
Size-Constrained Code Placement for Cache Miss Rate Reductiony

Hiroyuki Tomiyamaz Hiroto Yasuura
Department of Computer Science and Communication Engineering
Graduate School of Information Science and Electrical Engineering

Kyushu University
6–1 Kasuga-koen, Kasuga, Fukuoka 816 Japan

Abstract

In design of an embedded system with a cache, it is
important to minimize the cache miss rate to reduce the
power consumption as well as to improve the performance of
the system. We have previously proposed a code placement
method which minimizes miss rates of instruction caches
[10], but it makes code size larger. In most cases, code
size is a tight design constraint. In this paper, we propose
a size-constrained code placement method which minimizes
cache miss rates under constraint on code size given by
system designers. Experimental results show that the size-
constrained code placement method achieves 36% decrease
in cache misses with only 1.6% increase in code size
compared with a naive placement, while the previousmethod
proposed in [10] decreases 36% of cache misses with 25%
increase in code size.

1. Introduction

Many recent mid- to high-range embedded systems such
as communication and multimedia systems consist of RISC
processors with an on-chip cache. In design of an embedded
system with a cache, it is important to minimize the cache
miss rate in terms of maximizing the system performance
and minimizing power consumption. Cache misses make
the execution speed of the program slow because they
require extra-cycles to transfer code or data between the
cache and the main memory. Furthermore, cache misses
consume much power not only because the main memory is
activated but also because off-chip busses are driven.

We have proposed a code placement method to minimize
miss rates of instruction caches [10]. We have defined
the code placement problem and formulated it as an inte-
ger linear programming (ILP) problem. An optimal code

y This work has been partially supported by Grant in Aid for Scientific
Research of the Ministry of Education, Science and Culture of Japan
(No.9132).

z A Research Fellow of the Japan Society for the Promotion of Science.

placement can be obtained by solving the ILP problem.
Our experiments show that our method achieves about 35%
(max 45%) decrease in cache misses.

Although the method proposed in [10] achieves great
decrease in cache misses, we have two problems. One
problem is increase in code size. Our experiments show
that code size after optimization is 25–29% larger than
before optimization. Increase in code size is a serious
problem in embedded system design because larger main
memory is required to store the code. In most cases
of embedded software design, code size is the one of
the most critical design constraints. Another problem is
high computation cost for the optimization. Our method
requires long computation time to find an optimal or quasi-
optimal solution for the ILP problem. In embedded software
design, the quality of object code is much more important
than compilation time because embedded software is rarely
modified after it is stored in ROM. However, this does not
mean that very long compilation time for the optimization
is acceptable. Quick estimation of the system performance
is very important to optimize the whole system, but long
compilation time makes it difficult.

In this paper, we propose a technique, calledtrace merg-
ing, which saves both increase in code size and compilation
time. Trace merging is used to minimize the cache miss
rates under constraint on code size given by system design-
ers. The size-constrained code placement can improve the
system performance and the power consumption without
additional hardware.

The organization of this paper is as follows: Section
2 summarizes our code placement method previously pro-
posed, and Section 3 proposes a size-constrained code
placement method. Experiments are shown in Section 4.

2. Previous Work

2.1. Overview

In this section, we summarize our code placement method
proposed in [10].

Function A Function B

10

5

15

10

1

0.2

0.2

0.8

15

0.8

(a) Weighted control flow graph (b) Traces

b0

b1 b2

b3

b4

b6

b0 b1

b2 b3

b5

b5

b7

b6b4

b7

b8

b8

Figure 1. Weighted control flow graph and
traces

We assume that the target system has a Harvard architec-
ture whose instruction cache and data cache are separated
each other physically as well as logically. We also as-
sume that the associativity of the instruction cache is direct
mapped or set associative with the least recently used (LRU)
algorithm for replacement.

The code placement method uses profile information on
the programs to be placed in a main memory. The profile
information is one or more sequence(s) of basic blocks
which are accessed when typical input data is given to the
programs. The code placement method consists of two
techniques,trace selectionand trace placement. Trace
selection is not new idea. It was proposed in [4]. After
trace selection, trace placement is applied, which is the key
of the method.

