
Modeling Multicomputer Task Allocation as a Vector Packing Problem

James E. Beck Daniel P. Siewiorek
Advanced Microcomputer Development Department of Electrical and Computer Engineering

Delco Electronics Corporation Carnegie Mellon University

Abstract

This paper considers the problem of task allocation
for embedded, bus–based multicomputers. The problem
is shown to be isomorphic to a generalization of vector
packing, and heuristic solution techniques are investi-
gated. A total of 256 packing algorithms are considered,
using a divide–and–conquer experimentation strategy
on a set of sixteen real and synthetic test cases. Perfor-
mance is compared based on the number of processors,
the utilization level of the broadcast bus and run time.
This research differs from other approaches in that task
allocation is formulated as a “multi–dimensional”
problem, and general purpose solution techniques are
developed that can accommodate arbitrary models for
the schedulable resources.

1 Introduction

The computing demands of today’s embedded ap-
plications can exhaust the resources available on even
the most sophisticated single processor systems. This
has motivated interest in multiple processor architec-
tures, and one alternative that is well–suited for em-
bedded use is the multicomputer [1].

A multicomputer consists of a set of autonomous
processing nodes that utilize a communication subsys-
tem to interact with one another. Each node is autono-
mous in the sense that it has its own local address space
and executes its own operating system (or none at all).
Furthermore, the nodes can be heterogeneous, which al-
lows the implementation to reflect the mix of special
purpose hardware and signal processing required by the
application.

Communication between nodes is coarse–grained
and accomplished via message passing. In general, the
communication subsystem is arbitrary, however a
broadcast bus is often used because of its simplicity and
low cost. The data link layer protocol of the bus is like-
wise arbitrary, but CSMA/CR protocols [14] (e.g. CAN
[27]) are desirable because they provide reliable trans-
mission of fixed–priority, real–time messages with
guaranteed response times. This allows the bus to be
treated as a schedulable resource. As such, it can be ana-
lytically modeled [28] and/or simulated [2] to determine
timing correctness.

Given a multicomputer implementation of an em-
bedded system, an important design consideration is
how to partition the software modules across the hard-
ware nodes. This is known as the task allocation prob-

lem. A solution entails finding an assignment of tasks
to nodes such that each task is assigned to exactly one
node and no node is over–utilized. Furthermore, task al-
location needs to be carried out in a way that minimizes
cost while satisfying the system’s performance specifi-
cations. For embedded systems, many factors can influ-
ence task allocation decisions. In fact, task allocation
decisions can be influenced by any design attribute that
affects cost or performance. Accordingly, task alloca-
tion needs to be formulated as a multi–dimensional
problem, and the tasks and nodes need to be modeled as
multi–dimensional objects.

The task allocation problem is, in general, NP–com-
plete, and heuristic algorithms are required. In this pa-
per, the task allocation problem for bus–based multi-
computers is shown to be isomorphic to a generalization
of the vector packing problem. Solution techniques are
developed by considering heuristic solutions to the
packing problem. These techniques are presented, de-
scribed and verified experimentally on a mixture of real
and synthetic test cases.

The rest of this paper is organized as follows. Sec-
tion 2 introduces a model of the task allocation problem.
Section 3 re–states task allocation as a packing problem
which is shown to be a generalization of vector packing.
Section 4 reviews related work in the areas of packing
and task allocation and describes the relevance of this
work. Section 5 introduces heuristic algorithms for
solving the packing problem. Section 6 describes the
experimentation strategy and presents results obtained
by applying the heuristic algorithms to both real and
synthetic test cases. Section 7 concludes and summa-
rizes the paper.

2 Modeling Task Allocation

This section presents an embedded system model.
It serves as an abstraction for evaluating task allocation
alternatives. For more detailed information, refer to [4].

2.1 Software Model

A synchronous data flow graph (SDFG) is used to
model the software [16]. The nodes represent tasks and
the arcs signify the communication between them. The
amount of data produced and consumed on each task in-
vocation is known a priori. Thus, the resource require-
ments of the application are statically predictable, al-
lowing static task allocation.

