
VEAP : Global Optimization based Efficient Algorithm for
VLSI Placement

Kong Tianming, Hong Xianlong, Qiao Changge
Department of Computer Science and Technology, Tsinghua University

Beijing, 100084, P.R.China
e-mail: {kongtm, hongxl, qiaocg}@tiger.cs.tsinghua.edu.cn

Abstract -- In this paper we present a very simple,
efficient while effective placement algorithm for Row-based
VLSIs. This algorithm is based on strict mathematical
analysis, and provably can find the global optima. From our
experiments, this algorithm is one of the fastest algorithms,
especially for very large scale circuits. Another point desired
to point out is that our algorithm can be run in both
wirelength and timing-driven modes.

I. INTRODUCTION

The acceptance of row-based design styles is considerably
influenced by the quality and the speed of the available design
tools. In this paper we present a new placement algorithm
named VEAP, which has been successfully applied to all cell-
based layout styles and particularly to large circuits.

As the first step in the physical design process, the task of
placement is to calculate the positions of the cells. Its difficulty
increases as the cell count grows. Therefore, the classical
approach to VLSI placement is based on the divide-and-conquer
paradigm. Important representatives of this approach are based
on min-cut graph partitioning(e.g., [1]-[4]). However, min-cut
algorithms like those of Kernighan and Lin[5] and Fiduccia and
Mattheyses[6] are iterative improvement heuristics that depend
on an initial partition. Some authors([4][7]) proposed
modifications and reported improved results.

Recently, alternative algorithms that model the placement
problems as a linear or nonlinear continuous optimization
problem have been studied([8]-[15]). In contrast to the min-cut
approach, geometric information about cell and chip dimensions
and pin locations can be used directly. Usually no starting
solution is needed and all cells are treated simultaneously. Some
of these methods apply partitioning to recursively create smaller
subproblems. However, they restrict the simultaneous
optimization to the initial step.

Getting stuck at local optima is a major drawback of
partitioning-based methods. Efforts have been made to deal with
this problem, especially to improve the widely used min-cut
procedure([1][2]). Today there are some algorithms based on
quadratic programming optimization([16][19]). This kind of
algorithms has a very useful property: it is provably good based
on mathematical analysis. But they suffered from long running
time and one drawback: pads have to be assumed fixed, thus not
appropriate when applied to circuits with floating pads. Ritual’s
developers have never reported results for very large scale
circuits. In GORDIAN, after cells have been assigned into a
region, they cannot move into another, thus placement quality is
overconstrainted.

In past years, many algorithms based on simulated annealing
technique or genetic algorithm were published. This catalog of
algorithms could maintain very excellent quality of placement,
while they suffered from long running time heavily. The newest
algorithm is from W.J.Sun and C.Sechen([17][18]), which can
be run rather fast. However in this paper we found that without
the help from random optimization techniques, equal or even
better placement quality in less running time is still possible.

In this paper, we present a novel placement algorithm based
on quadratic programming, but differently from previous
algorithms. Our algorithm VEAP has the following
characteristics: 1) Excellent quality: cells can move from the
region it’s assigned into another region; 2) High efficiency: it has
very simple iterative form, and few memory requirements; 3)
Inherent parallelism: further speedup is still possible.

In the rest of this paper, a detailed description of the
algorithm and experiment results are given. In Section II, the
algorithm is outlined. The detailed discussion is given in Section
III. Algorithm analysis is given in Section IV. In Section VI, the
algorithm for final placement is given. Finally we give
experiment results.

II. OUTLINE OF THE PROCEDURE

The placement algorithm VEAP is composed of alternating
and interacting global optimization and partitioning steps. The
input of VEAP consists of a net list, a cell library, and the chip’s
geometry description. In the placement procedure, pad cells may
be fixed or to be assigned.

The main loop of VEAP is formed by an iteration of global
optimization and partitioning steps. In each step of global
optimization, a mathematical programming problem is formed
and solved. In the following partitioning step cells are assigned
into subregions according to their positions. Two linear
constrains are generated for each subregion. As can be seen, the
partitioning operation generates a slicing tree, in which each
node represents a region. The loop is repeated until the number
of partitioning reaches a pre-defined constant. Thus we can get a
global placement for each cell.