2.2. Trace Selection

For given assembly code of the programs and the profile
information, a weighted control flow graph is constructed
firstly. Figure 1 (a) shows a weighted control flow graph
of a program with two functions,A andB. Each node
in the graph, denoted bybi, represents a basic block, and
each directed edge represents a control dependency between
basic blocks. A number associated with each edge denotes
the ratio of frequency of edge traverse when the program
is executed once, which is calculated from the profile
information.

In Figure 1 (a), it is more probable thatb2 will be
executed afterb0 than b1 will. In this case,b2 should be
placed just afterb0 because it is highly possible that the two
basic blocks are on the same cache line. Due to the same
reason,b4 should be placed beforeb3, b5 afterb3, b7 afterb6,
andb8 afterb7. As a result, the weighted control flow graph
(a) is partitioned into four paths (linear subgraphs) shown
in Figure 1 (b). Each path is called atrace1

1The termtracewas introduced by Fisher in [2] which addresses global

b1

b3

b4

b5

b8

b7

b6

b2

b0

p1

p2

p3

p4

p5

p6

p7

p0

(a) Pseudo-memory (b) Main memory

m1

m2

m3

m4

m5

m6

m7

m0

b2

b0

b8

b7

b1

b6

b3

b4

b5

Figure 2. Trace placement

Note that the last instruction of each trace is an uncon-
ditional jump operation or an exit of the function. This
property enables us to place traces in arbitrary order.

2.3. Trace Placement

In [10], we have introduced a termpseudo-memory
which means an imaginary main memory. We call a block
in a pseudo-memory which is mapped onto a cache line a
pseudo-memory block. Similarly, we call a block in the real
main memory amemory block.

First, traces are placed in the pseudo-memory in arbitrary
order, but different traces must be placed in different pseudo-
memory blocks. In other words, each trace is placed at the
top of a pseudo-memory block. This restruction requires a
lot of fragments in the main memory where no instruction is
placed. The fragments are unusable because they are very
small. As a result, the code size increases.

We show an example of trace placement in a pseudo-
memory in Figure 2 (a), wherepi’s denote pseudo-memory
blocks. Then, trace placement can be considered as a match-
ing problem between pseudo-memory blocks and memory
blocks which minimizes the cache miss count. Arrows in
Figure 2 between pseudo-memory blockspi’s and memory
blocksmi’s show an example of a matching.

We have formulated the trace placement problem to
minimize cache miss count as an ILP problem in [10]. Let
xi denote the index number of the memory block where
pi matches. The objective function is expressed by a
function of xi’s which can be linearized. The constraints
are expressed by linear equations ofxi’s. In this paper, due
to the limited space, we only explain the key of the ILP
formulation.

microcode compaction.

After placing trace in the pseudo-memory, a sequence of
basic blocks to be executed, which is given as profile in-
formation, is translated into a sequence of pseudo-memory
blocks to be accessed. The sequence is called theaccess
sequence of pseudo-memory blocksor simply access se-
quence. For example, let us use the program illustrated in
Figure 1 and Figure 2 and assume that functionB is called
at the end of basic blockb4 in functionA. The profile infor-
mation on the program may contain the following sequence
of basic blocks.

(b0; b2; b3; b4; b6; b7; b8; b3; b4; b6; b8; b3; � � � ; b3; b5)

According to Figure 2 (a), the above sequence is translated
into the following access sequence.

(p0; p1; p3; p5; p6; p7; p3; p5; p7; p3; � � � ; p3; p4)

In the access sequence, the three pseudo-memory blocksp5,
p6, andp7 appear between the first and the second appear-
ance ofp3. If p3 is displaced by the three pseudo-memory
blocks, a cache miss occurs at the second appearance ofp3.
Let Nset andNway denote the number of cache sets and
cache ways, respectively. Ifx5 = x3 (mod Nset), p5 is
mapped onto the same cache set asp3. If there are more than
or equal toNway pseudo-memory blockspi’s in fp5; p6; p7g

satisfyingxi = x3 (mod Nset), p3 is displaced from the
cache. Hence,xi’s should satisfy the following inequality:

j f pi j pi 2 fp5; p6; p7g andxi = x3 (mod Nset) g j

< Nway (Eq.1)

Whenpi appearsni times in the access sequence, there existP
i(ni � 1) inequalities whichxi’s should satisfy, such as

(Eq.1). The objective of the ILP problem is to findxi’s
satisfying as many inequalities as possible.