A task’s demand for hardware resources is applica-
tion specific and can occur across many independent di-
mensions, such as CPU throughput, memory or I/O

channels. An application specific demand vector is used
to model this. This vector is of arbitrary length, and each
element corresponds to a resource that is:

1. Available on one or more of the processing nodes.
2. A constraint on the solution.
Once the elements of the demand vector are defined,

each task in the application is modeled by its own vector
instance. Thus, the demand that a task imposes on a pro-
cessing node is multi–dimensional, and defined with re-
spect to the application specific demand vector.

2.2 Target Architecture

The target architecture consists of an arbitrary num-
ber of heterogeneous nodes that communicate via mes-
sage passing over a bus. The resources available on a
node are specified with respect to a capacity vector,
which is analogous to the demand vector used to model
the tasks.

To model the bus, an analytic function is used that
predicts message transmission time as a function of
message size. An example of such a function for the
CAN bus is shown in Figure 1. This function is used in
conjunction with a scheduling model (e.g. [28]) to deter-
mine real time schedulability of the bus.

C � �D
8�

67
h
� 8D

h

C = Transmission Time (seconds)
D = Data Size (bytes)
h = CAN bus bit rate (bps)

Figure 1: CAN Message Format

2.3 Communication

If communicating tasks are assigned to different
nodes, then message traffic will occur over the bus.
However, since the bandwidth of the bus is finite, it can
only accommodate a limited number of messages.
Hence, a solution is feasible only if the cumulative mes-
sage demand is less than the schedulable bandwidth of
the bus.

Furthermore, the arcs within the SDFG define a pre-
cedence ordering among tasks. However, it is assumed
that data traveling along the arcs is buffered, which de–
couples the tasks and allows them to execute asynchro-
nously at their own period, without violating prece-
dence relationships. Thus, each processing node is
presented with a periodic task set that is consistent with
the assumptions required by rate monotonic scheduling
[17, 18].

2.4 Feasibility Constraints

An assignment of tasks to nodes that satisfies all task
requirements without over–utilizing any of the hard-
ware components is said to be feasible. A set of
constraints is needed to define the feasibility condition.
These constraints are application specific, but they can
be sorted into two broad categories: processor and bus
constraints.

Processor constraints define when a node can sup-
port its task set. Likewise, bus constraints define when

the bus can support a message set. These constraints are
typically based on scheduling models for the processing
nodes (e.g. [17, 18]) and bus (e.g. [2, 28]). The
constraints used during experimentation are not shown
here, but details can be found in [4].

2.5 Task Allocation Objectives

The goal of task allocation is to obtain an assignment
of tasks to nodes that is feasible, and that;

1. Minimizes the number of processing nodes.
2. Minimizes the utilization level of the broadcast bus.

These are competing goals and they must be balanced
effectively.

3 Task Allocation as a Packing Problem

Once a node is specified, only a subset of tasks can
be assigned to it without violating feasibility
constraints. This leads to the packing–based problem
representation which is shown in Figure 2.

��

a1

�� ��

b1
c1

Capacity=(a1,b1,c1)

Vector Bin 1

��

an

�� ��

bn cn

Capacity=(ak,bk,ck)

Vector Bin k

�
�
�
�
�

Processors

Demand=(�n,�n,�n)

Demand=(�1,�1,�1)

�
�
�
�
� Tasks

Vector Object n

Vector Object 1

��

d
Capacity=d

Scalar Bin

Bus

f ()

Demand=�m

Demand=�1

�
�
�
�
� Messages

Scalar Object m

Scalar Object 1

Message Format

Pack

Pack

Figure 2: Packing–based Problem Model

Under this representation, each node is modeled by
a vector bin. The bins are multi–dimensional, and the
dimensions are defined by the capacity vector. For each
bin, the capacity in each dimension is chosen to match
the specifications of the processing node being mode-
led.

Similarly, each task is modeled by a vector object.
The objects have demands for the hardware resources
which are defined with respect to the demand vector.
For each object, the demand for each resource is chosen
to match the resource requirements of the task being
modeled.

Lastly, the bus is modeled by a scalar bin. It is char-
acterized by a scalar capacity, which is equal to the bus’s
schedulable bandwidth.

