
Instruction Set Design and Optimizations for Address Computation in DSP
Architectures

Guido Araujo1, Ashok Sudarsanam2 and Sharad Malik2

Department of Electrical Engineering
Princeton University, Princeton, New Jersey 08544, USA

fguido,ashok,sharadg@ee.princeton.edu

Abstract

In this paper we investigate the problem of code gen-
eration for address computation for DSP processors. This
work is divided into four parts. First, we propose a branch
instruction design which can guarantee minimum overhead
for programs that make use of implicit indirect addressing.
Second, we give a formulation and propose a solution for
the problem of allocating address registers (ARs) for ar-
ray accesses within loop constructs. Third, we describe re-
targetable approaches for auto-increment (decrement) op-
timizations of pointer variables, and loop induction vari-
ables. Finally, we use a graph coloring technique to allo-
cate physical ARs to the virtual ARs used in the previous
phases. The results show that the combination of the above
techniques considerably improves the final code quality for
benchmark DSP programs.

1. Introduction

Computing the address of an operand is a task frequently
performed in accessing data-streams such as those found in
DSP algorithms. Traditionally, data is stored in arrays and
accesses are made through array indexing. Alternatively,
pointers can be used to directly address data. Computing
the address of an array element involves adding anoffset
to thebaseaddress of the array. This computation can be
determined implicitly by the compiler in the case of array
indexing, or explicitly by the programmer when theaccess
occur by means of pointer variables.

Due to hard performance constraints in this application
domain, it is not surprising that DSP designers have added
hardware features which enable fast address computation.
These features are present in almost every commercial DSP

1Work partially supported by Brazilian Council for Research and De-
velopment (CNPq) under Proc.204033/87.0 and Institute of Computing,
UNICAMP, Brazil.

2Supported by NSF Award MIP 9457396.

processor. They are, in general, based on an Address Gen-
eration Unit (AGU) which contains a number of address
registers and an arithmetic unit that can perform basic arith-
metic operations such as increment/decrement. The major
goal of a compiler when optimizing address computation
should be to guarantee that this architectural feature is ef-
fectively used by the source program.

2. Addressing Mode Design
In order to make effective use of indirect addressing,

some DSP processors (e.g. TMS320C25 processor) use im-
plicit indirect addressing mode instructions. Consider for
example the following Instruction Set Architecture (ISA)
model.

(a) I <AR,ARP>
(b) B <ARP>
(c) S <ARP>

In instructions of type (a)I represents the instruction op-
code, AR is the address register used by the instruction
to access one of its operands, and ARP the value of the
next selected AR after the instruction is finished. In in-
structions of type (b)B represents a conditional branch and
ARP again is the next AR. In order to give full flexibility to
the programmer, an instruction to explicitly set the next se-
lected AR, like instruction (c), is usually provided. An ad-
ditionalS < ARP > is used when the programmer needs
to explicitly setARP pointing to the AR required by a par-
ticular instruction. In the next section we propose an algo-
rithm which guarantees that only a singleS < ARP > is
required for any program which uses implicit indirect ad-
dressing instructions, provided that the target ISA satisfies
a specific implementation for the branch instruction.

2.1. Minimizing the ARP Overhead

Let B < ARP > be a conditional branch instruction in
the target processor ISA. Assume thatcondandlabelare re-
spectively the condition tested by the branch instruction and

the address of the instruction executed next ifcondholds
true. Assume also that the branch instruction execution fol-
lows the machine algorithm below, wherePC is the archi-
tecture program counter.

Branch (cond)
begin

if (cond) then
PC label;
ARP AR;

else
PC PC + 1;

endif;
end

Theorem 1 (Branch Theorem) If the Branch algorithm
above is used to implement the conditional branch instruc-
tion in the target architecture, then a single instructionS <

ARP > will be required for any program which uses im-
plicit indirect addressing mode instructions.

Proof. Let Ii < ARi; ARPi >, Ij < ARj ; ARPj > and
Ik < ARk; ARPk > be three indirect addressing mode in-
structions andB < ARl > a conditional branch instruction
in the target architecture. Now we must consider two cases:

(a) Assume thatIi andIj are instructions in the sameba-
sic block2 such thatIj followsIi in program order, and
there exist no other indirect addressing instructions in
between them (Fig. 1(a)). In this case by making
ARPi = ARj one can satisfy the AR requirement of
instructionIj after the execution of instructionIi.