There are two kinds of constraints in the formulation.

1. All the pseudo-memory blocks must have matches.

2. If pi and pi+1 have the same trace in themselves,
xi = xi+1 � 1.

Without the second constraint, one trace may be placed
separately in the main memory.

For given programs and the profile information, an opti-
mal placement can be obtained by solving the ILP problem.

2.4. Experimental Results and Problems

Experiments using two benchmark programs, GNU grep
2.0 and GNU sed 2.05, show that our code placement
method achieves 35% (max 45%) decrease in cache misses
compared with a naive placement [10]. The cache miss rate
after code placement optimization is lower than the miss
rate with the double size cache without optimization. In the

experiments, a greedy algorithm is used for trace selection,
and a local search algorithm is used for trace placement.

Experimental results also show that our method has
two problems. One problem is increase in code size.
Experiments show that code size after optimization is 25–
29% larger than before optimization. Increase in code size
is a serious problem in embedded system design. If the
code size becomes larger than the main memory size, there
exists no solution for the ILP problem and the designers
must give up optimization of code placement. Alternatively,
the designers decide to use larger main memory. In any
case, the cost/performance of the designed system becomes
worse.

The other problem is high computation cost for the
optimization. Our implementation for trace placement
requires 3–6 hours for GNU grep 2.0 and 10–30 hours
for GNU sed 2.05 to output a locally optimal solution on
SPARC Station 5. In embedded software design, the quality
of object code is much more important than the compilation
time because embedded software is rarely modified after
stored in ROM. However, this does not mean that very long
compilation time is acceptable. Quick estimation of the
system performance is very important to optimize the whole
system, but long compilation time makes it difficult.

The code placement method proposed in [10] requires
a new technique to save both increase in code size and
compilation time.

3. Size-Constrained Code Placement

In this section, we propose a technique, calledtrace
merging, which saves increase in code size and compilation
time. Next, we propose a size-constrained code placement
method which minimizes cache miss rates under given
constraint on code size.

3.1. Trace Merging

As explained in Section 2.3, the code placement method
proposed in [10] requires a lot of unusable fragments in a
main memory, and makes code size larger. LetSline and
si denote the size of a cache line and the size of theith
trace, respectively. The total size of the unusable fragments
Sunused is expressed by the following equations:

Sunused =

X
i

unused(si) (Eq.2)

unused(si) =

8<
:

0 if res(si; Sline) = 0
Sline � res(si; Sline)

otherwise
(Eq.3)

where res(x; y) is defined as the residue ofx divided
by y, namely res(x; y) = z such that 0� z < y and
x = z (mod y). (Eq.2) and (Eq.3) suggest two approaches
to reducing increase in code size.

Unusable
fragments

p1

p2

p3

p0

(a) Before trace merging (b) After trace merging

t0

t1

p1

p2

p3

p0

t00

Figure 3. An example of trace merging

1. To make the number of traces small. A half number of
traces will result in a half increase in code size.

2. To makeres(si; Sline) be zero or close toSline. If the
size of each trace is a multiple of the cache line size,
code size does not increase.

The above approaches are realized by the following
technique, calledtrace merging:

After trace selection, to merge a couple of traces such
that the size of the newly created trace becomes a multiple
of the cache line size.

An example of trace merging is illustrated in Figure 3.
The two tracest0 and t1 are merged into a new tracet00.
As a result, the number of memory blocks required by the
program are reduced from 4 to 3.

