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Abstract-- This paper describes a tool-supported methodol-
ogy for the register-transfer-level formal verification of a growing
hardware design paradigm--timed asynchronous systems. These
systems are a network of communicating asynchronous and syn-
chronous components and have correctness constraints that
depend on specified bounded delays. This paper formalizes the
verification problem and demonstrates how time-discretization,
abstraction, and non-determinism can lead to a system model
comprised of communicating finite state machines composed syn-
chronously. The paper then describes a translator that accepts
structural VHDL system description along with controller speci-
fications and generates the input to a symbolic model checker
(SMV). Finally, we describe two case studies in which concurrent
verification and design led to the correction of many errors not
easily found using simulation.

I. INTRODUCTION

Asynchronous design techniques have long promised sys-
tems which have low-power, low average-case delay, and effi-
cient communication between different clock domains.
Traditional asynchronous design methodologies also claim
seamless composition of components and an absence of tim-
ing assumptions, i.e., traditional designs arespeed-indepen-
dent. Not surprisingly, the circuitry required to implement the
request/acknowledge communication protocol in speed-inde-
pendent circuits often creates overhead, in terms of power,
delay, and area, that limits their practicality. In order to reduce
the communication overhead and speed up the circuits, many
asynchronous researchers have abandoned speed-independent
circuits in favor of designs that use timing assumptions at the
transistor, gate, and register transfer (RT) level. This new
design methodology has lead to an x86 asynchronous instruc-
tion length decoder that is approximately three times faster
than the current state of the art, a differential equation solver
design that is almost 40% faster on average than any compara-
ble synchronous design [14], and efficient pausible clocking
strategies for interfacing different clock domains [15]. These
recent successes among others are finally demonstrating the
potential advantages of using asynchronous design techniques.
However, the increased usage of timing assumptions, both

local and global, makes ensuring correctness via simulation
more difficult, motivating the need for formal verification.

While numerous tools and techniques have been developed
for verifying speed-independent circuits [3, 5, 8, 2, 12], verify-
ing asynchronous circuits with timing assumptions has been
rather limited. [4, 10, 13] have addressed verifying gate-level
timed circuits, but their techniques have been limited to small
circuits due to the state explosion problem associated with
their underlying explicit state techniques. The authors in [6]
have addressed using implicit state techniques for gate-level
timed circuits and we apply some of their modeling techniques
to the register-transfer level (RTL). In addition, these authors
address verifying only hazard-freedom and not properties spe-
cific to RTL designs.

The paper begins by describing ourtimed asynchronous
system design methodology. It describes typical components
of such asynchronous and heterogeneous systems, including
data path components with data-dependent delays (i.e.,
adders/multipliers), distributed asynchronous control circuits
(i.e., XBM burst-mode controllers [17]), and interface glue-
logic (i.e., mutual-exclusion elements). The paper then
describes the verification problems specific to RTL design we
have addressed. We focus on thetimed hardware protocol ver-
ification particular to timed asynchronous systems and do not
treat word-level verification issues common in synchronous
RTL designs. The paper discusses the safety and liveness cri-
teria associated with these hardware protocols as well as the
bounded delay assumptions sometimes necessary to ensure
their correctness.

We then describe our RTL verification methodology. First,
we abstract each system component to a synchronous finite
state machine (FSMs) in which time is discretized and mod-
eled as a sequence of states, and non-deterministic transitions
are used to facilitate modeling bounded delays. Although we
have not yet proved that such an approximation of a system is
really conservative, it has helped us detect many design errors.
We describe our correctness criteria in computational tree
logic (CTL). We verify the synchronous composition of the
components using a well-known symbolic model checker
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SMV.
Finally, the paper presents a prototype tool to support this

methodology and describes two real-life case studies in which
the verification and design proceeded concurrently. The tool
accepts VHDL structural description of a timed system, a
library of SMV-described components, and specifications of the
XBM asynchronous controllers used. It then translates this
input into SMV language and automatically generates many of
the necessary CTL formula specifications. Using this tool, we
quickly discovered and corrected many design errors that would
have been difficult to find using simulation.

