Design-For-Debug in Hardware/Software Co-Design

H.PE. Vranken!, M.P.J. Stevens!

IEindhoven University of Technology

Dep. of Electrical Engineering
{vranken,stevens} @eb.ele.tue.nl

Abstract

The increasing complexity of hardware/software systems
is handled effectively by hardware/software codesign meth-
ods. However, the debugging of hardware/software sys-
tems is still a very troublesome process. This is mainly
due to the limited accessibility to the internals of embedded
hardware/software systems. Debugging is also hindered by
the nature of the design errors encountered during hard-
ware/software debugging.

We present a structured design-for-debug strategy to ad-
dress the problems of hardware/software debugging. Our
design-for-debug strategy is an integral part of hard-
ware/software codesign. Furthermore, we re-use the hard-
ware design-for-test facilities to reduce the overhead costs
of design-for-debug. Two examples are provided to illustrate
our design-for-debug strategy.

1. Introduction

Hardware and software together constitute the heart of
digital systems like consumer electronics, portable and per-
sonal communication systems, telecommunication systems
and embedded control systems. Along with the ongoing
miniaturization, more and more functions are integrated
into these systems. The driving force behind this remark-
able evolution is above all the progress in VLSI technology.
More and more functions can be integrated into a single
IC: yesterday’s systems are today’s chips. Furthermore, the
amount of software in digital systems is increasing signif-
icantly. For instance, a high-end television set contained
less than 64 Kbytes in the late 1980s, while today’s models
hold more than 500 Kbytes [11]. Software provides pro-
grammable and flexible systems, and exchanging hardware
for software can be cost-effective.

The increasing complexity of hardware/software systems
has raised the need for new hardware/software codesign
methods. Many promising research initiatives on hard-
ware/software codesign have been initiated, like [5], [8],

0-8186-7895-X/97 $10.00 © 1997 IEEE

M.T.M. Segers!?
?Philips Semiconductors
Eindhoven, Netherlands

segers @sce.philips.nl

[6], [12], and [1]. Codesign focuses on the areas of sys-
tem specification, architectural design, hardware-software
partitioning, and interfacing during hardware synthesis and
software synthesis. Coverification techniques like formal
verification and (co-)simulation are used to verify the cor-
rectness of the system design.

Formal verification and (co)-simulation are very power-
ful techniques. However, exhaustive simulation and com-
plete formal verification is unfeasible for complex systems.
Furthermore, simulation and formal verification are applied
on abstract models of a system and the system environ-
ment. Although these conceptual models are very effective
for handling complexity, they obviously cannot incorpo-
rate all real-world details. In general, we have to make a
trade-off between abstraction level, simulation/verification
speed, and time/data resolution. At high levels of abstrac-
tion, simulation and verification can be very fast, but time
and data resolution is rather low. At lower levels of abstrac-
tion, higher data and time resolutions can be obtained, but
simulation and verification is much slower.

The bottom line is that simulation and verification are not
sufficient to guarantee the absence of design errors. Hence,
it is required to detect the remaining design errors during
testing of the prototype implementation of the system. How-
ever, the ongoing miniaturization and increasing complexity
of systems cause that testing and debugging have become
bottlenecks in the design process. Despite the improve-
ments brought by codesign methods, the integration, testing
and debugging of hardware/software systems is still a time-
consuming, costly, and troublesome process. »

The major problems encountered during testing and de-
bugging of hardware/software systems are the nature of
the errors and the limited accessibility to the system’s in-
ternals. In order to improve this situation, design-for-
debug should be integrated into hardware/software codesign
methods. Unfortunately, structured methods for design-
for-debug in hardware/software systems are still lacking.
Therefore, our research aims at developing a structured ap-
proach for design-for-debug that can be integrated into hard-
ware/software codesign.

In this paper, first our notion of hardware/software code-
sign is presented in section 2. In section 3, we elaborate on
the accessibility problem in hardware/software systems. In
section 4 we discuss the nature of errors typically encoun-
tered during testing and debugging of hardware/software
systems. Our solution to these problems is a structured
design-for-debug approach, that is presented in section 5.
Two small examples are given in section 6, and finally sec-
tion 7 lists our conclusions.

2. Hardware/software codesign

Figure 1 shows our view on hardware/software code-
sign. During system specification, the functional behavior
of the system is captured in a hierarchical model of commu-
nicating processes. The objective of architecture selection
is to find an appropriate system architecture in which the
communicating processes and communication channels are
mapped onto hardware and software modules. In general,
a number of alternative architectures is explored, evaluating
requirements on performance, costs, flexibility, etc. The
most appropriate architecture is selected. An architecture
typically consists of software components stored in mem-
ories and executed on processors (microprocessors, DSPs,
ASIPs), and hardware components (e.g. ASICs, FPGAs).

