
Flow Graph Balancing for Minimizing the Required Memory Bandwidth

Sven Wuytack, Francky Catthoor, Gjalt de Jong, Bill Lin, Hugo De Man

Abstract

In this paper we present the problem of flow graph bal-
ancing for minimizing the required memory bandwidth. Our
goal is to minimize the required memory bandwidth within
the given cycle budget by adding ordering constraints to the
flow graph. This allows the subsequent memory allocation
and assignment tasks to come up with a cheaper memory ar-
chitecture with less memories and memory ports. The effect
of flow graph balancing is shown on an example. We show
that it is important to take into account which data is being
accessed in parallel, instead of only considering the num-
ber of simultaneous memory accesses. This leads to the op-
timization of a conflict graph.

1. Introduction

Many important applications deal with large amounts of
data. This is the case both in multi-dimensional signal pro-
cessing applications like video and image processing, which
handle indexed signals in the context of loops, and in com-
munication network protocols, which handle large sets of
records organized in tables. For this type of applications,
typically a (very) large part of the area cost is due to mem-
ory units. Also the power is heavily dominated by the stor-
age and transfers [4, 7]. Hence, we believe that the domi-
nating factor in the system level design is provided by the
organization of the global communication and data storage,
and related algorithmic transformations. Therefore we have
proposed a design methodology in which the memory ar-
chitecture is optimized as a first step [14], before doing the
detailed scheduling, and data-path and controller synthesis.
Support for this is under development in our system-level
exploration environment ATOMIUM [9].

Flow graph balancing (FGB) is one of the main tasks
in our High Level Memory Management (HLMM) script.
It is executed prior to the more conventional memory al-
location/assignment tasks [1, 6, 12]. The goal of the task
is to minimize the required memory bandwidth within the
given cycle budget, by adding ordering constraints to the
flow graph. This allows the memory allocation/assignment

tasks to come up with a memory architecture with a small
number of memories and memory ports.

The rest of the paper is organized as follows. Section 2
presents the related work. In Section 3 our flow graph bal-
ancing methodology is presented. Section 4 illustrates the
proposed methodology on a representative example. Sec-
tion 5 presents the proposed cost function for optimizing the
conflict graph. Section 6 shows preliminary results obtained
with a prototype tool. The conclusions are in Section 7.

2. Related Work

Several problems are related to flow graph balancing for
minimizing the required memory bandwidth.

First, there is the register allocation domain which is
fairly well understood by now. A nice literature overview
of this domain can be found in [13]. The techniques used
here start from a fully scheduled flow graph and are scalar-
oriented. Many of these techniques construct a scalar con-
flict or compatibility graph and solve the problem using
graph coloring or clique partitioning. This conflict graph is
fully determined by the schedule. This means that no effort
is spent in trying to come up with an optimal conflict graph.

In the less explored background memory allocation and
assignment domain, the current techniques start from a
given schedule [6], or perform first a bandwidth estimation
step [1] which is a kind of crude ordering that doesn’t really
optimize the conflict graph either. These techniques have to
operate on groups of signals instead of on scalars to keep the
complexity acceptable, e.g. the stream model of Phideo [6]
or the basic sets in the ATOMIUM environment [1].

In the scheduling domain, the techniques optimizing for
the number of resources given the cycle budget are of inter-
est to us. Also here most techniques operate on the scalar
level, e.g. [10, 15]. The only exceptions currently are the
Phideo stream scheduler [16] and the Notre-Dame rota-
tion scheduler [11]. Many of these techniques try to reduce
the memory related cost by estimating the required number
of registers for a given schedule. Only few of them try to
reduce the required memory bandwidth, which they do by
minimizing the number of simultaneous memory accesses
[15, 16]. They do not take into account which data is be-
ing accessed simultaneously. Also no real effort is spent to

1

optimize the memory access conflict graphs such that subse-
quent register/memory allocation tasks can do a better job.