(b) Assume now thatIi, Ij andIk are instructions in dif-
ferent basic blocks, namelyBi, Bj andBk, such that
Bj andBk are the successors ofBi as in Fig. 1(b).
Notice that all instructions in basic blockBj (Bk), but
the first one, will have their AR requirements satisfied
by instructions which precede them within the basic
block. In this case we have only to consider the first
indirect addressing instruction in basic blockBj (Bk),
which we assume to beIj (Ik). Without loss of gen-
erality consider also thatIi is the last indirect address-
ing instruction in basic blockBi. Now suppose that
the branch instruction at the end of basic blockBi was
implemented using the algorithmBranch. In this case,
if the branch is taken, by makingARPl = ARk, then
the instructionIk will have its address register require-
ment satisfied. On the other hand, if the branch falls
through, thenaccording to the algorithmBranch the

2A basic blockis a sequence of consecutive instructions in which the
flow of control enters at the beginning of the sequence and leaves at the
end without halt or deviation except at the end.

ARP will not be updated. Hence, by makingARPi =

ARj one can also satisfy the address register require-
ment of instructionIj. Here we restrict ourselves to
two-way branch instructions and structured programs
only.

Ik < IRk, IRPk >

TF

Ii < IRi, IRPi >

Ij < IRj, IRPj >

B < IRPl >

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

(a) (b)

Ij < IRj, IRPj >

Ii < IRi, IRPi >

Bi

Bj Bk

Figure 1. Branchalgorithm and ARP setup

All other situations (if-then-else, for , while statements and
their composition) not included in cases (a) and (b) above
can be reduced to those two cases by applying data-flow
analysis in the program Control-FlowGraph (CFG). Finally
notice that only oneS < ARP > instruction will be re-
quired in order to satisfy the AR requirement of the first in-
direct addressing instruction in the first basic block of the
program, or in case this does not exist, to set the AR for
the first indirect addressing instruction that can be reached
from the beginning of the program, by following only fall-
through paths ateach conditional branch. 2

From the proof of Theorem 1, one can derive a simple
linear time algorithm to determine the ARP field of each in-
direct access and branch instruction.
Example 1 Consider, for example, the program fragment
shown in Fig. 2(a). Notice that pointer variablesa, b and
c are used to copy variablesx, y andz into memory. The
CFG corresponding to this program is shown if Fig. 2(b).
In this program segment there exist three basic blocksB1,
B2 andB3. Assume that address registersAR1, AR2 and
AR3 are respectively allocated to variablesa, b andc. Let
instruction�a be the last indirect access in basic blockB1.
Also let instruction�b (�c) be the first indirect access in-
struction in basic blockB2 (B3). The ARP has to be prop-
erly set before instructions�b and�c are executed in order
to guarantee that the correct address register is used when
required. This can be done by making instruction�a set
its ARP to point toAR3 and the branch instruction ARP to
point toAR2. Notice that if the branch falls-through, then
the ARP is not updated by the branch instruction and at the
start of basic blockB3 it is correctly pointing toAR3. Sim-
ilarly if the branch is taken, the ARP is updated to point to
AR2 just before instruction�b is executed.

*a = x;
if (cond) then

*b = y;
endif;
*c = z;

(a)

a < 1,3 >

B < 2 >

b < 2,3 >

c < 3,4 >

FT

(b)

B2

B1

B3

Figure 2. (a) Program example; (b) and its cor-
responding CFG

Although the idea behind this approach is extremely sim-
ple, the TMS320C25 DSP, which uses implicit indirect ad-
dressing mode instructions, fails to make effective use of
it. In the TMS320C25 the value of the next ARP is always
loaded, when specified in a branch instruction, regardless
of the result of the branch condition [1]. The improvements
that could have been achieved from the proposed instruc-
tion design would certainly pay-off. Consider for example
the programadpcm, a large speech compression algorithm
from the DSPstone benchmark suite [2]. When the TI com-
piler generates assembly code for this program it produces
100 instructions ouf of 2170, whose only purpose is to up-
date the contents of the ARP. Some of these instructions
(47) can be eliminated by using the approach described in
part (a) of Theorem 1. Unfortunately a large number of
these (53) are due exclusively to the design choice of the
branch instruction. It may be possible that the implementa-
tion of the proposedBranchinstruction impacts the proces-
sor cycle time. This does not seem to be the case though,
based on the information available in [1].