With this problem representation, task allocation be-
comes a matter of packing the vector objects into the
vector bins such that none of the bins (including the
bus’s scalar bin) overflow. Note that demand for the

bus’s scalar bin represents the set of messages, which is
determined as a by–product of task assignment deci-
sions. Thus, the task allocation problem for bus–based
multicomputers is isomorphic to the multi–dimensional
packing problem illustrated in Figure 2.

When stated as a decision problem, the question is
whether a set of vector objects can be packed into a set
of vector bins such that none of the bins overflows, in-
cluding the bus’s scalar bin. Next, consider the special
case where the scalar bin has infinite capacity1. In this
situation, since there is no restriction on packing the sca-
lar bin, it can be ignored and the problem reduces to the
widely investigated vector packing problem. Further-
more, the packing problem shown in Figure 2 is NP–
complete, since vector packing is NP–complete and the
reduction described above is clearly a polynomial trans-
formation [4].

A descriptive name for the new packing problem,
based on its definition and relationship to vector pack-
ing, is vector packing with constrained object group-
ings, or VPCOG. This name will be used to refer to the
problem in subsequent sections.

4 Related Work

The most prolific packing problem is bin packing
[21]. Generalizing it to n–dimensions leads to multi–di-
mensional bin packing, and there are two variants of
this: rectangle packing [8] and vector packing [12].
Rectangle packing is a geometric problem, where a set
of n–dimensional polyhedra are packed into n–dimen-
sional bins. The polyhedra assigned to a bin must fit
within it without intersecting one another. This is easily
visualized in n=3 dimensions where it is analogous to
the knapsack problem [21]. Conversely, with vector
packing, the n–dimensions are independent. The ob-
jects are packed into bins with the restriction that the
vector sum of the object sizes cannot exceed the bin’s
vector capacity. VPCOG, the packing problem de-
scribed in this paper, is a generalization of vector pack-
ing that restricts object groupings. Figure 3 illustrates
the proper perspective between VPCOG and other pack-
ing problems.

Bin Packing

Vector PackingRectangle Packing

VPCOG

Increasing
Generality

Figure 3: Hierarchy of Packing Problems

Task allocation can either be done statically or dy-
namically. Static techniques are limited to applications
with predictable run–time behavior, which applies to
the class of design problems considered by this research.
Previous approaches to static task allocation can be
loosely divided into three categories: graph theoretic [5,

1. This corresponds to the hypothetical case of a bus with un-
limited schedulable bandwidth.

19, 23, 26], mathematical programming [6, 20] and heu-
ristic [7, 9, 11, 25].

The allocation techniques described in this paper are
based on heuristic solutions to the VPCOG packing
problem. They differ from existing approaches in two
main regards. First, tasks and nodes are modeled as
multi–dimensional objects, and task allocation is
treated as a multi–dimensional problem. Second, these
algorithms base task assignment decisions on a set of
user–supplied feasibility constraints2. These constraints
are arbitrary, and they allow the designer to incorporate
precise scheduling models for the hardware resources
(e.g. CPU and bus). Thus, the solutions obtained by the
allocation algorithms are provably correct within the
context of the system’s timing requirements.

5 Heuristic Packing Algorithms

This section describes heuristic solutions to the
VPCOG packing problem. A set of candidate algo-
rithms are presented, inspired by the classic first– and
best–fit solutions to the bin packing problem. All of the
algorithms are one–pass and greedy. They progress by
choosing objects, one by one, and assigning them to
bins. This continues until all objects are assigned and
the packing is complete, or else a set of objects remain
that will not fit into any of the bins. In this case, the algo-
rithm fails.

A total of 256 algorithms are considered. They are
specified with respect to a five–character acronym
which is defined in Figure 4. The first character of the
acronym specifies the bin selection method. Likewise,
the second character defines how the utilization level
of a vector bin is measured. If two or more bins are
found to be equally good according to the bin selection
policy, then a tie–breaking strategy is needed. The third
character specifies the tie–breaking criterion. The
fourth character specifies the order in which the vector
objects are packed. The fifth and final character of the
acronym specifies the method for determining the size
of a vector object.