The next step is to refine the selected architecture, which
implies adding more details to the descriptions of the hard-
ware and software components and their interfaces. After
architecture refinement, hardware synthesis and software
synthesis can proceed in parallel. In hardware synthesis of
custom hardware components, we proceed from behavioral-
level VHDL descriptions to RTL descriptions and finally
to gate-level descriptions. Subsequently, the physical hard-
ware design is done (routing, placement, etc.) and proto-
types of the hardware devices are manufactured. In software
synthesis, we proceed from algorithms in C code to assembly
language and finally to object code. Process scheduling and
including real-time kernels are also part of software synthe-
sis. Co-simulation of software components and hardware
components is performed at various levels of abstraction
during the synthesis process.

Finally, during hardware/software integration, ail the
hardware and software components are integrated and the
final systern implementation is realized. An incremental
approach to system integration, testing and debugging is
required. First, the individual hardware and software com-
ponents are tested and debugged in isolation. Hardware
testing implies both testing for manufacturing defects and
testing for design errors. Software testing implies testing
for design errors ("bugs’). Once a design error in hardware
or software is found, the exact cause of the error must be
examined so the error can be corrected. In the remainder of
this paper, we will use the term *debugging’ to indicate the

36

Svetern beravicr |

 Batiavior VHDL
AT veDL
_ Gate VIR

Figure 1. Hardware/software codesign

process of testing and isolating design errors in hardware
and/or software. Note that in this definition debugging does
not include testing for hardware manufacturing defects.

3. The accessibility problem

One of the major problems during hardware/software de-
bugging is the accessibility problem: it is extremely difficult
or even impossible to access the internals of hardware and
software components once they are embedded in the system.

In the past decades, several tools and techniques have
been developed to support hardware/software debugging,
like in-circuit emulators, software monitors, and logic ana-
lyzers. However, the ongoing miniaturization and the inte-
gration of numerous functions on a single chip impede the
use of these traditional tools. For instance, in-circuit emula-
tors and logic analyzers cannot be used for processor cores
that are embedded within ASICs or multi-chip-modules.
Consequently, the time and costs spent on integration and
debugging of hardware/software systems are still very large.

Therefore, a design-for-debug strategy is required to deal
with the accessibility problem. Debug capabilities should
be built into the hardware/software systems during codesign
to improve controllability and observability.

4. Characterizing design errors

Besides the accessibility problem, debugging of hard-
ware/software systems is also very difficult due to the na-
ture of the design errors that are encountered during hard-

ware/software debugging. A first indication that these are
complicated errors is the simple fact that these design er-
rors were not detected in all the simulation and verification
efforts during codesign.

The design errors that are often subject of hardware/-
software debugging can be characterized as follows: these
design errors are often related to dynamic system behavior,
that is how the system evolves in real time; these errors
are often transient or intermittent, which means that they
may appear and disappear spontaneously; these errors often
occur under exceptional conditions; and finally, these errors
are often related to hardware/software interaction. Although
these design errors usually form only a small fraction of all
errors, they take the larger portion of the total debugging
effort.

Concrete examples of the design errors that we will
encounter during hardware/software debugging are faulty
communication and synchronization protocols, buffer over-
flow, incorrect access to shared data, deadlock, starvation,
incorrect process scheduling, violation of performance con-
straints, and unanticipated interactions.

It can be concluded that these design errors are often re-
lated to interactions between concurrent processes: they of-
ten reside in communication and synchronization protocols
and in access to shared resources. During debugging, infor-
mation on process interactions can be obtained by access-
ing the communication interfaces (hardware-hardware inter-
faces, hardware-software interfaces, and software-software
interfaces) and the state information of processes. Hence,
access to communication interfaces and process states
should be considered in a design-for-debug strategy.

5. Design-for-debug

It has been shown that limited accessibility and the char-
acteristics of design errors cause the major problems in hard-
ware/software debugging. It is felt that a design-for-debug
approach is required to improve this situation.

Design-for-debug is not an entirely new approach. In
hardware, design-for-test (DFT) is well developed. Cur-
rently, DFT techniques are available and widely applied in
ICs (scan paths, BIST [4]), in printed circuit boards (bound-
ary scan architecture [2]), and in hardware systems ([3]). Al-
though hardware DFT primarily aims at testing for manufac-
turing defects, scan paths and the boundary scan architecture
have been used successfully for debugging purposes ([9],
[7]). Modern processor chips include design-for-debug fea-
tures like hardware breakpoints, software breakpoints and
various debug modes (e.g. [10]). In software, design-for-
debug is performed by means of software instrumentation
and including software monitors.