As traces decreases, the cache miss rate may increase.
This is because, in the ILP formulation, there is a constraint
ensuring that a sequence of pseudo-memory blocks where
a trace is placed must be placed consecutively (See Section
2.3). If two traces are merged into one, one more constraint
equation for the ILP problem is derived. In usual, as
constraints for an ILP problem increase, the quality of a
solution for the problem becomes worse. Hence, we reach
the following policy for trace merging:

There should be more traces in the program. In other
words, the number of traces which are merged should be
small.

3.2. Size-Constrained Code Placement Al-
gorithm

Based on the discussions in Section 3.1, we propose an
algorithm for the size-constrained code placement. The
algorithm is shown in Figure 4. We use the following
notations in the algorithm:

Nmem The maximum number of memory blocks for
the programs.Nmem is the constraint on code
size given by system designers.

Sinst The instruction length of the CPU. If the CPU
has the variable instruction length,Sinst de-
notes the smallest one.

Sline The cache line size.
Nset The number of cache sets.
Nway The number of cache ways.
T A set of traces before trace merging.
Tmerged A set of traces after trace merging.
AP Assembly code of programs to be placed.
PI Profile information.

FunctionSizewith(T) returns the total size of traces in
T including the unusable fragments, andSizewithout(T)
returns the total size of traces inT excluding the unusable
fragments.

Here, we summarize the size-constrained code placement
algorithm.

(1) Perform trace selection, and setT to a set of traces.

(2) SetTmerged to �, move all traces with a multiple size
of the cache line inT to Tmerged, and setn to 2.

(3) If Sizewith(T [Tmerged) � Nmem, goto step (7).

(4) If there existsT 0 � T such thatjT 0j = n and that
Sizewithout(T

0
) is a multiple ofSline, goto step (6).

(5) Incrementn. If n > Sline=Sinst, merge all traces inT
into a new tracet0, join t0 into Tmerged, and goto step
(8). Otherwise, goto step (3).

(6) Merge traces inT 0 and create a new tracet0, remove
all traces inT 0 from T , and joint0 into Tmerged, and
goto step (3).

(7) Move all traces inT into Tmerged.

(8) Perform trace placement.

One of the merits of the size-constraint code placement
algorithm is that it can save not only the code size but
also the compilation time. In the algorithm, the trace
placement spends most of the total compilation time to
solve the ILP problem. Since traces are decreased by trace
merging, constraint equations in the ILP problem increase.
As constraints in the ILP problem increase, the computation
time becomes shorter. There is no need to solve the ILP
problem more than once because the constraint on code size
is satisfied before trace placement. Hence, the compilation
time is saved.

4. Experiments

We have applied the size-constrained code placement
method to a benchmark program. We vary the constraint
on code size, and calculate cache miss counts, miss rates,
and compilation time, for various cache organization. The
constraint on code size is given in terms of the number of
memory blocks for the program, denoted byNmem in the
previous section. The benchmark program is GNU grep

Table 1. Miss rate and computation time vary-
ing associativity

(A) 1-way set associative cache (direct mapped)
Nmem Misses Rate CPU time Traces

(a) 2,673 (85.5KB) 584 3.68% 17,382 sec 1,067
(b) 2,271 (72.7KB) 590 3.72% 7,121 sec 665
(c) 2,166 (69.3KB) 592 3.73% 6,159 sec 554
(d) — (68.2KB) 1,071 6.80% — sec —

(B) 2-way set associative cache
Nmem Misses Rate CPU time Traces

(a) 2,673 (85.5KB) 636 4.01% 11,923 sec 1,067
(b) 2,271 (72.7KB) 617 3.89% 4,992 sec 665
(c) 2,166 (69.3KB) 616 3.88% 5,040 sec 554
(d) — (68.2KB) 1,025 6.51% — sec —

(C) 4-way set associative cache
Nmem Misses Rate CPU time Traces

(a) 2,673 (85.5KB) 631 3.98% 20,187 sec 1,067
(b) 2,271 (72.7KB) 638 4.02% 5,216 sec 665
(c) 2,166 (69.3KB) 649 4.09% 3,806 sec 554
(d) — (68.2KB) 1,039 6.60% — sec —

(D) 8-way set associative cache
Nmem Misses Rate CPU time Traces

(a) 2,673 (85.5KB) 696 4.39% 22,612 sec 1,067
(b) 2,271 (72.7KB) 693 4.37% 3,197 sec 665
(c) 2,166 (69.3KB) 687 4.33% 6,101 sec 554
(d) — (68.2KB) 1,032 6.55% — sec —

2.02, and the target architecture is the SPARC architec-
ture. The experiments are performed on SPARCstation 5
(microSPARC-II, 85MHz, 32MB, Solaris 2.4).