The remainder of this paper is organized as follows. Section
II describes the different timed data path and control compo-
nents that may make up a timed asynchronous system. Section
III describes the RTL verification tasks relevant to such sys-
tems. Section IV describes modeling techniques in SMV for the
different system components, and CTL specification for the
needed verification tasks. Section V describes the verification
methodology tool flow and section VI describes two case stud-
ies: a pausible clocking interface module and a differential
equation solver. Finally, section VII gives our conclusions.

II. TIMED ASYNCHRONOUSSYSTEMS

A timed asynchronous system is a network of timed control
and data path components that synchronize data processing and
communication using event-driven signalling. Controllers send
requests to data-path components, e.g., functional units, latches,
or flip-flops, signalling them to process data. Some data path
elements, such as a self-timed adder, contain completion sens-
ing circuitry that raises a done signal which is routed back to
the controller as a form of acknowledgment. For other data path
elements, such as edge-triggered flip-flops, the acknowledg-
ment is inferred by timing assumptions. In addition, the com-
munication circuity may contain glue logic, e.g., mutual
exclusion elements and simple gates.

Each timed component has a specification which represents
a contract between the component and its environment. It speci-
fies the legal (possibly sequential) behavior of its inputs and the
corresponding output behavior. The specification may include
timing constraints restricting the legal input behavior and tim-
ing assumptions describing temporal properties of the output
behavior. Unlike untimed systems, these timing assumptions
are often necessary to ensure that the network of communicat-
ing components will conform to each of the individual compo-
nent’s communication convention.

The implementation of each timed component is itself a net-
work of gates and/or transistors. Functional elements often con-
sist of static gates, precharged logic, dual-rail logic, domino
logic, or a mixture of these styles. Traditional synchronous
latches, registers, and routing components are often used with
only slight modifications. Timed controllers are made up of
specialized memory elements, such as generalized C-elements

or static gates [10, 17]. Typically, the representation of the
implementation of a timed component is more complex than the
representation of its specification.

As an example of a timed system, consider the pausible-
clocking-interface (PCI), illustrated in Fig. 1, which allows two
different asynchronous domains to efficiently communicate
with one synchronous clock domain. The overall design con-
tains one synchronous module, two XBM asynchronous con-
trollers, and glue-logic. The principle verification goal is to
ensure that set-up and hold times are satisfied at the synchro-
nous latches, thereby avoiding metastability errors. This
requires careful analysis of the delays in the system. Notice that
the synchronous module can be considered as one system com-
ponent whose local clock controls the sampling and processing
of all of its other inputs.

A. Modeling Timed Systems at the RT Level

Whenever possible, we have tried to hide internal details of
a given component or its implementation. By modeling the
specification of a component instead of the implementation, we
simplify the model and its verification within the larger system.
The fact that an implementation conforms to a specification can
be separately verified.

 The environment surrounding the system is specified as a
separate component, which interacts with the rest of the system
by generating proper activation signals at proper times and
being reset by receiving proper completion signals. For timed
systems, the environment may need to have specific timing
characteristics for the whole system to function correctly. Such
characteristics are part of the constraints of the environment
component.

Currently, we have focused on timed systems that use XBM
burst-mode machines as the sole type of controllers, however
extensions to other controller design styles [11, 10] are straight-

FSM
  1

FSM
  2

 ME
   1

 ME
   2

  FF1

  FF2

  Req1

  Ack1

  Req2

  Ack2

Clk

Req1s

Ack1s

Req2s

Ack2s

Synchronous

    System

  Asynch

System1

  Asynch

System2

Interface Circuitry

Fig. 1. A pausible clocking interface, an example of a timed asynchronous
system.



forward.

B. Extended Burst Mode specification formalism

An XBM controller is formally specified by a tupleg:<In,
In0, Out, Out0, S, Trans (S-Src, S-Dest, In-Burst, Out-Burst),
s0>. Here,In is the set of inputs, andIn0 the initial values for
that set.Out andOut0 are similarly defined.S is the set of states
of the specification.Trans is the set of state transitions of the
controller specification. Each state transition is labelled with an
input-burst,In-Burst, and a possible output-burst,Out-Burst. A
burst is a non-empty set of signal transitions.s0 is the start state
of the machine. An XBM specification can automatically be
realized into an asynchronous circuit implementation [17]. An
example of a burst-mode specification is shown in Fig. 2.