III. GLOBAL PLACEMENT

In each global optimization step, a mathematical
programming problem is derived and solved. The solution is a
global placement of the cells.

A. Problem Formulation
The objective function is based on nets’ quadratic wirelength

model. For a net n, its length is computed according to the
ASP-DAC ’97
0-89791-851-7$5.00  1997 IEEE

following equation:

() ()n i i n j j n
i j

L x x y yi i n j j n
Cn

= + − − +










+ − −∑

∈

2 2
1

, ,
,

, , . .. ()ξ ξ η η

where nC denotes the set of cells connected by net n, (
i n i n, ,

,ξ η)

are the coordinates of a pin connected to net n relative to the
center of coordinates (i ix y,) of its cell. For simplicity, we omit

these coordinates in the rest of this paper.
The objective is to minimize the weighted sum of the

quadratic wirelength of all nets:
φ =

∈
∑ n n

n
L w

Ν
.. . ()2

where

n
n n

w
C C

=
× × −

1

2 1()

At the lth optimization level, the placement plane will be
divided into l4 regions, each containing a subset of cells. Let

lℜ denote the index set of regions. If r is a region, we use rτ to

denote the set of cells contained in r, and use (
r rµ ν,) to denote

the coordinates of the center of the region r. Since a cell can
reside in only one region, we use the iℜ to denote the region

cell i reside in. Thus for each region r, we get two constraints on
the global placement:

i
i

r
r

i
i

r
r

x y
r r∈ ∈

∑ ∑
= =τ τ

τ µ τ ν, . .. ()3

In the rest of this paper, we name this kind of constraints
dispersion constraints.

Combining the objective function and the constraints, we get
a linearly constrained quadratic programming problem(LQP).

B. Solution Method
We use Lagrange Relaxation Method to solve the LQP. Each

dispersion constraint will have an associated factor rα or
rβ .

Thus according to Lagrange Relaxation Method, we turn the
original problem into a series of unconstrained quadratic
programming problems:

r r x y
x y r r

α β
φ α β

,
max min

,
(, , ,)

≥0

φ τ µ α

τ ν β

τ

τ

= + −














ℜ

+ −














ℜ

∈ ∈∈

∈∈

∑ ∑∑

∑∑

n
n

n i
i

r r
r

i
i

r
r

r

L w x

y

r
l

r
l

r

r

Ν

. .. ()4

Let
∂

∂

φ
ix

=0,
∂

∂

φ

iy
=0, we have:

()∂

∂

φ
α τ

i
n

n
i j

jx w x x
i n

i i
C

= − + ℜ ℜ =
∈ ∈
∑ ∑
Ν

2 0

∂

∂

φ
β τ

i
n

n
i j

jy w y y
i n

i i
C

= −



 +

ℜ ℜ =
∈ ∈
∑ ∑
Ν

2 0

Therefore,

i n
n

j
j

n
n

x w x w
i n

i i
iC N

= − ℜ ℜ















∈ ∈ ∈
∑ ∑ ∑

Ν
1 2 5/ * ...()α τ

i n
n

j
j

n
n

y w y w
i n

i i
iC N

= −
ℜ ℜ















∈ ∈ ∈
∑ ∑ ∑

Ν
1 2 6/ * ...()β τ

According to the above equations, we now give the global
optimization algorithm for one level:

1. start from an initial assignment of iopads;
2. set up initial data¡ r rα β= =0 0, ;

3. for count=1 to k
4. for i=1 to the-number-of movable cells
5. update i ix y, according to (5)(6);

6. update lagrangian factor¡
7.

r i

i
r rx

r

α τ µ
τ

+ = −
∈
∑ ,

r i
i

r ry
r

β τ ν
τ

+ = −
∈
∑

8. linear assignment of iopads;
9. If desired accuracy reached, return; else goto 2;

IV. ALGORITHM ANALYSIS

A. Convergence
The term “Convergence” has two-fold meaning: the

convergence of the overall global optimization(Lagrange
Relaxation Method) and the convergence of the iteration method
to solve the sub-lagrangian problem.