First, we assume a 1K byte cache with 32 byte cache
lines, and vary the constraint on code size and the cache
associativity. Experimental results are shown in Table 1.
For each associativity,Nmem is set to 2,673, 2,271, and
2,166. When case (a), trace merging is not applied. This is
the case the previous code placement method proposed in
[10] is applied. When case (b), the range of variablen in the
size-constrained code placement algorithm is 1� n � 2. In
other words, only two traces are merged into one at a time.
When case (c), code size after optimization is minimum.
The case (d) shows the results of a naive placement. This
is the case no code placement optimization is applied. A
number in parentheses in the first column gives the code size
in terms of kilo bytes. The forth column in each table shows
the CPU time required to find a locally optimal solution for
the ILP problem in trace placement.

Next, we assume a direct mapped cache with 32 byte
cache lines, and vary the constraint on code size and the
cache size. Experimental results are shown in Table 2.

In Table 1 and Table 2, there is no significant difference

2The program is written in C with 12,436 lines including comments.

Table 2. Miss rate and computation time vary-
ing cache size

(A) 256 byte cache
Nmem Misses Rate CPU time Traces

(a) 2,673 (85.5KB) 1,198 7.55% 5,522 sec 1,067
(b) 2,271 (72.7KB) 1,203 7.58% 3,031 sec 665
(c) 2,166 (69.3KB) 1,206 7.60% 2,118 sec 554
(d) — (68.2KB) 1,701 10.81% — sec —

(B) 512 byte cache
Nmem Misses Rate CPU time Traces

(a) 2,673 (85.5KB) 865 5.45% 13,078 sec 1,067
(b) 2,271 (72.7KB) 880 5.55% 5,402 sec 665
(c) 2,166 (69.3KB) 890 5.61% 4,611 sec 554
(d) — (68.2KB) 1,355 8.61% — sec —

(C) 1,024 byte cache
Nmem Misses Rate CPU time Traces

(a) 2,673 (85.5KB) 584 3.68% 17,382 sec 1,067
(b) 2,271 (72.7KB) 590 3.72% 7,121 sec 665
(c) 2,166 (69.3KB) 592 3.73% 6,159 sec 554
(d) — (68.2KB) 1,071 6.80% — sec —

(D) 2,048 byte cache
Nmem Misses Rate CPU time Traces

(a) 2,673 (85.5KB) 438 2.76% 14,414 sec 1,067
(b) 2,271 (72.7KB) 436 2.75% 7,994 sec 665
(c) 2,166 (69.3KB) 432 2.72% 5,627 sec 554
(d) — (68.2KB) 693 4.40% — sec —

on cache miss count caused by the constraint on code size.
Under any constraint on code size, the size-constrained code
placement achieves about 36% decrease in cache misses on
average, compared with the naive placement. Table 2 shows
that the cache miss rate after code placement optimization is
lower than the miss rate with the double size cache without
optimization. On the other hand, as constraint on code size
is tighter, the CPU time becomes shorter because traces are
decreased.

Our experimental results show that trace merging can
reduce both code size and computation time keeping the
miss rate low. Further experiments using various embedded
software are required to validate our method.

When trace merging is not applied, code size is increased
by 25% compared with the naive placement. Even when
Nmem is the smallest, the size-constrained placement makes
code size 1.6% larger. In some cases, trace selection makes
code size larger. Let us consider the program shown in
Figure 5 (a). The naive placement places basic blocks in
the main memory in the order shown in Figure 5 (b). In
this case, no jump operation is required. But our method
select traces as shown in Figure 5 (c). In this case, a jump
operation is required at the exit ofb1. If only a little increase
in code size is not permitted, we should select traces such

that the number of traces is minimized, and apply trace
merging and trace placement.