Signals not enclosed in brackets and ending with + or - are
terminating signals (edge signals). Those enclosed in brackets
are conditionals (level signals). A signal ending with # is a
directed don’t care. A state transition occurs only if all the con-
ditions are met and all the terminating edges have occurred.
Every sequence of state transitions labeled with the same
directed don’t care signal must eventually end with a terminat-
ing edge of that signal. A terminating edge not immediately
preceded by a directed don’t care edge is acompulsory edge,
since it must appear during the state transition it labels.

There are a number of communication constraints that the
environment of the circuit must satisfy. First, each edge signals
must bemonotonic; that is, 1) a compulsory edge must change
value only once during a state transition, 2) a directed don’t
care may change at most once during a sequence of state transi-
tions it labels, and if it does not change during this sequence, it
must change during the state transition its terminating edge
labels. While a level signal that is not mentioned in a particular
state transition may change freely, edge signal that are not men-
tioned are not allowed to change.

An extended burst mode asynchronous finite state machine
is specified by a state diagram which consists of a finite number
of states, a set of labeled state transitions connecting pairs of
states, and a start state,s0. Each state transition is labeled with a
set of conditional signal levels and two sets of signal edges; an
input burst, and an output burst. An output burst is a set of out-
put edges, and an input burst is a non-empty set of input edges

(terminating or directed don’t care), at least one of which must
be compulsory.

In a given state, when all the specified conditional signals
have correct values, and when all the specified terminating
edges in the input burst have occurred, the machine generates
the output burst and moves to a new state. Specified edges of
the input burst may appear in arbitrary temporal order. How-
ever, the conditional signals must stabilize to correct values
before any compulsory edge in the input burst appears and must
hold their values until after all of the terminating edges appear.
However, they need not be stable out of the specified sampling
periods. Outputs may be generated in any order, but the next set
of compulsory edges from the next input burst may not appear
until the machine has stabilized. This requirement is a variation
of multiple-input change fundamental-mode environmental
constraint.

III. RTL V ERIFICATION

The systems that we have been considering are heteroge-
neous systems composed of both synchronous and asynchro-
nous controllers, functional units, memory elements, and glue
logic.  RTL verification of such a system includes verification
of the protocols of communication and some timing verifica-
tion. Some of the properties to be verified are deadlock-free-
dom, input safety and monotonicity, hazard-freedom, and set-
up and hold time violations. In the following, the above proper-
ties are illustrated given some examples containing XBM con-
trollers. It is important to note that we focus on the
communication aspects of the systems and, in particular, do not
address word-level correctness properties.

A. Deadlock-freedom

In a system of communicating FSMsdeadlock occurs when
there is a subset of the FSMs that can not proceed to any next
state from their current state. In the system shown in Fig. 3,
assuming that the three shown FSMs are in the highlighted glo-
bal state with the following values for the signalsa = b = c = 0,
none of the FSMs can proceed to its next state, because each of
them is waiting for a signal that is generated by another one of
them. This kind of deadlock may or may not be dependent on
timing. For example, such a global state may only be reachable
given certain relative delays of components.Fig. 2. Example of a burst-mode specification.
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B. Input safety and fundamental-mode constraints

 An input-safe FSM is one in which no input changes when
it is not supposed to change. In a XBM controller, monotonicity
of inputs is actually an input safety constraint. In the system
shown in Fig. 4 assume that the system starts from the high-
lighted global state000, where global stateijk indicates that
FSM1 is in itsith state, FSM2 is in itsjth state and FSM3 is in its
kth state. Depending on the timing properties of the system, we
may have the two following sequence of global state changes:
Seq1 = 000, 100, 110, 111, 121 andSeq2 = 000, 100, 110, 111,
211, 221.

It can be seen that in the first case,Seq1, while FSM1 is still
in state1, c goes high and then low, violating monotonicity of
inputs. Thus, under some timing assumptions, we may have
monotonicity violation in this system.

As another example of monotonicity violation, consider the
system depicted in Fig. 5. Again, depending on the timing of
the system, we may have the two following sequence of states:
Seq1 = 000, 100, 110, 111 andSeq2 = 000, 100, 110, 210, 211.
In the case ofSeq1, while FSM1 is still in state1, a rises, violat-
ing input safety on the absence of the directed don’t carea#.
Thus again, under some timings of the system, we may have
input safety violation. However, in this case this problem is
removed by adding the directed don’t carea# to the transition
from state1 to 2 in FSM1.