3. Array Index Allocation
In this section we formulate the problem and propose a

solution for the task of allocating virtual ARs to array ac-
cesses which are part of the body of loop statements. The
goal here is to take advantage of the auto-increment (decre-
ment) properties of the AGU such as to perform efficient
access to array elements.

Assume a code generation approach in which indexed
array elements within loops are not decomposed into its
atomic operations. Assume a single loop construct where
induction variablei is linearly updated by the integer quan-
tity s (loop step), s 6= 0, and for which the loop bound-
aries are statically defined integer quantities. Consider, for
example, the loop of Fig. 3 wheres = 1 and the loop
trip-count is N . The majority of DSP programs use well-
defined loop constructs like the one just described.

Definition 1 Let access(m) = n be the function which
maps an instance of array elementm into n, wheren =

1; 2; : : : is the order of the array element in the code se-
quence resulting after the instructions are scheduled. We
say thatn is an access of array elementm.

Definition 2 Let n1 andn2 be array accesses. Accessn1
(n2) is said smaller (larger) thann2 (n1), denoted byn1 <
n2 (n1 > n2), if and only ifn1 (n2) precedesn2 (n1) in
schedule order.

Example 2 In the loop of Fig. 3(b) each time an array el-
ement is used we associate a number in parenthesis corre-
sponding to the order the element isaccessed in the pro-
gram. This number is the access of that array element. For
exampleaccess(a[i + 1]) = 2.

Consider that the array indexes within the loop are affine
functions of the typek � i + p, wherek andp are integer
quantities. Assume in the following analysis thatk = 1.
This assumption is not a serious restriction, since the in-
dexes of the majority of array accesses in DSP programs are
affine functions of this type. When mutidimensional array
elements are present, array accesses can be usually reduced
to this simple case with the help of induction variable elim-
ination algorithms [3]. Observe that the goal here is to allo-
cate the minimum number of ARs such as to address all the
array accesses within the loop. In this case it is desirable
to maximize the number of accesses that can share a single
AR. In order to identify the possibility of sharing between
two access we define the concept ofindexing distance.

Definition 3 Let n1 and n2 be array accesses. Let
index(n) be a function which takes accessn and returns
the index associated with that access. The indexing dis-
tance between accessesn1 andn2 is the positive quantity:

d(n1; n2) =

�
jindex(n2)� index(n1)j if n1 < n2
jindex(n2)� index(n1) + sj if n1 > n2:

Example 3 Consider for example the array accesses of
Fig. 3(a). In this case, as in the majority of loops in DSP
programs, steps = 1. The indexing distanced(1; 4) =

ji�(i�2)j = 2, implies that no auto-increment (decrement)
operation can be used to update the address register allo-
cated to access 1, such that it ends up pointing to the data
requested by access 4. On the other hand sinced(4; 1) = 1

an auto-decrement operation can be used to redirect the ad-
dress register associated to access 4 such that it points to ac-
cess 1. Notice that this will occur when access 1 is reached
from access 4 across consecutive loop iterations.

Definition 4 An indexing graph (IG) is a directed graph
where each node corresponds to an array access, and there
exist an edge(n1; n2) if and only ifd(n1; n2) � jsj.

1

4

23

5

6

fir (i = 2; i < N+2; i++)
{
 a [i - 2] (1)
 a [i +1] (2)
 a [i - 1] (3)
 a [i] (4)
 a [i + 2] (5)
 a [i - 1] (6)
}

(a) (b)

AR0

AR1

Figure 3. (a) Typical loop construct in DSP
programs; (b) Corresponding IG

There exists an edge(n1; n2) in the IG when AGU opera-
tions can be used to update the index register associated to
accessn1, such that it points to the data associated to the
accessn2.
Example 4 The IG of Fig. 3(b) was built from the array ac-
cesses patterns in the body of the loop of Fig. 3(a). Observe
that some edges in the IG, e.g.(3; 4), captures the possibil-
ity for auto-increment (decrement) between array accesses
in scheduling order. Other edges, e.g.(6; 1), identify auto-
increment (decrement) operations which can be performed
across loop iterations.