The current design-for-debug approaches are rather ad
hoc. We argued that design errors in hardware/software sys-

37

tems often reside in communication interfaces. When ap-
plying the current design-for-debug approaches, it may still
be very difficult or impossible to access some communica-
tion interfaces. Furthermore, the current design-for-debug
approaches focus on hardware or software. We feel how-
ever that design-for-debug should already be addressed in
the early stages of hardware/software codesign, even before
hardware/software partitioning. This approach guarantees
that we can access the required communication interfaces
during hardware/software debugging.

Our design-for-debug strategy consists of three stages:

First, we perform an accessibility analysis on the sys-
tem specification. This analysis measures the effort for
reaching communication interfaces and state information of
processes from the outside of the system. In general, this
analysis indicates that potential accessibility problems re-
side in accessing the communication interfaces and the state
information of processes that are deeply embedded in the
system.

To remove these potential accessibility problems, we add
Points of Control and Observation (PCOs [13], [14]) in the
system specification. PCOs provide direct access (obser-
vation and/or control) to embedded system resources like
communication interfaces and process state information.

Second, during architecture selection and architecture re-
finement, we decide on how to realize the PCQs. In some
cases, test equipment can be used to access communication
interfaces or process states. For instance, a communication
interface that is implemented as a hardware bus can be ac-
cessed using a logic analyzer. The PCO is now realized with
a logic analyzer.

In other cases however, test equipment cannot be used.
For instance, an internal hardware bus on a chip or com-
munication between two software processes using a shared
variable in a processor register. In these situations, we de-
cide to realize the PCOs in hardware and/or software.

Third, during hardware synthesis and software synthesis,
we decide how to implement the PCOs in hardware and/or
software. In some cases, it may be possible to use existing
hardware DFT features like scan paths and the boundary scan
architecture. This is very attractive, because scan paths and
boundary scan provide excellent observability and control-
lability for debugging purposes at no extra costs. However,
scan paths can only be accessed by serially shifting data
in and out. Furthermore, shift operations on internal scan
chains are usually intrusive: the state of scan registers is
affected during shifting. Hence, implementing PCOs using
scan architectures is less suitable for debugging real-time
applications. If hardware DFT facilities are not applica-
ble for implementing PCOs, we may have to add dedicated
hardware and/or software. The application domain puts
constraints on the extra costs allowed for dedicated hard-
ware/software PCOs.

process
C

A4

process
B

a) System Specification

v

b) System Architecture

I memory |
contral v

P~ Luproc

interface |
= control |

¢) System Implemantation

Figure 2. System-on-chip

6. Examples

In this section, two examples are provided to illustrate
how our design-for-debug strategy may work in practice.

Figure 2 shows a simple system specification consisting
of three communicating processes. Analysis indicates that
potential accessibility problems reside in accessing the state
information of process A and in accessing the communica-
tion interface between process A and process C. We insert
PCOs to improve accessibility, as shown in figure 2a. In
the system architecture, process A and process B are imple-
mented as software processes running on a microprocessor,
while process C is implemented in hardware, as shown in
figure 2b. Because the entire system will be implemented

38

on a single chip, we cannot use test equipment to realize
the PCOs. Therefore, we decide to implement the PCOs
in hardware and/or software. The final system implemen-
tation consists of a single chip containing a processor core,
an ASIC core, memory control logic and interface control
logic (figure 2c).

If this IC is used in consumer electronics products, then
overhead costs for dedicated design-for-debug features are
intolerable. Fortunately, the IC incorporates the boundary
scan architecture that can be re-used to implement the PCOs.
Re-using the hardware DFT facilities for debugging is very
attractive. DFT features provide access for debugging pur-
poses at no extra costs. However, as indicated before, the
debugging capabilities may be limited when using hardware
DFT facilities, particularly when debugging real-time appli-
cations.

Figure 3 shows design-for-debug in the design of a
telecommunication system. The system specification con-
sists of a three-layered protocol stack. For conformance
testing and system debugging, it is required that the bound-
aries between the protocol layers can be accessed. There-
fore, we insert PCOs at the protocol boundaries, as shown in
figure 3a. In the system architecture, the layered structure is
lost, because hardware and software components implement
parts of multiple layers. We decide to add extra hardware and
software to implement the PCOs at the protocol boundaries,
as shown in figure 3b. The final system implementation con-
sists of an ASIC, and software running on a micro-controller
and a DSP chip. We added dedicated hardware in the ASIC
and software monitors to implement the PCOs, as shown in
figure 3c. The PCOs provide access to the virtual protocol
boundaries in the hard ware/software implementation of the
system. The design-for-debug facilities introduced over-
head costs. However, these overhead costs can be justified
because conformance testing and system debugging is con-
siderably improved. In [14] and [15] an example is provided
of implementing PCOs in a broadband ISDN system.