Fundamental-mode constraints can be considered a more
strict form of input safety constraints. Assume that it takesx
time units for the circuit to settle after a particular state transi-
tion. Then the corresponding fundamental-mode constraint is
satisfied if no compulsory transitions occur until the FSM has
been in the corresponding next state for at leastx time units.

C. Hazard-freedom

A hazard occurs when an input signal of an enabled gate
changes before the output has stabilized into its final value; that
is, before the amount of time associated with the gate delay has
passed. Hazard-freedom should be verified for all gates in the
glue logic of the system.

D. Set-up and hold times

Currently, we consider set-up and hold-times for only mem-
ory elements like latches or flip-flops. The data input of the ele-
ment should be stable, before and after the clock/enable is
asserted, for the set-up time and hold time, respectively. This
ensures that the correct value of the data is latched. Set-up and
hold time violations should be verified for memory elements
which are either within an asynchronous component, or while
within a synchronous component, have non-synchronized input
data.

IV. M ODELING IN SMV

This section describes how we use SMV to verify RTL
timed asynchronous systems. We will first briefly introduce
SMV and then describe our modeling techniques in detail.

A. The SMV system

 The SMV system is a tool for checking whether finite state
systems satisfy specifications described in the computational
tree logic (CTL). The input language of SMV allows the
description of finite state systems that range from completely
synchronous to completely asynchronous. The logic CTL
allows a rich class of temporal properties, including safety, live-
ness, and fairness to be specified in a concise syntax. SMV uses
OBDD-based symbolic model-checking algorithm to efficiently
determine whether specifications expressed in CTL are satisfied
[9].

In SMV, system components are specified as modules con-
nected to and interacting with each other. The behavior of each
module, in terms of its response to its input stimuli, and its tim-
ing characteristics are all specified in the definition of the mod-
ule. Each module of the system, while interacting with other
modules, can be checked for the satisfaction of any of its timing
constraints, input safety, deadlock-freedom, etc., using CTL
formulas as specifications to be verified for that module.

In modeling timed systems and trying to facilitate modeling
bounded delays, we abstract each system component as a syn-
chronous finite state machine (FSMs) for which time is dis-
cretized. We encode passage of time using explicit timers for
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any component of the system which needs to sense time inter-
vals greater than one unit of time. We assume that one unit of
time is taken for any global state transition, where timer vari-
ables themselves define part of the global state. We thus assume
that the shortest event in the system takes one unit of time and
specify other delays accordingly. To make all timers progress at
the same rate, we verify the synchronous composition of the
components using the simultaneous semantics of SMV. We use
either fixed delays or delay bounds for system components,
which are discretized estimates of the real delays. This approxi-
mation of the system has not yet been proved to guarantee
absence of false positive verification results; that is it may not
be a conservative approximation. Nevertheless, we have been
able to find many design bugs in early design stages, where
exact delay bounds of the components were not yet known.

B. Modeling XBM controllers

We will use the XBM controller described in Fig. 2 to illus-
trate its model and verification in SMV. Its corresponding SMV
code is partially given in Fig. 6.

The state of the controller is represented by a scalar variable
state which can take on any of the symbolic valuess0.s6. The
inputs of the controller are defined as input parameters of the
controller module. To simplify the model, the controller outputs
(e.g.,c ande) are modeled to be dependent only on the control-
ler state; i.e., they are DEFINEd in terms ofstate. Thus, the
controllers are modeled as Moore Style FSMs. This modeling

style assumes that all output changes corresponding to a change
of state, occur at the same time, right after the state changes.
Although this is not guaranteed to be a conservative assump-
tions, but since the different output delays in our controllers
were about the same we have adopted this model. When possi-
ble the above mentioned simplification minimizes the number
of SMV variables needed to model the controller, thus minimiz-
ing BDD sizes. The state transition graph of the XBM machine
is coded into SMV by an assignment statement which assigns
next values to the variablestate depending on the current value
of state and whether the input burst of a specific state transition
has occurred. For example, in states2, whena falls, depending
on the value of the conditional signalf, the machine will have a
transition tos3 or s4.