3.1. The Array Index Allocation Problem

It is a consensus among DSP programmers that array ac-
cesses ought to be transformed into pointer operations. The
main reason for that is the inability of compilers to per-
form efficient allocation of ARs in the presence of array
accesses. Although researchers have been addressing this
issue [4], transformation into pointers is still considered the
technique of the choice.

Array Index Allocation is the problem of allocating vir-
tual address registers to array accesses within loops such
that the total number of virtual address registers is mini-
mized. The importance of this problem comes from the fact
that the majority of array accesses in DSP algorithms occur
within finite loops, which have linearly updated induction
variables and for which the boundaries can be statically de-
fined at compiling time. We assume here an architectural
model, as that in Sec. 1, where an Address Generation Unit
(AGU) is available with auto-increment (decrement) opera-
tions. The following approach is not restricted for the case
of increment (decrement) though. Notice that the definition
of indexing distance also accommodatesnon-unitary AGU
operations.

Definition 5 A pathni ! nj in the IG is a sequence of
distinct arrays accesses(ni; ni+1; : : : ; nj), such thatnk <

nk+1, i � k � j � 1, wherei; j = 1; 2; : : :.

Definition 6 A cycle in the IG is a sequence of
nodes (ni; ni+1; : : : ; nj; ni) such that subsequence

(ni; ni+1; : : : ; nj) forms a path in the IG, where
i; j = 1; 2; : : :.

A path in the IG corresponds to the allocation of the same
AR to a sequence of array accesses. Similarly, a cycle indi-
cates that the same AR can be used not only for accesses in
program order, but also by one more access in the next loop
iteration. The problem of minimizing the number of virtual
address registers given an IG can be formulated as a graph
optimization problem as follows:

(IG Covering) Given an IG determine the disjoint
path/cycle cover of the graph which minimizes the total
number of paths and cycles. Assume for the purpose of this
problem that a node is a degeneratedcycle of zero length.

Notice that not all cycles are allowed in the cover above.
According to Definition 6 a cycle can only contain a sin-
gle backward edge, i.e. an edge fromnj to ni wherenj >

ni. The reason for this is that cycles should reflect auto-
increment (decrement) operations across a single iteration
and not across multiple iterations. Each path and cycle in
the resulting cover corresponds to an address register. The
formulation of IG Covering does not consider the cost of
the instruction to reset the AR at thetail of a path, such that
it can be used by the access atheadof the path.

The problem above is similar to the minimum disjoint
cycle cover of a graph (MDCC). The number of disjoint cy-
cles which cover the nodes of a graph is know as theHamil-
tonian cycle index. Determining the minimum Hamilto-
nian cycle index of a graph has been shown to be NP-
complete [5]. Cycles in a cover for the MDCC problem, un-
like cycles for the IG Covering, can contain more than one
backward edge. Although we have no proof at this point,
we believe that IG Covering is NP-hard.

1

4

23

5

6

Figure 4. Solving the MDPC for an acyclic IG

Example 5 Consider the IG showed in Fig. 3(b). Cover-
ing the IG in that case produces a two cycle cover which is
represented in bold on Fig. 3(b). Each cycle correspond to
a virtual address register (AR0 andAR1).

Given that IG Covering is possibly NP-hard we have
been studying heuristics to tackle this problem. The most
obvious one is to formulate the problem such that auto-
increment (decrement) operations across loop iterations are

not permited as in Fig. 4. As a result of that the IG be-
comes acyclic, and the original problem is reduced to the
one of determining the minimum node-disjoint path cover-
ing of the graph (MDPC), for which there exist aO(n) so-
lution [6], wheren is the number of nodes in the IG.
Example 6 Solving the MDPC for the acyclic IG of Fig.
4 results in paths(1; 3; 4; 6) and(2; 5). Cycles can still be
identified in this case by computing the indexing distance
between the tail and the head of a path. For example, since
d(6; 1) = 0 � 1 (d(5; 2) = 0 � 1) then virtual regis-
terAR0 (AR1) can be used, at the tail of its corresponding
path, to point to the data accessed at the head of the path. In
this case the heuristic approach produces the same result as
the exact solution in Example 5.