6 Results

A set of experiments were performed to gauge the
effectiveness of the heuristic packing algorithms. The
instance of the VPCOG problem shown in Figure 5 was
used during experimentation. The problem requires
tasks to be packed into unit processing elements which
communicate over a 1 Mbps CAN bus. Intra–processor
communication is free, while inter–processor commu-
nication consumes bus bandwidth (based on the func-
tion shown in Figure 1). The capacity and demand vec-
tors contain six elements, which correspond to CPU
throughput, ROM, RAM, digital I/O channels, analog
I/O channels, and pulse–width modulated timer chan-
nels, respectively. The unit processing element’s re-
source capacities were chosen arbitrarily. Tasks have
varying levels of demand for the resources. Demand is
computed statically, and is known prior to allocation.
To determine feasibility, resource capacities are
2. Within the packing paradigm, the feasibility constraints are
invoked to determine whether a vector object will “fit” inside of a
bin, without causing any of the bins to “overflow”.

compared against the cumulative demand imposed by
the task (and message) sets.

Sixteen real and synthetic SDFGs were used as test
cases. The real test cases were adapted from a commer-
cial automotive electronic application described in [3].
The synthetic test cases are a mixture of random and
hand generated SDFGs which, taken as a whole, span a
large portion of the design space.

When a heuristic packing algorithm is applied to a
test case, three metrics are used to gauge its effective-
ness:

1. Number of vector bins (i.e. unit processors) used.
2. Scalar bin (i.e. bus bandwidth) utilization level.
3. Run time
Experiments were carried out in four stages, and a

divide–and–conquer method was used to compare the
256 possible algorithms. The results are summarized in
the Appendix, and the subsections that follow describe
the stages.

Object Size

R – Random
N – Decreasing on object size
A – Decreasing on arc size
B – Decreasing on object and arc sizes

A – Average size of all vector object elements
X – Size of largest vector object element

Packing Order

Tie Breaking
R – Random
X – Choose vector bin with maximum level
N – Choose vector bin with minimum level
Nb –Choose vector bin that minimizes level of scalar bin

A – Average utilization of all vector bin elements
X – Utilization of most filled vector bin element

Bin Level

Bin Selection
F – First fit
X – Choose vector bin with maximum level
N – Choose vector bin with minimum level
Nb –Choose vector bin that minimizes level of scalar bin

Nb – R B X Each aconym specifies an algorithm

Figure 4: Candidate Packing Algorithms

6.1 Stage One

The goal of stage one is to determine the effect of
node ordering. This is done by comparing first–fit algo-
rithms with different ordering schemes. Specifically,
the following six algorithms are considered:

F––R– (baseline)3 F––NX F––NA
F––A– F––BX F––BA

The results show that ordering based on object size tends
to decrease the number of vector bins, but results in poor

3. As defined in Figure 4, (F––R–) = First –fit bin selection and
random node ordering.

utilization of the scalar bin. In fact, this prevents a feasi-
ble solution from being found for three of the test cases.
Conversely, ordering on arc size tends to decrease the
scalar bin utilization level, but often requires more vec-
tor bins than the baseline. Ordering on both object and
arc sizes works best, outperforming all other schemes.
This method exploits the benefits of object ordering and
arc ordering (i.e. fewer vector bins and lower scalar bin
utilization) without suffering from their weaknesses
(i.e. not finding a solution). The effect of basing node
size on the size of the maximum or average element was
marginal and inconclusive. Furthermore, the run time
variation across algorithms was not significant, since
ordering the objects only requires them to be sorted once
(O(nlgn)) before packing begins.

To summarize, ordering based on object and arc
sizes is the most effective technique, and equating ob-
ject size to the size of the maximum vector element is
preferred for simplicity. Hence, only (xxxBX) algo-
rithms are considered in subsequent stages.