To ensure that a network of controllers is deadlock-free, one
can verify that none of the controllers may get stuck in any of
its states. If there is deadlock, then at least two of the controllers
must be involved. In any deadlocked controller, there is a state
from which no state transition can fire. To verify the absence of
such a state, one can select any two distinct statesx andy in the
controller and verify that these two states are reachable from
any other reachable state. This can be verified by the two fol-
lowing CTL formulas:

AG EF (state = x),         AG EF (state = y)
The rationale of this result is as follows. If there exists a

deadlock statez, then ifz is not equal to eitherx or y then nei-
ther x nor y are reachable fromz and none of the above CTL
formulas are satisfied. Ifz is equal tox (y) then y (x) is not
reachable fromz; becausez is a deadlock state andx andy are
distinct states. Thus one of the above CTL formulas is not satis-
fied. Therefore, in the presence of deadlock, at least one of the
above specifications is not satisfied, making the deadlock
detectable. The above CTL formulas can also detect livelocks in
a similar fashion. The first two SPECs in the SMV code of Fig.
6 implement the deadlock-freedom verification for this exam-
ple.

Safety and monotonicity of controller inputs are also veri-
fied by proper CTL formulas in the SPEC section of the mod-
ule. Consider the machine in states1. At this state,b should
never change value. This is verified by the third SPEC,

(state = s1 -> b).
As another case,d is a directed don’t care on the transitions

from s6 to s0. Thus if at any time in states6, d has acquired the
value of its terminating edges, it should not change value again.
This is verified by the fourth SPEC,

(state = s6 & d -> AX (state = s6 -> d)).
As the final example consider states0. Here, any of the

edgesa+, b+, or d+ may occur, but once in states1, a+ should
not have occurred, and once in states5, b+ should not have
occurred. Here,a+ is a compulsory edge on the transition from
s0 to s1. We notice thata should be low at the entry point of
states1, while it can later rise. Thus we should have the last

MODULE XBM_Controller (a, b, d, f)
VAR
state : {s0, s1, s2, s3, s4, s5, s6};

ASSIGN
init (state) := s0;
next (state) := case
   ....
   state = s0 & a & d : s5;
   state = s0 & b & d : s1;
   state = s2 &!a & !f : s3;
   state = s2 &!a & f : s4;
   ...
   1 : state;
esac;

init (f) := 0;
next (f) := case
     state = s1 & next (state) = s2 : {0, 1};
     1 : f;

DEFINE
c := case

    1 : 0;

....
SPEC     AG EF (state = s1)
SPEC     AG EF (state = s2)
SPEC     state = s1 -> b
SPEC     state = s6 & d -> AX (state = s6 -> d)

Fig. 6. SMV code for XBM controller illustrated in Fig. 2.

esac;

    state = s5 := 1;

esac;

SPEC (!state = s1 -> AX (state = s1 -> !a))



indicated SPEC,
(!state = s1 -> AX (state = s1 -> !a)).
We may have similar formulas for all other similar monoto-

nicity and safety constraints. All safety and monotonicity
SPECs are automatically generated while the XBM specifica-
tion are being translated to SMV code.

Fundamental-mode constraints can be modeled similarly.
Assume the circuit has a settling-time of 1 time unit. Then, for
example, for the compulsory edgeb+ in states1, we should ver-
ify that b does not rise until the machine has been in states1 for
at least 1 time unit. This can be verified with the SPEC(state =
s1 -> AX ((state = s2)->!b)). Extensions to non-unit settling-
times are also straight-forward.

The SMV model in Fig. 6 assumes that the controller has a
fixed delay of one; that is, after an input burst has occurred, the
state will change in one time unit. To implement larger delays, a
new SMV variablewait is introduced, which may take on any
value in the specified delay range, minus 1. This variable is a
down-counter that is loaded as soon as a new state is entered
and which starts to decrement as soon as all edges of the next
input burst have occurred. A state transition happens whenever
the input burst has occurred andwait has become zero; at the
same time,wait is set to its maximum value minus 1. In this
model, for those states which have only one state transition out
of them, the transition can be fired only looking atwait = 0.
Fig. 7 illustrates the necessary changes for the case of delays
larger than 1. For a more accurate model, the outputs can be
declared as variables which change value a specified delay after
the arrival of the input burst. Thewait variable can be used to
keep track of the passage of time for all output variables.