4. Auto-Increment Optimization

Using pointer variables to access data-stream elements
is a common operation in DSP programs. Consider for ex-
ample the program fragment in Fig. 5 extracted from the
DSPstone benchmark kernelfir.c. In this program pointer
variablespx and ph are used to initialize the contents of
an array. Let us consider the expression DAG generated

(1) for (i = 0; i <= LENGTH; i++)
(2) f
(3) *px++ = i;
(4) *ph++ = i;
(5) g

Figure 5. Part of the fir.c DSPstone bench-
mark kernel

from statement (3). By using the tree-based code genera-
tion approach in [7], one can dismantle this DAG into ex-
pression trees using two different approaches (Fig. 6(a) and
(b)). In Fig. 6(a)(b) nodes labeledpx are used to repre-
sent operationsread px andwrite px, nodestr takes the
value contained at memory positioni and stores it at the
memory position pointed bypx, and the a Write After Read
(WAR) constraint edge is used to enforce the original post-
increment behavior in the source program.

In the first approach (Fig. 6(a)) treeT1 contains the op-
erations used to perform the increment ofpx andT2 those
required for copying variablei. The total cost of pseudo-
assembly code corresponding to treesT1 andT2 (Fig. 6(b))
was 6 instructions. In another approach operationstr and
incrementpx are matched by a new instructionstri (store
and increment) as it is shown in Fig. 6(b). The total
cost of the resulting pseudo-assembly code Fig. 6(b) was
4 instructions. Observe that if all auto-increment (decre-
ment) addressing instruction can be compacted this way,
then no overhead will exist due to address computation. We

have introduced patterns which enable matching of auto-
increment (decrement) operations in the expression DAG.
These patterns are specified using primitiveIntermediate
Representation(IR) operations resulting in improved retar-
getability. The results show that this optimization consid-
erably improves the code quality of benchmark DSP pro-
grams.

 1 ipx

str

px

px

WAR

T2

T1

 1 ipx

str

px

WAR

stri

T1:
AR1 = px

R = i

�IR1 = R

T2:
AR1 = px

AR1 = AR1 + 1

px = AR1

(a)

T1:
AR1 = px

R = i

�IR1 + + = R

px = AR1

(b)

Figure 6. (a) Dismantling the expression
DAG into trees; (b) Pattern matching auto-
increment operation

5. Loop Induction Variable Optimization
Address registers may be used as general-purpose reg-

isters, although in a very limited context. In this opti-
mization, an address register may be allocated to hold the
loop induction variable, thus obviating the need toaccess
this variable in memory. The TMS320C25 ISA features a
BANZ instruction (Branch on Auxiliary Register Not Zero)
which was specifically designed to improve the efficiency
of loops. When this instruction is used it becomes pos-
sible to test and modify the loop induction variable using
just one instruction. We have implemented this optimiza-
tion by restructuring loops at the control-flow-graph level, a
machine-independent representation of the program. A vir-
tual address register was allocated to each induction vari-
able in a loop whenever this was possible. The results of
this optimization in Sec. 7 show a considerable improve-
ment in code quality due to this optimization.

6. Global Address Register Allocation
In this section we use a register coloring technique to al-

locate physical address registers to the virtual address reg-
isters used in Sections 3, 4 and 5. Our goal here is to

perform physical allocation for address registers only after
all optimizations for address computation have been per-
formed. Local address register allocation has been con-
sidered in [8]. Unfortunately not much consideration has
been given to global address register allocation, particularly
for DSP architectures. Our approach builds an interference
graph where eachnode represents a virtual AR and an edge
(v1; v2) between virtual ARsv1 andv2 indicates that virtual
ARsv1 andv2 have intersecting lifetimes, and should there-
fore be allocated to different physical address registers. We
currently use Chaitin’s algorithm [9] to perform graph col-
oring of the interference graph, where the number of colors
used corresponds to the number of available physical ad-
dress registers. Addressing operations in DSP programs are
largely used to perform sequential accesses. Hence it is rea-
sonable to believe that the majority of data accesses through
address registers will occur within loop constructs. In this
case a better approach is to use the Callahan-Koblenz algo-
rithm [10]. In their work, a register allocation technique is
proposed based on hierarchical coloring, which gives pri-
ority to allocate inner loop variables. This approach is not
currently implemented.

