Flow Graph Balancing for Minimizing the Required Memory Bandwidth

Sven Wuytack, Francky Catthoor, Gjalt de Jong, Bill Lin, Hugo De Man

Abstract

In this paper we present the problem of flow graph bal-
ancing for minimizng the required memory bandwidth. Our
goal is to minimize the required memory bandwidth within
the given cycle budget by adding ordering constraintsto the
flow graph. This allows the subsequent memory allocation
and assignment tasksto come up with a cheaper memory ar-
chitecture with less memories and memory ports. The effect
of flow graph balancing is shown on an example. We show
that it isimportant to take into account which datais being
accessed in paralld, instead of only considering the num-
ber of simultaneous memory accesses. Thisleads to the op-
timization of a conflict graph.

1. Introduction

Many important applications deal with large amounts of
data. Thisisthe case both in multi-dimensional signal pro-
cessing applicationslikevideo and image processing, which
handle indexed signalsin the context of loops, and in com-
munication network protocols, which handle large sets of
records organized in tables. For this type of applications,
typicaly a (very) large part of the area cost is due to mem-
ory units. Also the power is heavily dominated by the stor-
age and transfers [4, 7]. Hence, we bdlieve that the domi-
nating factor in the system level design is provided by the
organi zation of the global communication and data storage,
and related a gorithmictransformations. Therefore we have
proposed a design methodology in which the memory ar-
chitecture is optimized as afirst step [14], before doing the
detailed scheduling, and data-path and controller synthesis.
Support for this is under development in our system-level
exploration environment ATOMIUM [9].

Flow graph baancing (FGB) is one of the main tasks
in our High Level Memory Management (HLMM) script.
It is executed prior to the more conventiona memory a-
location/assignment tasks [1, 6, 12]. The goal of the task
is to minimize the required memory bandwidth within the
given cycle budget, by adding ordering constraints to the
flow graph. This alows the memory allocation/assignment

tasks to come up with a memory architecture with a small
number of memories and memory ports.

The rest of the paper is organized as follows. Section 2
presents the related work. In Section 3 our flow graph bal-
ancing methodology is presented. Section 4 illustrates the
proposed methodology on a representative example. Sec-
tion 5 presents the proposed cost functionfor optimizing the
conflict graph. Section 6 showspreliminary resultsobtai ned
with a prototypetool. The conclusions arein Section 7.

2. Related Work

Several problems are related to flow graph balancing for
minimizing the required memory bandwidth.

First, there is the register allocation domain which is
fairly well understood by now. A nice literature overview
of thisdomain can be found in [13]. The techniques used
here start from a fully scheduled flow graph and are scalar-
oriented. Many of these techniques construct a scalar con-
flict or compatibility graph and solve the problem using
graph coloring or clique partitioning. This conflict graph is
fully determined by the schedule. This means that no effort
isspent in trying to come up with an optimal conflict graph.

In the less explored background memory allocation and
assignment domain, the current techniques start from a
given schedule [6], or perform first a bandwidth estimation
step [1] whichisakind of crude ordering that doesn’t really
optimize the conflict graph either. These techniques haveto
operate on groupsof signalsinstead of on scalars to keep the
complexity acceptable, e.g. thestream model of Phideo [6]
or the basic setsinthe ATOMIUM environment [1].

In the scheduling domain, the techniques optimizing for
the number of resources given the cycle budget are of inter-
est to us. Also here most techniques operate on the scalar
level, eg. [10, 15]. The only exceptions currently are the
Phideo stream scheduler [16] and the Notre-Dame rota
tion scheduler [11]. Many of these techniques try to reduce
the memory related cost by estimating the required number
of registers for a given schedule. Only few of them try to
reduce the required memory bandwidth, which they do by
minimizing the number of simultaneous memory accesses
[15, 16]. They do not take into account which data is be-
ing accessed simultaneously. Also no real effort is spent to

optimi zethe memory access conflict graphs such that subse-
guent register/memory allocation tasks can do a better job.
The main difference between our flow graph baancing
and the related work discussed here is that we try to min-
imize the required memory bandwidth in advance by opti-
mi zing the access conflict graph for groups of scalars within
a given cycle budget. We do this by putting ordering con-
straints on the flow graph, taking into account which mem-
ory accesses are being put in pardléd (i.e., will show up as
aconflict in the access conflict graph). Also, our techniques
operate on groupsof scalarsinstead of onindividual scalars.