The convergence of the overall global optimization algorithm
is obvious since the problem is a convex programming problem.
The convergence of the iteration method to solve the lagrangian
is guranteed since in each iteration, the lagrangian strictly
decreases. And because the objective is a convex function, global
optima is found.

If we rewrite the objective in matrices, thus we have:

φ(,) / /x y x Q x b x y Q y b yT
x
T T

y
T

x y= − + −1 2 1 2

where the vectors x and y denote the coordinates of the movable
cells to be placed. The matrices

x yQ Q, correspond to the

quadratic form of the nets’ wirelength function. Both are positive
definite if all movable cells are connected to some fixed cells
either directly or indirectly. This holds since all cells will be
connected to iopads and iopads are assumed fixed during the
iterations. Thus we can get the global optima when

x Q b y Q bx x y y= =
− −1 1

,

It can be seen that the above algorithm is in fact Gauss-
Seidel iteration method. In general, Successive Over Relaxation
method(SOR) is faster than Gauss-Seidel iteration method. Thus
we could give another method to update i ix y, based on SOR,

that is:

i
k

n
n

j
k

j j i
j
k

j j i
n

n

i
k

x w x x w

w x

i n n
i i

iC C N

() ()

,

()

,

()

/ * *

() * . .. ()

+

∈

+

∈ < ∈ > ∈
= +













 − ℜ ℜ















+ −

∑ ∑ ∑ ∑1 1 1 2

1 7

Ν
α τ ω

i
k

n
n

j
k

j j i
j
k

j j i
n

n

i
k

y w y y w

w y

i n n
i i

iC C N

() ()

,

()

,

()

/ *

* () * . .. ()

+

∈

+

∈ < ∈ > ∈
= +













 − ℜ ℜ















+ −

∑ ∑ ∑ ∑1 1 1 2

1 8

Ν
α τ

ω

where w is the relaxation factor.

B. Dynamic Assignment of IOPADS
In many algorithms based on quadratic programming, there

exists an assumption: the matrices
xQ ,

yQ are the same and

definite positive. In fact, this only hold when all iopads are fixed.
For example, if all iopads are floating,

xQ ,
yQ are not definite

positive, thus those algorithms may face difficulty. When iopads
are semi-floating(floating only on one side),

xQ ,
yQ are not the

same.
It’s clear that our algorithm doesn’t need such assumption.

The assignment of floating iopads are dynamically performed via
a linear assignment procedure. In general, direct interconnection
between iopads is insignificant, so a linear assignment algorithm
suffices.

C. Complexity
Each step of iteration to solve the lagrangian takes time O(n),

where n is the number of cells. In general, the number of
iterations tends to have a constant upper limit. To solve the
original problem means to solve a series of lagrangians; the
number depends on how tightly the accuracy is set. In practical
computation, a limit 0 5.n suffices. Thus the overall time
complexity is O(15.n).

The basic interconnection of cells needs memory O(n). Two
linear arrays are needed to store the linear constraint equations.
Thus the overall space complexity is O(n).

D. Highly possible parallelism
Another point is that the algorithm is inherently highly

parallel. From(7)(8), we know that a cell’s coordinate
computation requires that the cells(j) whose indices are less than
the index of the cell(i) in question and which are directly
connected to the cell i have been updated before. We can
transform these constraints in graphic scheme, thus get a
directed computation constrained graph G(V,E). A vertex i in V
will correspond to a cell i; there exists a directed edge
(,)i j E∈ , if and only if j is less than i and j and i are directly

connected.
Thus based on this graph, a simple parallel computation

scheme is easily acquired. For example, we color the circuit
connection graph in p colors, then we can partition the cell set in
p subsets. Since cells in the same subset has no direct connection
relation, they can be updated independently. p is less than or
equal to the maximal degree of cells in the connection graph plus
one. In practical circuits, the number of a cell’s pins is limited, p
is limited. Thus in large circuits, the speedup due to parallelism
is rather promising.

V. FINAL PLACEMENT

The result of the alternating global optimization and
partitioning steps is a global placement. Since in this placement
there are many overlapping cells, thus a final placement has to
follow. In this final placement stage, cells have to be moved such
as no overlapping exists and some specification is obeyed.