It can be concluded that the overhead costs of design-for-
debug features are primarily constrained by the application
domain. We listed two extremes: in the first example we
used hardwatre DFT features only to implement PCOs cost-
effectively in a consumer electronics product; in the second
example, we added dedicated hardware and software to im-
plement PCOs in a telecommunication system. A mixed
approach is also possible, in which both hardware DFT fa-
cilities and dedicated hardware/software are used to imple-
ment PCOs. An interesting option is to add design-for-debug
features only in prototype implementations. After system
debugging is completed, the debug features are removed and
not included in the shipped products. This approach can re-
duce the effort spent on hardware/software debugging and
shorten time-to-market, without overhead costs in the final
system.

a) System Specification

7
F 3
EH

b) System Architecture

E

c) System Imp!;mentation

Figure 3. Telecommunication system

7. Conclusions

Hardware/software codesign methods considerably im-
prove the design of complex hardware/software systems.
Unfortunately, debugging hardware/software systems is still
a very troublesome process due to limited accessibility to
the internals of embedded hardware and software compo-
nents. Also the nature of the design errors encountered
impedes hardware/software debugging. Design-for-debug
is required to deal with this.

We present a design-for-debug strategy that is an integral
part of hardware/software codesign. The system specifica-
tion is analyzed to detect potential accessibility problems.
PCOs are inserted to improve accessibility. During archi-

39

tecture selection and refinement, decisions are made on how
to realize the PCOs: using test equipment, or implementing
PCOs in hardware/software. In the latter case, hardware
DFT facilities like scan paths and boundary scan can be
re-used to realize the PCOs, or dedicated hardware and/or
software is required to implement the PCOs. The application
domain constraints the overhead costs required to implement
PCOs. We illustrated our design-for-debug strategy in two
application domains: consumer electronics and telecommu-
nication systems.

References

[1] Rapid Prototyping of Application-Specific Signal Processors
(RASSP). http://rassp.scra.org.

[2] IEEE 1149.1 Standard Test Access Port and Boundary Scan
Architecturé. IEEE, 1990,

[3] IEEE 1149.5 Standard Module Test and Maintenance Bus.

IEEE, 1995.

M. Abramovici, M. Breuer, and A. Friedman. Digital Sys-

tems Testing and Testable Design - Revised Printing. 1TEEE

Press, 1995.

T. Ben Ismail and A. Jerraya. Synthesis steps and design

models for codesign. IEEE Computer, 28(2):44-52, Febru-

ary 1995.

R. Camposano and J. Wilberg. Embedded system design.

Design Automation for Embedded Systems, 1(1-2):5-50, Jan-

uary 1996.

P. Fleming and D. McClean. Scan-based design verification

- an alternative approach. ATE and Instrumentation Confer-

ence West, 1990.

D. Gajski and E Vahid. Specification and design of em-

bedded hardware-software systems. IEEE Design & Test of

Computers, 12(1):53-67, Spring 1995.

A, Halliday, G. Young, and A. Crouch. Prototype testing sim-

plified by scannable buffers and latches. IEEE Proceedings

International Test Conference, pages 174—181, 1989.

H. Hao and R. Avra. Structured design-for-debug - the super-

SPARCII methodology and implementation. [EEE Proceed-

ings International Test Conference, pages 175-183, 1995.

J. Rooijmans, H. Aerts, and M. van Genuchten. Software

quality in consumer electronics products. IEEE Software,

13(1):55-64, January 1996.

D. Vetkest, K. van Rompaey, I. Bolsens, and H. de Man.

Coware - a design environment for heterogeneous hard-

ware/software systems. Design Automation for Embedded

Systems, 1(4):357-386, October 1996.

H. Vranken, M. Stevens, M. Segers, and J. van Rhee.

System-level testability of hardware/software systems. IEEE

Proceedings International Test Conference, pages 134-142,

1994.

H. Vranken, M. Witternan, and R. van Wuijtswinkel. Design

for testability in hardware-software systems. IEEE Design

& Test of Computers, 13(3):79-87, Fall 1996.

M. Witteman and R. van Wuijtswinkel. ATM broadband

testing using the ferry principle. Protocol Test Systems VI,

pages 125-138, 1994.

[4]

(5]

[6]

(71

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

	Main Page
	CODES97
	Front Matter
	Table of Contents
	Author Index