3. Flow Graph Balancing

Conflict graphsare crucia to flow graph balancing. They
are well known from register [13] and other assignment
problems. However, since we operate on groups of scaars,
we consider conflict graphs where the nodes correspond to
basic groups (cfr. Subsection 3.1). When two basic groups
arein conflict thismeansthat they haveto be assigned either
to two different memories, or to amemory with at least two
ports during the memory assignment phase.

The more conflicts there are between basic groups, the
less freedom there is for the memory alocation/assignment
tasks. Experiments have shown that thistypically resultsin
ahigher cost of thememory architecture. Therefore, wewill
define acost functionfor conflict graphs (cfr. Section 5) re-
flecting this. The idea of flow graph balancing is then to
come up with a conflict graph with minimal cost such that
it is till possible later on (after memory management) to
schedule the flow graph within the cycle budget.

When multi-port memories are adlowed in the memory
architecture, it becomes useful to extend the conflict graph
with more information to decide on memory types.

Thisannotation includesthetype of conflictsthat can oc-
cur. More specifically, one has to know for every conflict
the maximum number of simultaneousread, write, and total
number of memory accesses (i.e., read and write) that can
occur. Thisinformationallowsto decide which typeof ports
(Read, Write, or Read-Write) are needed on the multi-port
memories when certain basic groups are assigned to it.

Secondly, when more than two memory accesses are
scheduled in the same time dlot, thisresultsin a conflict be-
tween more than two basic groups. This type of conflict
can berepresented in the conflict graph by hyper edges, i.e.,
edges between more than two nodes.

Finally, it is also possible that a basic group is accessed
several times in the same time dlot, which resultsin a self
conflict, represented by a self-loop on the corresponding
node. Such a conflict forces a multi-port memory for that
basic group.

All these extensions lead to the definition of the ECG
which isthe main output of FGB (cfr. Subsection 3.4).

3.1. Signal Sets: Basic Groups

The memory assignment task should assign groups of
scalars to background memories to deal with redistic appli-
cations. We call these groups of scaars basic groups (BG).
They form a partitioning of al data that has to be stored in
background memory. This partitioningis decided earlier in
our script, and isdonein such away that for every memory
access (read or write) intheflow graphit isknownwhich ba-
sicgroupisbeing accessed. Inthecase of multi-dimensional
signal processing applications, the basic groups are (parts
of) multi-dimensional arrays (cfr. [1]). Theflow graph bal-
ancing and memory allocation tasks operate on the same ba-
sic groups as the memory assignment task [1, 3].

3.2. Input: Flow graph on the BG level

The main input of FGB is aflow graph at the BG levdl.
In this flow graph there are two types of nodes. primitive
nodes representing a single memory access to a given BG,
and nodes that contain a subgraph that has to be repeated a
number of times. These nodes have attributes, such as the
number of timesthe nodehasto be repeated in time, and the
period of the repetition expressed as a number of cycles.

3.3. Flow Graph Balancing Script

Thissubsection summarizes the proposed flow graph bal -
ancing script. The input of FGB consists of aflow graph at
the BG level and a characterization of al the basic groups,
which it getsfrom the data flow analysistask, aswell as the
cycle budget in which the flow graph has to be schedul ed.
The different tasks in our FGB script are:

1. Initial IO-profile assignment

During memory assignment every BG will be assigned
to amemory. Every memory has its characteristics on
when theinputshave to be provided and when the out-
puts will be ready (i.e., latency of the memory). This
informationisformalized in amemory 10-profile. Be-
cause the 10-profile plays an important role during the
ordering of the memory accesses (especially the laten-
cies), it hasto betakeninto account as soon aspossible.
Therefore we assign an |O-profile to every BG at the
beginning of FGB. Later in the script this assignment
will bereconsidered.