In standard cell designs, cells are of approximately the same
height but sometimes of fairly differing widths. The chip area is
determined by the widths of the channels between cell rows and
by the lengths of the rows including feedthroughs for nets
crossing the rows. The goal is to obtain narrow channels with
equally distributed low wiring density and rows with equal
length.

We adopt a linear assignment algorithm, which tends to
achieve minimal wirelength and even row length. We
recursively partition the chip area until each region contains only
tens of cells, in each of which cells will be assigned. This
procedure is called “slot assignment”.

In each region, the “slot assignment” problem is formulated
as follows: given a set of slot positions and a cell set, to find a
map between cells and slot positions such as the total wirelength
is minimal. Assume that the number of slots are m, the number
of cells to be assigned is n and the cost of assigning cell i to slot j
is ijC (estimated as the wire length when i is assigned to j). In

general n m≤ . Then the “slot assignment” problem is formulated
as a linear assignment problem:
¡¡¡¡¡¡¡minimize ij ijij C Z∑

 subject to :

ij
j

m

Z i n
=
∑ = =

1

1 1, ,...,

ij
i

n

Z j m
=
∑ ≤ =

1

1 1, ,...,

{ }ijZ i n j m∈ = =01 1 1, , ,..., , ,...,

i ij j
j

m

x Z X=
=
∑ ,

1
i ij j

j

m

y Z Y i n= =
=
∑ , (,...,)1

1

 is the position of cell i.

The general “slot assignment” which is a quadratic-
assignment problem is difficult to solve. The presence of the
above formulation is due to ignorance of the interconnection
between cells in the same region. This may introduce some
errors. In order to eliminate such errors and not to over-
constraint cells, we may allow cells to migrate outside their
assigned regions. This can be achieved by shifting x- and y-
regions in such a way that adjacent regions are overlapping by
half the region size. And the “slot assignment” algorithm will be
run several times.

VI. EXPERIMENT RESULTS

We’ve mentioned that our algorithm is very suitable for very
large scale circuits. We can image that for small circuits, if the
matrix Q is sparse, thus the direct inverse matrix(DIMC)
computation will be faster than our algorithm. Fortunately, for
practical circuits the matrix is rather sparse, thus DIMC is well
suitable for some middle-scale circuits. For very large scale
circuits, the matrix is still sparse, but due to the scale, DIMC
cannot work well. This has been confirmed in our experiments.

We tested ten circuits. Their characteristics are listed in
Table.I.

In Table.II, we compare our results with those obtained by
Ritual. The comparisons are performed in terms of circuit area
after slot assignment, the wiring length and CPU needed by the

placement methods measured on a Sun Sparc-20/50 workstation
running SunOs4.1.4. Since Ritual is a timing-driven placement
algorithm, in order to make a fair comparison, we run Ritual in
wirelength mode.

From experimental results it’s clear that our results are better
than Ritual’s. For circuit avq, our algorithm is the fastest ever
reported.

REFERENCES

[1] U.Lauther, “A min-cut placement algorithm for general cell
assemblies based on a graph representation,” in ACM/IEEE
Proc. 16th DAC, 1979, pp.1-10

 [2] A.E.Dunlop and B.W.Kernighan, “A procedure for
placement of standard-cell VLSI circuits,” IEEE Trans.
CAD, vol.CAD-4, pp.92-98, Jan.1985

 [3] D.P.LaPotin and S.W.Director, “Mason: A global
floorplanning approach for VLSI design,” IEEE Trans.
CAD, vol.CAD-5, pp.477-489, Oct.1986

[4] P.R.Suaris and G.Kedem, “An algorithm for quadrisection
and its application to standard cell placement,” IEEE Trans.
Circuits Syst., vol.35, pp.294-303, Mar.1988

[5] B.W.Kernighan and S.Lin, “An efficient heuristic procedure
for partitioning graphs,” Bell Syst. Tech. J., pp.291-
307,1970

 [6] C.M.Fiduccia and R.M.Mattheyses, “A linear-time heuristic
for improving network partitions,” in ACM/IEEE Proc.
19th DAC, 1982, pp.175-181