The main difference between our flow graph balancing
and the related work discussed here is that we try to min-
imize the required memory bandwidth in advance by opti-
mizing the access conflict graph for groups of scalars within
a given cycle budget. We do this by putting ordering con-
straints on the flow graph, taking into account which mem-
ory accesses are being put in parallel (i.e., will show up as
a conflict in the access conflict graph). Also, our techniques
operate on groups of scalars instead of on individual scalars.

3. Flow Graph Balancing

Conflict graphs are crucial to flow graph balancing. They
are well known from register [13] and other assignment
problems. However, since we operate on groups of scalars,
we consider conflict graphs where the nodes correspond to
basic groups (cfr. Subsection 3.1). When two basic groups
are in conflict this means that they have to be assigned either
to two different memories, or to a memory with at least two
ports during the memory assignment phase.

The more conflicts there are between basic groups, the
less freedom there is for the memory allocation/assignment
tasks. Experiments have shown that this typically results in
a higher cost of the memory architecture. Therefore, we will
define a cost function for conflict graphs (cfr. Section 5) re-
flecting this. The idea of flow graph balancing is then to
come up with a conflict graph with minimal cost such that
it is still possible later on (after memory management) to
schedule the flow graph within the cycle budget.

When multi-port memories are allowed in the memory
architecture, it becomes useful to extend the conflict graph
with more information to decide on memory types.

This annotation includes the type of conflicts that can oc-
cur. More specifically, one has to know for every conflict
the maximum number of simultaneous read, write, and total
number of memory accesses (i.e., read and write) that can
occur. This informationallows to decide which type of ports
(Read, Write, or Read-Write) are needed on the multi-port
memories when certain basic groups are assigned to it.

Secondly, when more than two memory accesses are
scheduled in the same time slot, this results in a conflict be-
tween more than two basic groups. This type of conflict
can be represented in the conflict graph by hyper edges, i.e.,
edges between more than two nodes.

Finally, it is also possible that a basic group is accessed
several times in the same time slot, which results in a self
conflict, represented by a self-loop on the corresponding
node. Such a conflict forces a multi-port memory for that
basic group.

All these extensions lead to the definition of the ECG
which is the main output of FGB (cfr. Subsection 3.4).

3.1. Signal Sets: Basic Groups

The memory assignment task should assign groups of
scalars to background memories to deal with realistic appli-
cations. We call these groups of scalars basic groups (BG).
They form a partitioning of all data that has to be stored in
background memory. This partitioning is decided earlier in
our script, and is done in such a way that for every memory
access (read or write) in the flow graph it is known which ba-
sic group is being accessed. In the case of multi-dimensional
signal processing applications, the basic groups are (parts
of) multi-dimensional arrays (cfr. [1]). The flow graph bal-
ancing and memory allocation tasks operate on the same ba-
sic groups as the memory assignment task [1, 3].

3.2. Input: Flow graph on the BG level

The main input of FGB is a flow graph at the BG level.
In this flow graph there are two types of nodes: primitive
nodes representing a single memory access to a given BG,
and nodes that contain a subgraph that has to be repeated a
number of times. These nodes have attributes, such as the
number of times the node has to be repeated in time, and the
period of the repetition expressed as a number of cycles.

3.3. Flow Graph Balancing Script

This subsection summarizes the proposed flow graph bal-
ancing script. The input of FGB consists of a flow graph at
the BG level and a characterization of all the basic groups,
which it gets from the data flow analysis task, as well as the
cycle budget in which the flow graph has to be scheduled.
The different tasks in our FGB script are:

1. Initial IO-profile assignment
During memory assignment every BG will be assigned
to a memory. Every memory has its characteristics on
when the inputs have to be provided and when the out-
puts will be ready (i.e., latency of the memory). This
information is formalized in a memory IO-profile. Be-
cause the IO-profile plays an important role during the
ordering of the memory accesses (especially the laten-
cies), it has to be taken into account as soon as possible.
Therefore we assign an IO-profile to every BG at the
beginning of FGB. Later in the script this assignment
will be reconsidered.