2. Pre-balancing for high-level in-place mapping
When part of thedataisonly temporary needed and can
be overwritten as soon as it has been consumed for the
last time, the order in which the different BGs are pro-
duced has alarge effect on the required storage space
duetoin-place mapping considerations(cfr.[14]). This
step inserts sequence edges in the flow graph at nodes

where this leads to a large reduction in the required
number of storage locations.

3. Conflict cost calculation

Because the BGs have different characteristics, some
of them fit better together in a common memory than
others. Thisleadsto theintroductionof pairwisebasic
group conflict costs between every two basic groupsin
the application (cfr. Section 5), such that during Con-
flict Directed Ordering (next step in the script) cheaper
conflicts can be preferred over more costly ones.

4. Conflict Directed Ordering (CDO)
Thisisthe main step of our script. During CDO it is
decided which memory accesses will beputinparalld.
Thisisdone globally and in such away that the result-
ing conflict graphisas cheap aspossible. Thedecisions
are based on the conflict costs and probability that cer-
tain conflicts will occur.

5. 1O-profile assignment
This task examines the freedom left in the ordering of
the memory accesses after Conflict Directed Ordering
and uses it to optimize the latency values of the 10-
profiles assigned to the different BGs.

6. Extended conflict graph (ECG) construction
As afinal step, the ECG is constructed. It is the pri-
mary input for the next tasks in our HLMM script [9]:
memory allocation and assignment [1, 3].

The output of the FGB task are the ECG, the flow graph
with the sequence edges added during pre-balancing for in-
place, and the 1O-profiles of the different basic groups.

3.4. Output: Extended Conflict Graph

The ECG represents the minimum amount of access
conflicts between basic groups, such that it is still possible
tofind a schedule later on that fits within the cycle budget:

Definition: An extended conflict graph (ECG)
G(V,S,E,H) is an undirected hyper graph, where
the nodes (V') represent basic groups, and the self-edges
(S), binary edges (F), and hyper edges (H) represent
access conflicts between the basic groups. Every edge
t € SU FE U H islabeled with three numbers called R;,
W,, and RW,. Where R,, W,, and RW, are respectively:
the maximum number of simultaneous read operations, the
maximum number of simultaneous write operations, and
the maximum number of simultaneous memory accesses
(i.e., read and write operations) that can occur for thegiven
conflict during the execution of the algorithm.

With the ECG as input, the memory alocation and as-
signment tasks can come up withamemory architecturethat
isoptimal interms of area and/or power cost. When al con-
straints contained in the ECG have been respected by these
tasks, there will be enough memory bandwidth available to
schedule the application within the specified cycle budget.

4. llustration of the Proposed M ethodology

In this section, the effect of flow graph balancing on the
outcome of thememory allocation/assignment tasksisillus-
trated with an example. Severa partia orderings will be
proposed to illustrate the effect of flow graph balancing on
the area cost of the memory architecture (after the memory
allocation/assignment tasks). Area figures are given for a
1.2 ym CMOS technology. The vaues for the single port
memories were obtained using an SRAM generator.Theval -
ues for multi-port memories were obtained by adjusting the
valuesfor singleport memories with the port dependent fac-
tor of Mulder’'s area model for on-chip memories[8]. The
power cost is not taken into account in this example. The
code and basic group information of the example is shown
in Figure 1. The cycle budget is 550 cycles.

for (i = 1 to 50)

tmp = input; A[l: 100 words of 8 bit
Af2%i - 1] = tmp; B[1: 50 words of 24 bit
A[2%i] = -tmp; Cl1: 100 words of 8 bit
for (j = 1 to 50) D[1: 100 words of 24 bit
B[j] = A[101 - j; E[] 150 words of 24 bit
G[j1 = BLj1 + A[2%j1; F[]: 50 words of 24 bit
for (k = 1 to 50) G[]: 50 words of 8 bit

c[2*k] = B[51 - k];

Cl2*k - 1] = Blk]; Cycle budget = 550 cycles

for (1 = 1 to 50)
D[1] = c[1] + A[1] + B[1];
for (m = 1 to 150)
Elm] = m~2;
for (n = 1 to 50)
Fln] = C[n] + C[2*n] + E[3*n];

Figure 1.