�
�
�
�
�

�
�
�
�
�

f ()

P.E.
1

Task
1

Task
n

Xput ROM RAM DIO AIO PIO

P.E.
k

Bus

BW

“CAN Bus”

“Unit Processing Element”

�
�
�
�
�

Message
1

Message
m

C � �D
8�

67
h
�

8D
h

“CAN Message Format”

Pack

Pack

Figure 5: VPCOG Instance used in Experiments

6.2 Stage Two

The goal of stage two is to investigate the effect of
the bin selection policy. This is accomplished by
comparing the following six algorithms:

F––BX (baseline)4 XXRBX XARBX
NXRBX NARBX Nb–RBX

The results reveal several things. First, selecting the
least utilized vector bin (i.e. NxRBX) performs worse
than the first–fit baseline algorithm (F––BX). This is in-
tuitive: Selecting the least utilized bin is a poor packing
heuristic since it never encourages completely filling a
started bin. This leads to excessive resource fragmenta-
tion and more bins, on average, than first–fit. Likewise,
selecting the most utilized vector bin (i.e. XxRBX) re-
quires no fewer vector bins, on average, than the first–fit
4. As defined in Figure 4, (F––BX) = First –fit bin selection,
decreasing order based on object and arc sizes, and object size
based on the maximum vector element.

baseline algorithm. This underscores the fact that vec-
tor packing has no analog to bin packing’s best–fit–de-
creasing algorithm. The reason for this is also intuitive:
There is no notion of what constitutes a “best fit” for a
vector object being placed into a vector bin. In fact, the
bin that is the “best fit” for any particular dimension
may actually be a poor choice across the remaining di-
mensions [4].

Selecting the vector bin that minimizes utilization of
the scalar bin (i.e. Nb–RBX) out–performs the other
techniques, including the first–fit baseline algorithm,
(F––BX). On average, this technique requires no more
or less vector bins than first–fit, but it does yield signifi-
cantly lower scalar bin (i.e. bus bandwidth) utilization
levels. In fact, this method is a good choice for task al-
location since, coupled with the object ordering scheme
found in stage one, it leads to a natural and dynamic
clustering of heavily communicating tasks.

The baseline algorithm, (F––BX), does have a run
time advantage over the other algorithms. However, be-
cause of its superior solution qualities, (Nb–RBX) is
preferred and only (NbxxBX) algorithms are considered
in the experimentation stages that follow.

6.3 Stage Three

The goal of stage three is to determine the effect of
employing a tie breaking strategy. To accomplish this,
the following two algorithms are compared:

Nb–RBX (baseline) NbXXBX
As the results indicate, tie–breaking produces no mea-
surable benefit.

6.4 Stage Four

The goal of the fourth and final stage is to compare
the best heuristic algorithm (Nb–RBX) against opti-
mum solutions. Optimum solutions are obtained by us-
ing two exhaustive search algorithms. The first search
algorithm, OPT–BINS, returns the solution with the
fewest vector bins, and it has a time complexity of
O(Bins

Objects). The second, OPT–BUS, returns the solu-
tion with the minimum scalar bin utilization, and it has
a time complexity of O(2Arcs). Because of the large time
complexities of the search algorithms, it is only practi-
cal to apply them to the two smallest test cases. The re-
sults are summarized in Figure 6.

OPT–BINS 4 0.31 3 0.40
OPT–BUS 5 0.28 5 0.22
Nb–RBX 4 0.28 4 0.40

Bins BinsBus Util. Bus Util.
Syn12 Syn13

Algorithm

Figure 6: Nb–RBX vs. Optimum

(Nb–RBX) clearly affects a balance between the
competing goals of minimizing the number of bins and
minimizing utilization of the scalar bin (i.e. bus). Fur-
thermore, since the time complexity of (Nb–RBX) is
O(bins�objects), it has an obvious run time advantage
over the search algorithms. In fact, (Nb–RBX) had run
times which were several orders of magnitude faster for
the test cases shown in Figure 6.

7 Summary

This paper described a generalization of the vector
packing problem, VPCOG, which was shown to be iso-
morphic to task allocation for bus–based multicomput-
ers. Since task allocation and the corresponding pack-
ing problem are NP–complete, heuristic solution
techniques are required. A total of 256 heuristic packing
algorithms were considered, and their performance was
compared using a divide–and–conquer experimentation
method on sixteen real and synthetic test cases with re-
spect to three metrics: the number of vector bins (i.e.
processing nodes), the utilization level of the scalar bin
(i.e. bus bandwidth) and run time. Through exper-
imentation, the (Nb–RBX) algorithm was found to be
the most effective heuristic.