2. Pre-balancing for high-level in-place mapping
When part of the data is only temporary needed and can
be overwritten as soon as it has been consumed for the
last time, the order in which the different BGs are pro-
duced has a large effect on the required storage space
due to in-place mapping considerations (cfr. [14]). This
step inserts sequence edges in the flow graph at nodes

2

where this leads to a large reduction in the required
number of storage locations.

3. Conflict cost calculation
Because the BGs have different characteristics, some
of them fit better together in a common memory than
others. This leads to the introduction of pairwise basic
group conflict costs between every two basic groups in
the application (cfr. Section 5), such that during Con-
flict Directed Ordering (next step in the script) cheaper
conflicts can be preferred over more costly ones.

4. Conflict Directed Ordering (CDO)
This is the main step of our script. During CDO it is
decided which memory accesses will be put in parallel.
This is done globally and in such a way that the result-
ing conflict graph is as cheap as possible. The decisions
are based on the conflict costs and probability that cer-
tain conflicts will occur.

5. IO-profile assignment
This task examines the freedom left in the ordering of
the memory accesses after Conflict Directed Ordering
and uses it to optimize the latency values of the IO-
profiles assigned to the different BGs.

6. Extended conflict graph (ECG) construction
As a final step, the ECG is constructed. It is the pri-
mary input for the next tasks in our HLMM script [9]:
memory allocation and assignment [1, 3].

The output of the FGB task are the ECG, the flow graph
with the sequence edges added during pre-balancing for in-
place, and the IO-profiles of the different basic groups.

3.4. Output: Extended Con
ict Graph

The ECG represents the minimum amount of access
conflicts between basic groups, such that it is still possible
to find a schedule later on that fits within the cycle budget:

Definition: An extended conflict graph (ECG)
G(V; S;E;H) is an undirected hyper graph, where
the nodes (V) represent basic groups, and the self-edges
(S), binary edges (E), and hyper edges (H) represent
access conflicts between the basic groups. Every edge
t 2 S [E [H is labeled with three numbers called Rt,
Wt, and RWt. Where Rt, Wt, and RWt are respectively:
the maximum number of simultaneous read operations, the
maximum number of simultaneous write operations, and
the maximum number of simultaneous memory accesses
(i.e., read and write operations) that can occur for the given
conflict during the execution of the algorithm.

With the ECG as input, the memory allocation and as-
signment tasks can come up with a memory architecture that
is optimal in terms of area and/or power cost. When all con-
straints contained in the ECG have been respected by these
tasks, there will be enough memory bandwidth available to
schedule the application within the specified cycle budget.

4. Illustration of the Proposed Methodology

In this section, the effect of flow graph balancing on the
outcome of the memory allocation/assignment tasks is illus-
trated with an example. Several partial orderings will be
proposed to illustrate the effect of flow graph balancing on
the area cost of the memory architecture (after the memory
allocation/assignment tasks). Area figures are given for a
1.2 �m CMOS technology. The values for the single port
memories were obtained using an SRAM generator.The val-
ues for multi-port memories were obtained by adjusting the
values for single port memories with the port dependent fac-
tor of Mulder’s area model for on-chip memories [8]. The
power cost is not taken into account in this example. The
code and basic group information of the example is shown
in Figure 1. The cycle budget is 550 cycles.

for (i = 1 to 50)

tmp = input;

A[2*i - 1] = tmp;

A[2*i] = -tmp;

for (j = 1 to 50)

B[j] = A[101 - j];

G[j] = B[j] + A[2*j];

for (k = 1 to 50)

C[2*k] = B[51 - k];

C[2*k - 1] = B[k];

for (l = 1 to 50)

D[l] = C[l] + A[l] + B[l];

for (m = 1 to 150)

E[m] = m^2;

for (n = 1 to 50)

F[n] = C[n] + C[2*n] + E[3*n];

A[]: 100 words of 8 bit

B[]: 50 words of 24 bit

C[]: 100 words of 8 bit

D[]: 100 words of 24 bit

E[] 150 words of 24 bit

F[]: 50 words of 24 bit

G[]: 50 words of 8 bit

Cycle budget = 550 cycles

Figure 1.