Every array in the code corresponds to one basic group.
Itisassumed that all produced basic groupsare still needed
at the end of the code fragment, such that no in-place opti-
mization [9] can be performed. Notice that in the different
stages we show structured code, whereas the technique re-
ally works on a (hierarchical) flow graph that corresponds
to this code. We believe, however, that it is more clear to
show the result of the FGB on the code rather than in flow
graph format. One problem with this representation is that
one could think that after FGB the code is fully ordered
(or scheduled). Thisisnot true. Only the constraints con-
tained in the ECG are imposed. Every schedule that iscom-
patible with it is till alowed. This means that FGB only

introduces a partial ordering, not a full ordering or sched-
ule. After memory alocation and assignment it is possi-
blethat basic groupsthat were originally not in conflict are
stored in different memories or even in a multi-port mem-
ory. In this case, these two basic groups can be accessed
in paralel during the scheduling phase. So, after memory
allocation/assignment there is even more freedom left for
the scheduler, because it can come up with any schedule
that is compatible with the memory architecture and basic
group to memory assignment. In the figures depicting the
ECGs, the hyper edges are represented in dashed lines, and
the edge's R;, W;, and RW, values are represented in the
format: R;/W,/RW;.

4.1. Partial Ordering 1

As afirst experiment, we have maintained the origina
procedural execution order as specified inthe agorithm. As
it is often believed that simply balancing the number of si-
multaneous read/write leads to good results [15], we have
given more cyclesto the expressionsthat have to read many
operands such that these memory accesses can be distributed
over severa time dots. In order to do this within the cy-
cle budget, we had to reduce the number of cycles available
to other expressions. For the m loop, this was done by un-
rollingit with afactor of two, such that two expressions can
bescheduledin parallel. Theresulting code and correspond-
ing ECGisshowninFigure2. Thearray signalsare accesses
to background memory. Thetmp variablesareregisters(and
therefore not in the ECG). The ECG can be obtained from
the code by assuming that each linein the code hasto be ex-
ecuted inoneclock cycle. Remark that the number of simul-
taneous memory accesses isfairly well balanced.

A good memory architecture that is compatible with this
ECGisasogiveninFigure2. Theareacostis25.529 mm?.
It contai nstwo 2-port memories, which consumealarge part
of the area. The 2-port memories are a direct consequence
of the two sdf loops in the ECG. Note that these memo-
ries could be combined into one 2-port memory, as can be
seen inthe ECG because thereisno hyper edge between ba-
sic groups A[], C[], and E[], which means that they can be
stored together in a 2-port memory. However, this would
waste a lot of hits because E[] has a much larger bitwidth
than the other two basic groups. It is clear that self loopsin
the ECG are costly and have to be avoided whenever possi-
ble.

4.2. Partial Ordering 2

In this experiment, we have derived an ECG directly
from the procedura execution order of the original code
(Figure 1), by assuming that every linehasto be executed in
oneclock cycle. Wedid thisto show that itisnot necessarily

for (1 = 1 to 50)

tmp = input;

A[2*i - 1] = tmp; A[2*i] =
for (j = 1 to 50)

B[j1 = A[101 - j1;

G[31 = BL[j1 + al2%j];
for (k = 1 to 50)

c[2*k] = B[51 - k];
cl2*k - 1] = B[k];
for (1 = 1 to 50)
tmp = C[1] + A[1];
D[1] = tmp + B[1];
for (m 1 to 75)

(:}—qnm

E[2*m - 1] = (2*m - 1)72; E[2*m] = (2*m)"2;
for (n = 1 to 50)

tmp = C[n] + C[2*n];

F[n]l = tmp + E[3*n];

1212

200x8b

150x24b
100x24b 100x24b
an.
F D

[

11.030 mm? 5.131 mm? 4.683 mm? 4.683 mm?