The (Nb–RBX) packing algorithm represents an ef-
fective and efficient way of performing task allocation
for bus–based multicomputers. It is capable of mini-
mizing the number of processing nodes needed for a de-
sign while simultaneously minimizing the utilization
level of the broadcast bus. Furthermore, it supports a
multi–dimensional representation of the task allocation
problem, and it allows scheduling models to be incorpo-
rated so that timing correctness is achieved as a by–
product of task allocation.

8 References

[1] W. Athas and C. Seitz. Multicomputers: Message–Passing Con-
current Computers. Computer, 21(8):9–23, Aug. 1988.

[2] M. Baba and E. Powner. Scheduling Performance in Distributed
Real–Time Control System, In Proc. of the 2nd Int. CAN Conf.,
pp. 2–11, Sept. 1995.

[3] J. Beck. Characterization of an automotive powertrain control
application. Tech. Report, Delco Electronics Corp., May 1994.

[4] J. Beck. Automated Processor Specification and Task Alloca-
tion Methods for Embedded Multicomputer Systems. Ph.D. The-
sis, Carnegie Mellon Univ., Apr. 1995.

[5] F. Berman and L. Snyder. On Mapping Parallel Algorithms into
Parallel Architectures. In Proc. of the Int. Conf. on Parallel Pro-
cessing, pp. 307–309, 1984.

[6] A. Billionnet, M. Costa and A. Sutter. An Efficient Algorithm
for a Task Allocation Problem. Journal of the Association for
Computing Machinery, 39(3):502–518, Jul. 1992.

[7] W. Chu and L. Lan. Task Allocation and Precedence Relations
for Distributed Real–Time Systems. IEEE Trans. on Computers,
36(6):667–679, Jun. 1987.

[8] D. Coppersmith and P. Raghavan. Multidimensional on–line
bin packing: algorithms and worst–case analysis, Operations
Research Letters, 8(1):17–19, Feb. 1989.

[9] K. Efe. Heuristic Models of Task Assignment Scheduling in
Distributed Systems. Computer, 15(6):50–56, Jun. 1982.

[10] J. Gaudiot, J. Pi and M. Campbell. Program graph allocation in
distributed multicomputers. Parallel Computing,
7(2):227–247, Jun. 1988.

[11] C. Houstis. Module Allocation of Real–Time Applications to
Distributed Systems. IEEE Trans. on Software Engineering,
16(7):699–709, Jul. 1990.

[12] R. Karp, M. Luby and A. Marchetti–Spaccamela. A probabilis-
tic analysis of multidimensional bin packing problems. In Proc.
of the annual ACM symp. on theory of computing, pp. 289–298,
1984.

[13] C. Koutsougeras, C. Papachristou and R. Vemuri. Data Flow
Graph Partitioning to Reduce Communication Cost. In Proc. of
the 19th Annual Workshop on Microprogramming, pp. 82–91,
Oct. 1986.

[14] J. Kurose, M. Schwartz and Y. Yemini. Multiple–Access Proto-
cols and Time–Constrained Communication. Computing Sur-
veys 16(1):43–70, Mar. 1984.

[15] C. Lee, M. Kim and C. Park. An efficient k–way graph partition-
ing algorithm for task allocation in parallel computing systems.
In Proc. of the First Int. Conf. on Systems Integration, pp.
748–751, Apr. 1990.

[16] E. Lee and and D. Messerschmitt. Synchronous Data Flow. In
Proc. of the IEEE (75)9:1235–1245, Sep. 1987.

[17] J. Lehoczky, L. Sha and Y. Ding. The rate monotonic scheduling
algorithm: Exact characterization and average case behavior.
In Proc. of the IEEE Real–Time Systems Symposium, pp.
166–171, Dec. 1989.

[18] C. Liu and J. Layland. Scheduling algorithms for multiprogram-
ming in a hard real–time environment. Journal of the ACM
20(1):46–61, Jan. 1973.

[19] V. Lo. Heuristic Algorithms for Task Assignment in Distributed
Systems. In Proc. of the Int. Conf. on Distributed Computing
Systems, pp. 30–39, 1984.

[20] P. Ma, E. Lee and M. Tsuchiya. A Task Allocation Model for
Distributed Computing Systems. IEEE Trans. on Computers,
31(1):41–47, Jan. 1982.

[21] T. Nielsen. Combinatorial Bin Packing Problems. University
of Arizona, 1985.