Every array in the code corresponds to one basic group.
It is assumed that all produced basic groups are still needed
at the end of the code fragment, such that no in-place opti-
mization [9] can be performed. Notice that in the different
stages we show structured code, whereas the technique re-
ally works on a (hierarchical) flow graph that corresponds
to this code. We believe, however, that it is more clear to
show the result of the FGB on the code rather than in flow
graph format. One problem with this representation is that
one could think that after FGB the code is fully ordered
(or scheduled). This is not true. Only the constraints con-
tained in the ECG are imposed. Every schedule that is com-
patible with it is still allowed. This means that FGB only

3

introduces a partial ordering, not a full ordering or sched-
ule. After memory allocation and assignment it is possi-
ble that basic groups that were originally not in conflict are
stored in different memories or even in a multi-port mem-
ory. In this case, these two basic groups can be accessed
in parallel during the scheduling phase. So, after memory
allocation/assignment there is even more freedom left for
the scheduler, because it can come up with any schedule
that is compatible with the memory architecture and basic
group to memory assignment. In the figures depicting the
ECGs, the hyper edges are represented in dashed lines, and
the edge’s Rt, Wt, and RWt values are represented in the
format: Rt=Wt=RWt.

4.1. Partial Ordering 1

As a first experiment, we have maintained the original
procedural execution order as specified in the algorithm. As
it is often believed that simply balancing the number of si-
multaneous read/write leads to good results [15], we have
given more cycles to the expressions that have to read many
operands such that these memory accesses can be distributed
over several time slots. In order to do this within the cy-
cle budget, we had to reduce the number of cycles available
to other expressions. For the m loop, this was done by un-
rolling it with a factor of two, such that two expressions can
be scheduled in parallel. The resulting code and correspond-
ing ECG is shown in Figure 2. The array signals are accesses
to background memory. The tmp variables are registers (and
therefore not in the ECG). The ECG can be obtained from
the code by assuming that each line in the code has to be ex-
ecuted in one clock cycle. Remark that the number of simul-
taneous memory accesses is fairly well balanced.

A good memory architecture that is compatible with this
ECG is also given in Figure 2. The area cost is 25.529mm2.
It contains two 2-port memories, which consume a large part
of the area. The 2-port memories are a direct consequence
of the two self loops in the ECG. Note that these memo-
ries could be combined into one 2-port memory, as can be
seen in the ECG because there is no hyper edge between ba-
sic groups A[], C[], and E[], which means that they can be
stored together in a 2-port memory. However, this would
waste a lot of bits because E[] has a much larger bitwidth
than the other two basic groups. It is clear that self loops in
the ECG are costly and have to be avoided whenever possi-
ble.

4.2. Partial Ordering 2

In this experiment, we have derived an ECG directly
from the procedural execution order of the original code
(Figure 1), by assuming that every line has to be executed in
one clock cycle. We did this to show that it is not necessarily

for (i = 1 to 50)

tmp = input;

A[2*i - 1] = tmp; A[2*i] = -tmp;

for (j = 1 to 50)

B[j] = A[101 - j];

G[j] = B[j] + A[2*j];

for (k = 1 to 50)

C[2*k] = B[51 - k];

C[2*k - 1] = B[k];

for (l = 1 to 50)

tmp = C[l] + A[l];

D[l] = tmp + B[l];

for (m = 1 to 75)

E[2*m - 1] = (2*m - 1)^2; E[2*m] = (2*m)^2;

for (n = 1 to 50)

tmp = C[n] + C[2*n];

F[n] = tmp + E[3*n];

A

B

C

D

EF

G

2/1/22/2/2

1/2/2
1/1/2

1/2/2

1/1/2

2/2/2

2/1/21/2/2

1/2/2

2/2/3

150x24b

E

200x8b

A

C

100x24b
B
F

100x24b
G
D

11.030 mm 5.131 mm 4.683 mm 4.683 mm2 2 2 2

Figure 2. Partial ordering 1.

bad to have a large unbalance in the number of simultaneous
read/write operations. The resulting ECG and memory allo-
cation/assignment scheme are shown in Figure 3. Remark
that this time there are less self loops in the ECG. As a re-
sult the total area cost is now reduced to 17.153 mm2, de-
spite the unbalance.