Figure 2. Partial ordering 1.

bad to have alarge unbalancein the number of simultaneous
read/write operations. The resulting ECG and memory allo-
cation/assignment scheme are shown in Figure 3. Remark
that this time there are less self loopsin the ECG. Asare
sult the total area cost is now reduced to 17.153 mm?, de-
spite the unbalance.

The reason isthat it is also very important which mem-
ory accesses are put in parallel, something that has not been
incorporated in previous work.

4.3. Partial Ordering 3

In the third experiment, we try to avoid the self loopsin
the ECG and at the same time reduce the maximum num-
ber of simultaneousmemory accesses. Wedid thisby apply-
ing some optimizingloop transformations[9]. More specifi-
caly, wehaveapplied loop splitting (loop m), body splitting
(loop j), body merge (loop : and part of loop m), loop re-
ordering (part of loop m and part of loop 7), and loop body
reordering (loop n) to obtain an execution order shown in
Figure4.

The area cost is 16.292 mm?, about 36% less than the
first partial ordering. The architecture contains many (1-
port) memories. This is caused by the size of the maxi-
mum cliquet! in the conflict graph (i.e., the graph obtained

1A complete subgraphis a subgraphin which every nodeis connected
to every other nodein the subgraph. A cliqueisacompletesubgraphthatis
not contained in any other (larger) complete subgraph. A cliqueis amaxi-
mum clique of a graph when thereis no other clique in the graph that con-
tains more nodes.

- Sy A U N N N

2/1/2 2/1/3

250x24b

G

D 100x24b 100x8b 100x8b

: B
F

! !

8.284 mm? 4.683 mm? 2.730 mm? 1.456 mm?

Figure 3. Partial ordering 2.

by removing the hyper and self edges from the ECG). The
size of the maximum clique of this graph ({4, B, C'} and
{B, C, D})is 3, which means that we need at |east 3 1-port
memoriesinamemory architecturethat consistsentirely out
of 1-port memories. However, because of the difference in
bitwidthit turned out to be more cost effective to introduce
afourth memory in thiscase.

4.4. Partial Ordering 4

In thisfinal experiment, we took the ordering of the pre-
vious experiment, with alittlechange in the ordering of the
body in the loop producing D[]. The result is that the size
of the maximum clique now becomes 2 instead of 3. This
means that |ess memories are needed in the memory archi-
tecture. The results are shown in Figure 5. The area cost
is13.379 mm?. Thisisamuch better result than the one
obtained in the first experiment: the areais about a factor 2
less; it contains only 2 memories instead of 4; and the total
number of memory portsis 2 compared to 6, which means
less interconnect.

Thisoncemore showsthat itisvery important totakeinto
account which memory accesses are donein paralld. Even
small changes can have large consequences. This makes it
particularly difficult to optimize this by hand for large rea
life applications.

for (i = 1 to 50)
tmp = input;
Al2*i - 1] = tmp; E[2*i - 1] = (2%i - 1)°2;

A[2%i] = -tmp; E[2%i] = (2%i)"2; e
for (j = 1 to 50) 2112 1112
B[j]1 = A[101 - j]; A c

201/
for (k = 1 to 50) 1172

c[2*k] = B[51 - k];

cl2*k - 1] = B[k];
for (1 = 1 to 50)

tmp = C[1] + A[1];

D[1] = tmp + B[1];
for (m 1 to 50)

tmp = Blm] + A[2*m];

2/112
11212 1172

1212 211

GIm] = tmp; E[m + 100] = (m + 100)°2;
for (n =1 to 50)

tmpl = C[n]; tmp2 = E[3%n];

Flnl = tmpl + C[2*%n] + tmp2;

300x24b

= 150x8b

E c 100x8b
= 50x24b e R
B
! I

9.485 mm? 3.483 mm? 1.868 mm? 1.456 mm?