C. Modeling Gates and Data-path Elements in SMV

We model gates and data-path elements similarly in SMV.
In our methodology, whenever the functionality of such ele-
ments can be hidden, the element is abstracted as a non-deter-
ministic delay line with bounded delays. The delay range may
also be made dependent on the current function of the element.

For example, to model a precharged domino logic functional
unit, we can consider different delay ranges for the precharge
and evaluate phases. Whenever the output of a data-path ele-
ment is going to determine the state of the whole system, it is
modeled as a nondeterministic variable, so that all possible out-
comes can be considered.

As an example, the abstract state transition diagram of an
adder is shown in Fig. 8. Theadder interacts with its controller
through a four phase communicating protocol via the input sig-
nal Prech and the output signalDone. Theadder is precharged
when thePrech input goes high, and it is assumed that the pre-
charge takes two time units. The completion of precharge is
indicated by theDone signal going low. The adder starts evalu-
ating when thePrech input goes low. The evaluation phase
takes 3 or 4 time units, and its completion is indicated by the
Done signal going high.

The modeling of theadder in SMV closely follows that of
the previous controller.Done is declared as a SMV variable
since it is actually part of the state of the component. To model
the delay of the unit an extra variablewait is used as in the case
of the controller example. To model the variable delay of the
precharge and evaluate phases, at the end of each phasewait is
non-deterministically assigned a number within the delay range
of the next phase. After the next phase starts (whenPrech
changes value and becomes equal toDone) at each following
stepwait is decremented until it becomes zero, at which point
the Done signal toggles. The authors in [6] proposed a similar
approach to model gates with bounded delays.

Assuming that the communication behavior of the overall
systems depends only on theCarry output of theadder, and not
the value of the actual output result, we can abstract away the
result, and also modelCarry as a non-deterministic variable
which may change value only on the indicated state transitions.
This will, in effect, model all possible communication behav-
iors of the system which depend on the temporal behavior of
Carry.

The following CTL formulas can verify the correct behavior
of the adder. They can verify that the four phase protocol of

VAR wait : 0..3;

ASSIGN

init (wait) := 3;
next (wait) := case
  ...
  state = s0 & a & d & wait = 0 : 3;
  state = s0 & a & d & wait > 0 : wait-1;
  ...
  1 : wait;

esac;

init (state) := s0;
next (state) := case
   ....
   state = s0 & a & d & wait = 0 : s5;
   ...
   1 : state;

esac;
Fig. 7. SMV code modifications to model bounded delays.
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communication is followed by theadder and its controller; that
is, each request onPrech line will not be removed until it is
acknowledged. They also verified that any request to the unit is
eventually acknowledged.

SPEC    AG ((Done & Prech) -> A [Prech U !Done])
SPEC    AG ((!Done & !Prech) -> A [!Prech U Done])
Hazard-freedom for gates is similarly checked by proper

CTL specifications, making sure that no input changes before
the output is set to its final value.

D. Modeling Memory Elements in SMV

For memory elements; e.g., latches or flip-flops, compliance
to the set-up and hold times may also need to be verified. Fig. 9
shows the SMV code for a flip-flop with set-up and hold times
equal to two units of time.

All the transitions of the flip-flop output,out, are synchro-
nized with the rising edge of the clock input. The flip-flop out-
put changes right afterclock rises. The four given SPECs verify
that the input of the flip-flop is stable long enough before and
after the clock rises.

V. THE TOOL FLOW

The tool flow of our verification methodology is depicted in
Fig. 10. The two tools we use are a SMV translator we created
and the SMV system developed by McMillan [9]. The SMV
translator reads a structural VHDL description of the system.
For each structural component, it attempts to read its burst-
mode specification, in XBM format. If it exists, the program
translates the specification into SMV code and automatically

generates the associated CTL formula specifications. If a burst-
mode specification does not exist, the program assumes the
module is either a data path unit or the environment. In this
case, the program searches for its description in our library of
predefined SMV modules for data path and environmental com-
ponents. The program then combines all modules into a single
file in which the user can add any additional verification tasks.
This file is fed into the SMV system which reports whether
each specifications is satisfied or not and provides a counter-
example for each specification that is not satisfied. To speed up
the run time of SMV, variable ordering heuristics of [1] are
implemented into SMV.