7. Experimental Results

We have used the approach described in the previous
sections to compile a set of kernel programs from the DSP-
stone benchmark suite. The results are listed in Table 1.
The metric used to measure the code quality is code size,
since it reflects an important goal of compiling for DSPs.
ColumnUnopt. in Table 1 shows the number of assembly
instructions after compiling the program using no address
register optimization techniques. In columnInc/Dec one
can find the final assembly code size when the approach de-
scribed in Sec. 4 is used. The average improvement was
13% and in all but three cases the improvement was larger
or equal to 10%. In allprograms the address computation
associated with the auto-increment (decrement) operation
was compacted into datapath instructions. In columnARs
we have listed the number of address registers used by the
address register allocator. Notice that the target architecture
(TMS320C25) has 8 ARs and that at most 7 ARs were used
in all kernel programs. It is possible though that for larger
application programs 8 ARs are not enough and spilling op-
erations have to be performed. ColumnLoop Var. in Ta-
ble 1 shows the size of the final code after loop induction
variable allocation is performed. The average improvement
with respect to the previously optimized code was 12%.
The solution proposed in Sec. 3 is currently being imple-
mented and experimental results are not yet available.

8. Conclusions
In this paper we have addressed the problem of improv-

ing the code quality for address computation in DSP pro-
grams. The main contributions of this paper are: (a) an

Program Unop. Inc/Dec Loop Var. ARs

fir 104 89 14% 82 8% 4
convolution 73 61 16% 51 16% 3
matrix 160 153 4% 128 16% 5
matrix 1x3 56 51 9% 41 20% 3
dot product 56 50 11% 45 10% 4
n real updates 113 89 21% 79 11% 4
fir2dim 294 246 16% 184 25% 7
complexupdate 86 83 4% 83 0% 4
n complexupdates 191 142 26% 137 4% 5
iir N biquad 160 144 10% 131 9% 6

Table 1. Experiments with Address Register
Optimizations

efficient branch instruction design for implicit indirect ad-
dressing mode instructions; (b) a formulation and solution
for the array index allocation problem. We are currently in
the process of investigating better solutions for this prob-
lem.

References

[1] Texas Instruments, Inc.Digital Signal Processing Applica-
tions with the TMS320 Family, 1990.

[2] V. Zivojnovic, J.M. Velarde, and C. Scl˚aager. DSPstone, a
DSP benchmarking methodology. Technical report, Aachen
University of Thecnology, August 1994.

[3] A.V. Aho, R. Sethi, and J.D. Ullman.Compilers, Principles,
Techniques and Tools. Addison Wesley, Boston, 1988.

[4] C. Liem, P. Paulin, and A. Jerraya. Address calculation for
retargetable compilation and exploration of instruction-set
architectures. InProc.33rd Design Automation Conference,
pages 597–600, June 1996.

[5] M.R. Garey and D.S. Johnson.Computers and Intractabil-
ity. W. H. Freeman and Company, New York, 1979.

[6] F.T. Boesch and J.F. Gimpel. Covering the points of a di-
graph with point-disjoint paths and its application to code
optimization. Journal of the ACM, 24(2):192–198, April
1977.

[7] G. Araujo, S. Malik, and M. Lee. Using register-transfer
paths in code generation for heterogeneous memory-register
architectures. InProc.33rd Design Automation Conference,
pages 591–596, June 1996.

[8] K. Kennedy. Design and Optimization of Compilers.
Prentice-Hall, 1972. R. Rustin, editor.

[9] G. Chaitin. Register allocation and spilling via graph color-
ing. In Proc. of the ACM SIGPLAN’82 Symposium on Com-
piler Construction, pages 98–105, June 1982.

[10] D. Callahan and B Koblenz. Register allocation via hierar-
chical graph coloring. InProc. of the ACM SIGPLAN’91
Conference on Programming Language Design and Imple-
mentation, pages 192–202, June 1991.

	CD-ROM Home Page
	ISSS Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