The reason is that it is also very important which mem-
ory accesses are put in parallel, something that has not been
incorporated in previous work.

4.3. Partial Ordering 3

In the third experiment, we try to avoid the self loops in
the ECG and at the same time reduce the maximum num-
ber of simultaneous memory accesses. We did this by apply-
ing some optimizing loop transformations [9]. More specifi-
cally, we have applied loop splitting(loopm), body splitting
(loop j), body merge (loop i and part of loop m), loop re-
ordering (part of loop m and part of loop j), and loop body
reordering (loop n) to obtain an execution order shown in
Figure 4.

The area cost is 16.292 mm2, about 36% less than the
first partial ordering. The architecture contains many (1-
port) memories. This is caused by the size of the maxi-
mum clique1 in the conflict graph (i.e., the graph obtained

1A complete subgraph is a subgraph in which every node is connected
to every other node in the subgraph. A clique is a complete subgraph that is
not contained in any other (larger) complete subgraph. A clique is a maxi-
mum clique of a graph when there is no other clique in the graph that con-
tains more nodes.

4

A

B

C

D

EF

G

2/1/22/1/2

1/1/2
1/1/2

2/1/3

1/1/2

3/1/3

2/1/2

1/1/2

2/1/2

1/1/2

2/1/2

2/1/3

3/1/3

2/1/3

2/1/3

3/1/4
2/1/3

3/1/4

250x24b

E

G

D 100x24b
B
F

100x8b

C

100x8b

A

8.284 mm 4.683 mm 2.730 mm 1.456 mm2 2 2 2

Figure 3. Partial ordering 2.

by removing the hyper and self edges from the ECG). The
size of the maximum clique of this graph (fA;B;Cg and
fB;C;Dg) is 3, which means that we need at least 3 1-port
memories in a memory architecture that consists entirely out
of 1-port memories. However, because of the difference in
bitwidth it turned out to be more cost effective to introduce
a fourth memory in this case.

4.4. Partial Ordering 4

In this final experiment, we took the ordering of the pre-
vious experiment, with a little change in the ordering of the
body in the loop producing D[]. The result is that the size
of the maximum clique now becomes 2 instead of 3. This
means that less memories are needed in the memory archi-
tecture. The results are shown in Figure 5. The area cost
is 13.379 mm2. This is a much better result than the one
obtained in the first experiment: the area is about a factor 2
less; it contains only 2 memories instead of 4; and the total
number of memory ports is 2 compared to 6, which means
less interconnect.

This once more shows that it is very important to take into
account which memory accesses are done in parallel. Even
small changes can have large consequences. This makes it
particularly difficult to optimize this by hand for large real
life applications.

for (i = 1 to 50)

tmp = input;

A[2*i - 1] = tmp; E[2*i - 1] = (2*i - 1)^2;

A[2*i] = -tmp; E[2*i] = (2*i)^2;

for (j = 1 to 50)

B[j] = A[101 - j];

for (k = 1 to 50)

C[2*k] = B[51 - k];

C[2*k - 1] = B[k];

for (l = 1 to 50)

tmp = C[l] + A[l];

D[l] = tmp + B[l];

for (m = 1 to 50)

tmp = B[m] + A[2*m];

G[m] = tmp; E[m + 100] = (m + 100)^2;

for (n = 1 to 50)

tmp1 = C[n]; tmp2 = E[3*n];

F[n] = tmp1 + C[2*n] + tmp2;

A

B

C

D

EF

G

1/1/22/1/2

1/1/2

2/1/1

2/1/2

1/1/2

2/1/2

1/2/2

1/2/2

300x24b

E

F

D

C

G

150x8b

B
50x24b A

100x8b

9.485 mm 3.483 mm 1.868 mm 1.456 mm2 2 2 2

Figure 4. Partial ordering 3.

