in [1], a similar technique can be
applied to merging several functions activated by the same
event in a single temporary task, or several permanent
functions in the background task.

When applicable, this rule is effective for reducing
complexity and increasing performance. Note, the task
switching overhead is approximately 1 {s. Applicability is
based upon examining response times and CPU ufilization
ratio. For more details see [11,{11]. The execution end of F2
1S Troend = Troexee With Troexec ifs execution time and T2
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-Figure 5 - Process merging of two dependent functions.
%,4: Function splitting (Transformation rule 3)

A function is activated by two or more events or messages,
is difficult to implement even with an RT kernel. If K is the
number of activation events and all are asynchronous, the
Rule 3 splits the function into K threads, each activated by
one event. Being in the same function, the threads are
interdependent, thus a shared variable is used to express the
dependencies. One must be aware that suchacaseisrelatively
rare, occurring mostly in communication systems.

6: Hardware scheduling

After applying the preceding rules, a question arises:
when the number of tasks is M>1, is it necessary to use aRT
kernel? The answer depends on the application, the value of
M, task interdependencies, and required performance. The
designer should be able to determine these factors and easily
decide upon the best implementation.

We now show that a microprocessor interrupt system can
be used as an efficient priority-based scheduler. With such
a scheme, an interrupt mask is used to control the order of
(interrupt) task execution, i.e. order task execution according
to some priority. Now, let the interrupts be used for task
activation. The only difficulty is ensuring proper software
task synchronization and satisfying any remaining post-
opfimization interdependencies between atask T toalower-
priority task T2 (opposite case in Fig 5). In such a case, T
can use a digital output of the microprocessor connected to
the appropriate interrupt input according the relative
priorities of all tasks. T2 has to be linked to the selected
interrupt input or vector in the vector table. If the connection
cannot be direct, the few simple gates can be used. Consider
the Motorola 68K microprocessor family, for example,
which has 7 interrupts. Such a device permits one to schedule
7 tasks directly. Such complexity is infrequent in small
embedded systems after the above optimizations.

7. Selution for the motor control system

The techniques we have described are now illustrated
using the example introduced in Section 3. The first step is
tooptimize the functional description by reducing the number
of functions and thereby the number of tasks. The minimum
task number is here 4: the two asynchronous events Clk and
Inc, the message from port Cmad, and the background task.



The temporal constrainis are used to determine the
implementation and to verify the task scheduling. Realistic
timing values are given. TA is the minimum time between
two consecutive occurrences of an event; note, this is also
the activation period of the dependent function. TE is an
estimation of the maximum execution time of a function.

TA Clk=0.2 ms; TE Divider = 20 ys;

TA Inc =0.2 ms; TE ServoControl = 100 us;

TA Clkl =2 ms; TE SpeedTempiateControl = 100 ps;
TA Order> 1 s; TE MotorContrsl = 100 us;

TE SpeedCalcularion = 100 us;  TE Supervision = 200 us;

The rates of the Cmd and Order messages are here very
low (<1Hz); therefore the CPU utilization for Supervision is
nuil. The above values enable us to verify the scheduling of
all functions. The utilization ratio is: Tuse max = 0.02/0.2 +
(0.1+0.1)/2 + 6.1/0.2 = 0.7.

The most constrained task is SpeedCalculation which
occurs only when the motor is atits maximum speed. Figure 6
gives the optimized software implementation diagram.
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-Figure 6 - Software implementation diagram.

Using rate monotonic scheduling, SpeedCalculation has
the  highest priority.  SpeedTemplateControl  and
ServoControl, whichare synchronoustothe sameevent Clk/,
are grouped in a procedure called by Divider. Clk is a
hardware interrupt; the three functions are merged in a single
task Taski (Rule 2). Supervision, as the lowest priority
function, is implemented as the background task. The Cmd
message from another processor is polled by Supervision
(Rule 1). The message transfer between Supervision and
MotorControl is implemented as a procedure call because of
the higher priority for MotorControl (Rule 2). Couplings
between the tasks are done by the shared variables
implemented as global variables in the software.

The result is a multiple task implementation (3 tasks)
without using a RT kernel. The satisfiability of timing
constraints (here no event loss) is easy to prove based upon
the same execution times as before. The worst case CPU
utilization ratio is still 0.7

8: Conclusion

In this paper, we have described several powerful
embedded software implementation techniques. The
proposed strategy is twofold: first start from a good
specification model and perform the partitioning and
allocation, second optimize the software architecture to
simplify and shorten the development, reduce cost, improve
performance and more effectively evaluate and satisfy hard
real-time constraints. The resulting software design is
represented in a software implementation diagram that
simplifies the optimization process and the analysis of
temporal constraints. Performance estimations to aid in
partitioning can easily be made using our techniques. One
can easily hypothesize of an interactive tool to help the
designer in applying the above rules. The example is
interesting because it shows how one can optimize a design
to achieve the best partitioning, function allocation, and
hardware and software implementations. The proposed
method is fully integrated into the MCSE system-level
methodology.
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