[22] T. Ravi. Partitioning and Allocation of Functional Programs
for Data Flow Processors. Tech Report CSD–860063, UCLA,
Apr. 1986.

[23] J. Ryou and J. Wong. A Heuristic Algorithm for Task Allocation
in Distributed Computer Systems. Tech. Report TR 88–7, Iowa
State Univ.., 1988.

[24] T. Saponas. A Real–Time Distributed Processing System. In
Proc. of the IEEE Real–Time Systems Symposium, pp. 36–43,
1986.

[25] B. Shirazi and M. Wang. Evaluation of Three Heuristic Func-
tions for Task Allocation. Tech. Report 87–CSE–28, Southern
Methodist Univ., 1987.

[26] H. Stone. Multiprocessor Scheduling with the Aid of Network
Flow Algorithms. IEEE Trans. on Software Engineering,
3(1):85–93, Jan. 1977.

[27] C. Szydlowski. The CAN Specifications. In Proc of the Fifth
Annual Embedded Systems Conf., pp. 365–374, Oct. 1993.

[28] K. Tindell and A. Burns. Guaranteeing Message Latencies on
Control Area Network (CAN), In Proc. of the 1st Int. CAN Conf.,
pp. 2–11, Sept. 1994.

Appendix

F––R– 12.8 0.7 <0.1 41.5 1.9 293.1 0.5 8.4 10.1 0.7 34.3 <0.1 <0.1 2.3 3.5 0.3
F––NX 4.7 0.6 <0.1 18.2 2.6 131.6 0.4 5.0 5.7 0.8 17.3 <0.1 <0.1 1.4 2.4 0.3
F––NA 5.5 0.6 <0.1 26.7 1.8 162.1 0.5 7.0 7.0 0.8 15.6 <0.1 <0.1 206.8 4.6 0.2
F––A– 14.5 0.7 <0.1 41.0 0.1 285.2 0.8 12.9 15.2 0.1 44.2 <0.1 <0.1 3.7 8.1 0.4
F––BX 11.5 0.7 <0.1 17.8 0.1 145.9 0.6 8.3 8.3 0.1 17.3 <0.1 <0.1 2.9 5.1 0.3
F––BA 10.1 0.8 <0.1 32.2 0.1 205.9 0.6 8.5 9.0 0.1 18.2 <0.1 <0.1 2.8 4.1 0.3
XXRBX 23.7 1.3 <0.1 31.5 0.1 263.5 1.0 14.8 16.2 0.1 34.7 <0.1 <0.1 5.3 12.4 0.5
XARBX 23.4 1.3 <0.1 31.7 0.1 263.5 1.2 15.3 16.2 0.1 34.9 <0.1 <0.1 5.3 12.6 0.6
NXRBX 24.5 1.5 <0.1 34.5 0.1 251.3 2.3 14.6 17.6 0.3 62.1 <0.1 <0.1 5.8 13.7 0.7
NARBX 29.4 1.7 <0.1 43.0 12.6 309.6 2.0 22.1 23.8 0.3 81.4 <0.1 <0.1 6.8 17.6 1.0
Nb–RBX 22.0 1.3 <0.1 31.6 0.1 267.3 1.0 15.0 15.9 0.1 33.5 <0.1 <0.1 5.7 12.2 0.6
NbXXBX 23.5 1.7 <0.1 34.1 0.1 284.6 1.1 16.2 17.3 0.1 36.3 <0.1 <0.1 5.5 12.9 0.5

Alg Syn01 Syn02 Syn03 Syn04 Syn05 Syn06 Syn07 Syn08 Syn09 Syn10 Syn11 Syn12 Syn13 Real01 Real02 Real03

Run Times (Seconds)