VI. CASE STUDIES

We have applied our verification methodology to two real-
designs. The first is a pausible clocking interface design to sup-
port efficient communication between different clock domains.
The design, illustrated, in Fig. 1, is an enhanced version of a
four-phase pausible clocking interface designed by Yun et. al
[15]. The basic idea of the design is to identify when asynchro-
nous inputs to the synchronous component are changing and if
necessary pause the clock of the synchronous system to prevent
metastability. In addition to hazard-freedom of the gates and
input safety of the burst-mode controllers FSM1 and FSM2, the
principle verification task was to test the setup and hold time
constraints on the synchronous flip-flops FF1 and FF2. Numer-
ous earlier designs were tested and problems such as deadlock,
input monotonicity, and setup-violations were discovered until
this safe design was finally achieved.

Fig. 9. SMV code for a flip-flop with set-up and hold times.

MODULE FlipFlop (clk, in1)
VAR
  out1 : boolean;
  d1 : delay (out1);

DEFINE
  out := d1.out;

ASSIGN
  init (out1) := in1;
  next (out1) := case
    !in1 = out1 & !clk & next (clk) : in1;
     1 : out1;
  esac;

SPEC AG (in1 & !clk -> AX (clk -> (in1 & AX (in1 & AX in1))))
SPEC AG (!in1 & !clk -> AX (clk -> (!in1 & AX (!in1 & AX !in1))))
SPEC AG (in1 & !clk -> AX (!in1 -> (!clk & AX (!clk & AX !clk))))
SPEC AG (!in1 & !clk -> AX (in1 -> (!clk & AX (!clk & AX !clk))))

Verification
Specifications

Structural
VHDL Description

Data Path/
Environment

Models

 SMV Translator

SMV File

SMV

Verification Reports/
Error Traces

Burst-
Mode Specs

Fig. 10: The tool flow for our verification methodology

TABLE I: VERIFICATION RUN-TIME RESULTS

Example Deadlocks No of Specs
UserTimes

Sec
Total BDD

 Nodes
Transition- Table

BDD Nodes
Reachable
 State Size

State Space
Size

Diffeq
58 21.5 12494 2758 17212 2.65e+8

✓ 58 1 10017 2748 256 2.65e+8

PCI 55 159 13725 829 3344 1.13e+8



The second example was an asynchronous differential equa-
tion solver that uses timing assumptions to reduce the control
overhead to less than 12% making the design approximately
40% faster on average than any comparable synchronous
design [14]. The design implements a well-known numerical
algorithm to solve a given differential equation. The implemen-
tation consisted of two self-timed adders, with precharge delay
between 1ns and 2ns and evaluate delay between 2ns and 4ns,
two self-timed multipliers, with precharge delay of 2ns and
evaluate delay between 5ns and 6ns, 4 associated extended
burst-mode controllers, with delay 1ns and between 4 and 12
states, one 1ns C-element for glue-logic, and one component
modeling the environment whose minimum response time is
2ns and whose maximum response time is unbounded. As a
sanity check we also verified an altered version of the design in
which we had intentionally added deadlock.

Verification and design proceeded in a ping-pong fashion.
Once our verification discovered a bug, the design was altered
and re-verified. Numerous fixes included missing DDCs, mono-
tonicity violations under particular timing assumptions, dead-
lock, etc. Because many of the bugs were due to particular
combinations of data-dependent delays in the data path we con-
cluded that the bugs may have been easily missed by simula-
tion. In total the verifier discovered over 10 errors that we had
not initially considered.

We used SMV version 2.4 on a SPARCStation 5 with 32
Megabytes of memory. We manually applied a variable order-
ing heuristic described by Aziz et al. [1] in order to find a good
variable ordering. Also, we used the option to compute the
reachable state space before checking the specifications which
made dramatic improvements in run-times. The overall run-
times, depicted in Table I, demonstrate that our verification
methodology is computationally quite practical for interesting
designs.

VII. CONCLUSION

This paper describes a tool-supported verification methodol-
ogy for RTL asynchronous and heterogeneous hardware sys-
tems whose correctness depend on timing assumptions. The
paper illustrates that many desired system properties relate to
correctness of the timed hardware protocols. The paper demon-
strates that the application of symbolic model checking using
discretized delays is practical for two real-life, non-regular sys-
tems of significant size, having state spaces of over 108 states.
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