[7] T.-K. Ng, J.Oldfield, and V.Pitchumani, “Improvements of a
mincut partition algorithm,” in Proc. IEEE Int. Conf. CAD,
ICCAD-87, 1987, pp.470-473

[8] K.J.Antreich, F.M.Johannes, and F.H.Kirsch, “A new
approach for solving the placement problem using force
models,” in IEEE Int. Symp. Circuits and Systems,
Proc.ISCAS, 1982, pp.481-486

 [9] G.J.Wipfler, M.Wiesel, and D.A.Mlynski, “A combined
force and cut algorithm for hierarchical VLSI layout,” in
ACM/IEEE Proc. 19th DAC, 1982, pp.671-676

[10] C.-K.Cheng and E.S.Kuh, “Module placement based on
resistive network optimization,” IEEE Trans. CAD,
vol.CAD-3, pp.218-225, July 1984.

[11] K.M.Just, J.M.Kleinhans, and F.M.Johannes, “On the
relative placement and the transportation problem for
standard-cell layout,” in ACM/IEEE Proc.23rd DAC, 1986,
pp.308-313

[12] R.Tsay, E.S.Kuh, and C.-P.Hsu, “PROUD: A fast sea-of-
gates placement algorithm,” in ACM/IEEE Proc.25th DAC,
1988, pp.318-323

[13] R.H.J.M.Otten, “Eigensolutions in top-down layout design,”
in IEEE Int.Symp. on Circuits and Systems, Proc. ISCAS,
1982, pp.1017-1020

[14] J.P.Blanks, “Near-optimal placement using a quadratic
objective function,” in ACM/IEEE Proc. 22nd DAC, 1985,
pp.609-615

[15] J.Frankle and R.M.Karp, “Circuit placements and cost
bounds by eigenvector decomposition,” IEEE Int. Conf. on
CAD, ICCAD-86, 414-417, 1986

[16] J.M.Kleinhans, G.Sigl, F.M.Johannes, and K.J.Antreich,
“GORDIAN: VLSI placement by quadratic programming
and slicing optimization,” IEEE Trans. CAD, vol.CAD-10,
no.3, 1991, pp.356-365

[17] W.Swartz and C.Sechen, “New algorithm for the placement
and routing of macro cells,” Proc. Int. Conf. on CAD, 1990,
pp.336-339

[18] W.J.Sun and C.Sechen, “Efficient and Effective Placement
for Very Large Circuits,” Proc. Int. Conf. on CAD, 1993,
pp.170-177

[19] A. Srinivasan, K. Chaudhary, E. S. Kuh, “RITUAL: A
Performance Driven Placement Algorithm for Small Cell
ICs,” Proc. ICCAD, November 1991, pp.48-51.

TABLE I
CIRCUIT CHARACTERISTICS

circuit #pin #cell #net #row
C2 373 590 963 9
sioo 62 602 664 12
balu 100 701 801 10
C5 301 1586 1887 16
C7 315 2150 2465 16

s13207 1490 4267 5757 24
s2 1608 9906 11514 28

c213 1489 11030 12519 20
s3 1726 15545 17271 24
avq 64 21854 22183 65

TABLE II
COMPARISON RESULTS

Circuit Comparison Ritual Veap
C2 Wire 4.15×105 4.09×105

Cpu Time 47.46 57.00
C5 Wire 1.09×106 1.03×106

Cpu Time 194.04 170.39
C7 Wire 1.81×106 1.64×106

Cpu Time 199.74 220.26
s13207 Wire 6.51×106 6.37×106

Cpu Time 577.21 658.05
balu Wire 2.74×107 2.67×107

Cpu Time 296.89 320
s2 Wire 1.55×107 1.46×107

Cpu Time 2617.76 2165
sioo Wire 2.90×107 2.76×107

Cpu Time 296.89 320
c213 Wire 1.60×107 1.25×107

Cpu Time 3915.56 2863
s3 Wire 2.57×107 2.33×107

Cpu Time 6740.73 4716
avq Wire NA 1.27×107

Cpu Time NA 7268.73

	CD-ROM Home Page
	ASP-DAC Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