Figure 4. Partial ordering 3.

5. Cost Function

To leave as much freedom as possiblefor the memory al-
| ocation/assignment tasks, it isimportant to comeup withan
ECG with asfew conflicts as possible. Not al conflicts are
equally costly, though. For instance, when two basic groups
havealargedifferenceinbitwidth, itisnot that bad that they
have to be stored in different memories, because this saves
bits that would otherwise be wasted. This means that such
aconflict hasto be prefered compared to a conflict between
basic groupswithequal bitwidth. Thisjustifiestheintroduc-
tion of pairwisebasic group conflict costs C', corresponding
tothebinary edgese € F of anECG G(V, S, E, H). These
pairwise conflict costsare cal cul ated based on the properties
of the two basic groupsinvolved. Thisisan important dif-
ference withthescalar orientedtechniques, whereall scalars
are considered to be more or less equal.

We propose the following cost function for optimizing
the extended conflict graph: Cost(G(V,S,E, H)) = « -
Eses RWi+5-MaxCliqueSize(G(V, E))+7'ZeeE C.
The first term penalizes self-loops in the ECG which re-
duces the number and size of multi-port memoriesin thefi-
nal memory architecture, the second term reduces the num-
ber of required memories, and thelast term minimizestheto-
tal weighted conflict cost of the extended conflict graph. The
hyper edges are not included in the cost function because
FGB comes before memory alocation/assignment. There-

for (i = 1 to 50)
tmp = input;
Af2%i - 1] = tmp; E[2*i - 1] = (2*i - 1)°2;
A[2%i] = -tmp; E[2%i] = (2%i)"2;

for (j =1 to 50) 2/1/2 1/12
B[j1 = A[101 - j1;

for (k = 1 to 50)
Cl[2xk] = B[51 - k]; 2112
Ccl2*k - 1] = B[k]; 17212 1172

for (1 = 1 to 50)
tmpl = A[1]; tmp2 = B[1]; 122 211
D[1] = C[1] + tmpl + tmp2;

for (m = 1 to 50)
tmp = Blm] + A[2*m];

GIm] = tmp; E[m + 100] = (m + 100)"2;
for (n = 1 to 50)
tmpl = C[n]; tmp2 = E[3%n];
F[nl = tmpl + C[2*n] + tmp2;
350x24b
£ 250x8b
P A
@
F G

{

10.685 mm? 2.694 mm?

Figure 5. Partial ordering 4.

foreitisnot known at thisstage whether aconflict will bere-
solved by assigning the conflicting basic groupsto different
memories or not. Only when they are assigned to a multi-
port memory, the R;, W;, and RW, valuesfort ¢ £ U H
comeintoplay. They containvita informationfor themem-
ory alocation and assignment tasks, though.

6. Reaults

Experiments with a prototype tool (that cannot yet han-
dieloops) on aredistic ATM application [5] with 14 basic
groups and 38 read/write operations showed some promis-
ing results. For a cycle budget of 17, the conflict graph ob-
tained with our FGB technique contained 13 conflicts and
had a maximum clique size of 3, which resulted in an opti-
mal memory allocation of 3 one-port memories. The same
application scheduled with Synopsys Behavioral Compiler
resulted in aconflict graph with 24 conflictsand a maximum
cliqueof size 5, requiring 5 one-port memories for the same
cycle budget.

7. Conclusions

In this paper we have shown that it is important to do a
proper flow graph balancing to arrive at a good solution for
the memory allocation/assignment problem. We have also

shown that this flow graph balancing has to be done at the
level of groups of scalars in such a way that the resulting
conflict graph isoptimized. This means that one has to take
into account which dataisbeing accessed in parallel, instead
of only considering the number of paralldl memory accesses.
Currently, we have a prototypetool that showsaready some
very promising results, and we are working on the full im-
plementation of the proposed technique.