F––R– 1.063 1 – 1.115 – 1.092 1 1.097 1.083 – 1.387 1.333 1.333 1 1 1
F––NX 1 1 – 1.033 – 1.020 1 1.032 1 – 1.224 1.333 1 1 1 1
F––NA 1.031 1 – 1.049 – 1.020 1 1.065 1.028 – 1.184 1.333 1.333 – 1.067 1
F––A– 1.063 1 1 1.115 1 1.071 1 1.097 1.083 1 1.306 1.333 1.333 1 1.067 1
F––BX 1.031 1 1 1.033 1 1.031 1 1.065 1.055 1 1.245 1.333 1.333 1 1.067 1
F––BA 1.031 1 1 1.049 1 1.031 1 1.097 1.055 1 1.224 1.333 1 1 1 1
XXRBX 1.031 1 1 1.033 1 1.020 1 1.065 1.055 1 1.245 1.333 1.333 1 1.067 1
XARBX 1.031 1 1 1.033 1 1.020 1 1.065 1.055 1 1.224 1.333 1.333 1 1.067 1
NXRBX 1.125 1 1 1.066 1 1.041 1.300 1.129 1.139 1.4 1.510 1.333 1.333 1 1.067 1
NARBX 1.094 1 1 1.049 – 1.041 1.100 1.129 1.139 1.4 1.551 1.667 1.667 1 1.067 1
Nb–RBX 1.031 1 1 1.033 1 1.031 1 1.065 1.055 1 1.224 1.333 1.333 1 1.067 1
NbXXBX 1.031 1 1 1.033 1 1.031 1 1.065 1.055 1 1.224 1.333 1.333 1 1.067 1

Alg Syn01 Syn02 Syn03 Syn04 Syn05 Syn06 Syn07 Syn08 Syn09 Syn10 Syn11 Syn12 Syn13 Real01 Real02 Real03

Number of Vector Bins (Normalized to the lower bound)

F––R– 0.2715 0.9084 – 0 – 0.1283 0.9101 0.5326 0.2341 – 0.9288 0.4153 0.7010 0.8760 0.8503 0.2341
F––NX 0.2752 0.8627 – 0 – 0.1244 0.9320 0.5109 0.2390 – 0.9288 0.6318 0.4000 0.9550 0.9461 0.3291
F––NA 0.2687 0.9003 – 0 – 0.1283 0.9372 0.5213 0.2349 – 0.9288 0.7280 0.3754 – 0.9821 0.3347
F––A– 0.2775 0.7609 0.8625 0 0.8882 0.1244 0.8320 0.5109 0.2341 0.6978 0.9288 0.4153 0.4079 0.6641 0.6287 0.1378
F––BX 0.2763 0.7836 0.8625 0 0.8882 0.1244 0.8320 0.5109 0.2341 0.6978 0.9288 0.4153 0.4071 0.6641 0.6287 0.1378
F––BA 0.2681 0.7609 0.8625 0 0.8882 0.1244 0.8769 0.5215 0.2350 0.6978 0.9288 0.4153 0.3797 0.6123 0.5972 0.1831
XXRBX 0.2657 0.7609 0.8625 0 0.8882 0.1168 0.8487 0.5042 0.2390 0.6978 0.9288 0.4153 0.2321 0.6856 0.6287 0.1378
XARBX 0.2710 0.7757 0.8625 0 0.8882 0.1134 0.8320 0.5092 0.2338 0.6978 0.8367 0.4153 0.4006 0.6588 0.6290 0.1378
NXRBX 0.2792 0.9072 0.9145 0 0.9898 0.1283 0.9254 0.5323 0.2390 0.9993 0.9288 0.7280 0.5246 0.9845 0.9648 0.3368
NARBX 0.2760 0.9964 0.9145 0 – 0.1283 0.9531 0.5274 0.2342 0.9958 0.9288 0.6318 0.5549 0.9981 0.9696 0.3298
Nb–RBX 0.2262 0.7430 0.8625 0 0.8882 0.1210 0.7712 0.5042 0.2205 0.6978 0.8367 0.2863 0.4007 0.6550 0.6090 0.1377
NbXXBX 0.2262 0.7430 0.8625 0 0.8882 0.1210 0.7712 0.5042 0.2205 0.6978 0.8367 0.2863 0.4007 0.6550 0.6090 0.1377

Alg Syn01 Syn02 Syn03 Syn04 Syn05 Syn06 Syn07 Syn08 Syn09 Syn10 Syn11 Syn12 Syn13 Real01 Real02 Real03

Scalar Bin (i.e. Bus Bandwidth) Utilization

“–” indicates that the algorithm failed to find a solution.

	CD-ROM Home Page
	ISSS Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