5. Cost Function

To leave as much freedom as possible for the memory al-
location/assignment tasks, it is important to come up with an
ECG with as few conflicts as possible. Not all conflicts are
equally costly, though. For instance, when two basic groups
have a large difference in bitwidth, it is not that bad that they
have to be stored in different memories, because this saves
bits that would otherwise be wasted. This means that such
a conflict has to be prefered compared to a conflict between
basic groups with equal bitwidth. This justifies the introduc-
tion of pairwise basic group conflict costsCe corresponding
to the binary edges e 2 E of an ECGG(V; S;E;H). These
pairwise conflict costs are calculated based on the properties
of the two basic groups involved. This is an important dif-
ference with the scalar oriented techniques, where all scalars
are considered to be more or less equal.

We propose the following cost function for optimizing
the extended conflict graph: Cost(G(V; S;E;H)) = � �P

s2S
RWs+��MaxCliqueSize(G(V;E))+
 �

P
e2E

Ce

The first term penalizes self-loops in the ECG which re-
duces the number and size of multi-port memories in the fi-
nal memory architecture, the second term reduces the num-
ber of required memories, and the last term minimizes the to-
tal weighted conflict cost of the extended conflict graph. The
hyper edges are not included in the cost function because
FGB comes before memory allocation/assignment. There-

5

for (i = 1 to 50)

tmp = input;

A[2*i - 1] = tmp; E[2*i - 1] = (2*i - 1)^2;

A[2*i] = -tmp; E[2*i] = (2*i)^2;

for (j = 1 to 50)

B[j] = A[101 - j];

for (k = 1 to 50)

C[2*k] = B[51 - k];

C[2*k - 1] = B[k];

for (l = 1 to 50)

tmp1 = A[l]; tmp2 = B[l];

D[l] = C[l] + tmp1 + tmp2;

for (m = 1 to 50)

tmp = B[m] + A[2*m];

G[m] = tmp; E[m + 100] = (m + 100)^2;

for (n = 1 to 50)

tmp1 = C[n]; tmp2 = E[3*n];

F[n] = tmp1 + C[2*n] + tmp2;

A

B

C

D

EF

G

1/1/22/1/2

1/1/2

2/1/1

2/1/2

1/2/2

1/2/2

350x24b

E

B

F

D
A

C

G

250x8b

10.685 mm 2.694 mm2 2

Figure 5. Partial ordering 4.

fore it is not known at this stage whether a conflict will be re-
solved by assigning the conflicting basic groups to different
memories or not. Only when they are assigned to a multi-
port memory, the Rt, Wt, and RWt values for t 2 E [H

come into play. They contain vital information for the mem-
ory allocation and assignment tasks, though.

6. Results

Experiments with a prototype tool (that cannot yet han-
dle loops) on a realistic ATM application [5] with 14 basic
groups and 38 read/write operations showed some promis-
ing results. For a cycle budget of 17, the conflict graph ob-
tained with our FGB technique contained 13 conflicts and
had a maximum clique size of 3, which resulted in an opti-
mal memory allocation of 3 one-port memories. The same
application scheduled with Synopsys’ Behavioral Compiler
resulted in a conflict graph with 24 conflicts and a maximum
clique of size 5, requiring 5 one-port memories for the same
cycle budget.

7. Conclusions

In this paper we have shown that it is important to do a
proper flow graph balancing to arrive at a good solution for
the memory allocation/assignment problem. We have also

shown that this flow graph balancing has to be done at the
level of groups of scalars in such a way that the resulting
conflict graph is optimized. This means that one has to take
into account which data is being accessed in parallel, instead
of onlyconsidering the number of parallel memory accesses.
Currently, we have a prototype tool that shows already some
very promising results, and we are working on the full im-
plementation of the proposed technique.