References

[1] FBalasa, F.Catthoor, H.De Man, “ Dataflow-driven memory allo-
cation for multi-dimensional processingsystems’, Proc. | EEE Int.
Conf. Comp. Aided Design, San Jose CA, Nov. 1994.

[2] FBalasa, F.Catthoor, H.De Man, “Background memory area es-
timation for multi-dimensional signal processing systems’, |EEE
Trans. on VLS Systems, vol. 3, no. 2, pp. 157-172, June 1995.

[3] FBalasa, “Background memory allocation for multi-dimensional
signal processing”, Ph.D. dissertation, IMEC, Leuven, Nov. 1995.

[4] F.Catthoor, W.Geurts, H.De Man, “Loop transformation method-
ology for fixed-rate video, image and telecom processing applica-
tions’, Proc. Intnl. Conf. on Applic.-Spec. Array Processors, San
Francisco, CA, pp.427-438, Aug. 1994.

[5] G.de Jong, B.Lin, C.Verdonck, SWuytack, F.Catthoor, “Back-
ground Memory Management for Dynamic Data Structures In-
tensive Processing Systems”, Proc. Int. Conferenceon CAD, San
Jose, CA, pp.515-520, Nov. 1995.

[6] PLippens, Jvan Meerbergen, W.Verhaegh, A.van der Werf, “Al-
location of Multiport Memories for Hierarchical Data Streams”,
Proc. |IEEE Int. Conf. Comp.-Aided Design, pp. 728-735, Santa
Clara, Nov. 1993.

[7] T.Meng, B.Gordon, E.Tsern, A.Hung, “ Portablevideo-on-demand
in wirelesscommunication”, special issueon “Low power design”
of the Proc. of the IEEE, Vol. 83, No. 4, pp. 659-680, Apr. 1995.

[8] J.M.Mulder, N.T.Quach, M .J.Flynn, “An AreaModel for On-Chip
Memoriesand its Application”, IEEE J. Solid-state Circ., Vol.26,
No.1, pp.98-105, Feb. 1991.

[9] L.Nachtergaele, F.Catthoor, F.Balasa, F.Franssen, E.De Greef,
H.Samsom, H.De Man, “Optimization of memory organization
and partitioning for decreased size and power in video and image
processing systems”, |IEEE Int'l Workshop on Memory Technol-
ogy, Design and Testing, pp. 82-87, San Jose CA, Aug. 1995.

[20] PPaulin, J.Knight, “Force-directed scheduling for the behavioral
synthesisof ASIC's’, |EEE Trans. on CAD, Val. 8, No. 6, pp. 661-
679, June 1989.

[11] N.Passos, E.Sha, “Push-up scheduling: optimal polynomial-time
resource constrained scheduling for multi-dimensional applica
tions’, Proc. |EEE Int. Conf. Comp. Aided Design, San Jose CA,
pp.588-591, Nov. 1995.

[12] L.Ramachandran, D.Gajski, V.Chaiyakul, “ Analgorithmfor array
variable clustering”, Proc. European Design and Test Conf., pp.
262-266, Paris, Mar. 1994.

[13] L.Stok, “Data path synthesis’, INTEGRATION, the VLS journal,
Vol 18, pp. 1-71, June 1994.

[14] 1.Verbauwhede, F.Catthoor, J.Vandewalle, H.De Man, “Back-
ground memory management for the synthesis of algebraic algo-
rithms on multi-processor DSP chips’, Proc. VLS89, Int. Conf.
on VLS, Munich, Germany, pp. 2098-218, Aug. 1989.

[15] W.Verhaegh, PLippens, E.Aarts, JKorst, Jvan Meerbergen,
A.van der Werf, “Improved Force-Directed Scheduling in High-
Throughput Digital Signal Processing”, |IEEE Transactions on
CAD and Systems, Vol. 14, no 8, Aug. 1995.

[16] W.Verhaegh, “Multidimensional Periodic Scheduling”, Ph.D. dis-
sertation, Eindhoven University of Technology, Oct. 1995.

	CD-ROM Home Page
	ISSS Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