References

[1] F.Balasa, F.Catthoor, H.De Man, “Dataflow-driven memory allo-
cation for multi-dimensional processing systems”, Proc. IEEE Int.
Conf. Comp. Aided Design, San Jose CA, Nov. 1994.

[2] F.Balasa, F.Catthoor, H.De Man, “Background memory area es-
timation for multi-dimensional signal processing systems”, IEEE
Trans. on VLSI Systems, vol. 3, no. 2, pp. 157-172, June 1995.

[3] F.Balasa, “Background memory allocation for multi-dimensional
signal processing”,Ph.D. dissertation, IMEC, Leuven, Nov. 1995.

[4] F.Catthoor, W.Geurts, H.De Man, “Loop transformation method-
ology for fixed-rate video, image and telecom processing applica-
tions”, Proc. Intnl. Conf. on Applic.-Spec. Array Processors, San
Francisco, CA, pp.427-438, Aug. 1994.

[5] G.de Jong, B.Lin, C.Verdonck, S.Wuytack, F.Catthoor, “Back-
ground Memory Management for Dynamic Data Structures In-
tensive Processing Systems”, Proc. Int. Conference on CAD, San
Jose, CA, pp.515-520, Nov. 1995.

[6] P.Lippens, J.van Meerbergen, W.Verhaegh, A.van der Werf, “Al-
location of Multiport Memories for Hierarchical Data Streams”,
Proc. IEEE Int. Conf. Comp.-Aided Design, pp. 728-735, Santa
Clara, Nov. 1993.

[7] T.Meng, B.Gordon, E.Tsern, A.Hung, “Portable video-on-demand
in wireless communication”,special issue on “Low power design”
of the Proc. of the IEEE, Vol. 83, No. 4, pp. 659-680, Apr. 1995.

[8] J.M.Mulder, N.T.Quach, M.J.Flynn, “An Area Model for On-Chip
Memories and its Application”, IEEE J. Solid-state Circ., Vol.26,
No.1, pp.98-105, Feb. 1991.

[9] L.Nachtergaele, F.Catthoor, F.Balasa, F.Franssen, E.De Greef,
H.Samsom, H.De Man, “Optimization of memory organization
and partitioning for decreased size and power in video and image
processing systems”, IEEE Int’l Workshop on Memory Technol-
ogy, Design and Testing, pp. 82-87, San Jose CA, Aug. 1995.

[10] P.Paulin, J.Knight, “Force-directed scheduling for the behavioral
synthesis of ASIC’s”, IEEE Trans. on CAD, Vol. 8, No. 6, pp. 661-
679, June 1989.

[11] N.Passos, E.Sha, “Push-up scheduling: optimal polynomial-time
resource constrained scheduling for multi-dimensional applica-
tions”, Proc. IEEE Int. Conf. Comp. Aided Design, San Jose CA,
pp.588-591, Nov. 1995.

[12] L.Ramachandran, D.Gajski, V.Chaiyakul, “An algorithm for array
variable clustering”, Proc. European Design and Test Conf., pp.
262-266, Paris, Mar. 1994.

[13] L.Stok, “Data path synthesis”, INTEGRATION, the VLSI journal,
Vol 18, pp. 1-71, June 1994.

[14] I.Verbauwhede, F.Catthoor, J.Vandewalle, H.De Man, “Back-
ground memory management for the synthesis of algebraic algo-
rithms on multi-processor DSP chips”, Proc. VLSI’89, Int. Conf.
on VLSI, Munich, Germany, pp. 2098-218, Aug. 1989.

[15] W.Verhaegh, P.Lippens, E.Aarts, J.Korst, J.van Meerbergen,
A.van der Werf, “Improved Force-Directed Scheduling in High-
Throughput Digital Signal Processing”, IEEE Transactions on
CAD and Systems, Vol. 14, no 8, Aug. 1995.

[16] W.Verhaegh, “Multidimensional Periodic Scheduling”, Ph.D. dis-
sertation, Eindhoven University of Technology, Oct. 1995.

6

	CD-ROM Home Page
	ISSS Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