5. Conclusion

In this paper, we have proposed a size-constrained code
placement method which minimizes miss rates of instruction
caches under constraint on code size given by system
designers. Experimental results show that our method
achieves 36% decrease in cache misses with only 1.6%
increase in code size. Our method can improve both the
system performance and the power consumption without
additional hardware cost.

In our experiments, there is no significant trade-off
between the code size and the cache miss rate. In future, we
will continue experiments using various embedded software.

Many embedded systems are real-time systems. In
design of real-time systems, it is important to minimize
the worst case execution time of programs. Our current
code placement method takes no account of the worst case
execution time. Development of a code placement method
for real-time systems is also one of our future works.

References

[1] A. V. Aho, R. Sethi, and J. D. Ullman.Compilers: Principles,
Techniques, and Tools. Addition-Wesley, 1986.

[2] J. A. Fisher. “Trace Scheduling: A Technique for Global
Microcode Compaction”. IEEE Trans. Computers, C–
30(7):478–490, July 1981.

[3] J. L. Hennessy and D. A. Patterson.Computer Architecture:
A Quantitative Approach. Morgan Kaufmann Publishers,
Inc., 2nd edition, 1996.

[4] W. W. Hwu and P. P. Chang. “Achieving High Instruction
Cache Performance with an Optimizing Compiler”. InProc.
of 16th Int’l Symp. on Computer Architecture, pages 242–
251, 1989.

[5] Y.-T. S. Li, S. Malik, and A. Wolfe. “Performance Estimation
of Embedded Software with Instruction Cache Modeling”.
In Proc. of ICCAD-95, pages 380–387, 1995.

[6] P. Marwedel and G. Goossens, editors.Code Generation for
Embedded Processors. Kluwer Academic Publishers, 1995.

[7] S. McFarling. “Program Optimization for Instruction Caches
”. In Proc. of 3rd Int’l Conf. on Architectural Support for
Programming Languages and Operating Systems, pages
183–191, 1989.

[8] S. McFarling. “Procedure Merging with Instruction Caches”.
In Proc. of Programming Language Design and Implemen-
tation, pages 71–79, 1991.

[9] SPARC International, Inc.The SPARC Architecture Manual
Version 8, 1992.

[10] H. Tomiyama and H. Yasuura. “Optimal Code Placement
of Embedded Software for Instruction Caches”. InProc. of
ED&TC96, pages 96–101, 1996.

[11] A. Wolfe. “Software-Based Cache Partitioning for Real-
Time Applications”. Journal of Computer & Software En-
gineering, 1(3):315–327, 1994.

/* Size constrained code placement */
SCCP (AP; PI;Nmem; Sinst; Sline; Nset; Nway)

f
T = TraceSelection(AP; PI);
Tmerged = SCTM(Nmem; Sinst; Sline; T);
TraceP lacement(AP;P I; Tmerged; Nmem;Nset;

Nway);
g

/* Size constrained trace merging */
subroutineSCTM(Nmem; Sinst; Sline; T)

f
Tmerged = �; n = 1;
while (Sizewith(T [Tmarged) � Nmem) f
T

0
= Select(n; T; Sline);

if (T 0
= �) f

n = n + 1;
if (n > (Sline=Sinst)) f

Merge all traces inT and create a new tracet0;
Tmerged = Tmerged [ft0g;
return (Tmerged);

g
g elsef

Merge all traces inT 0 and create a new tracet0;
T = T � T

0; Tmerged = Tmerged [ft0g;
g

g
Tmerged = Tmerged [T ;
return (Tmerged);

g

subroutineSelect(n; T; Sline)
f
T

0 = a subset ofT such thatjT 0j = n

and thatSizewithout(T 0) is a multiple ofSline;
return (T 0);

g

Figure 4. Size-constrained code placement
algorithm

1

5
1

(b)

b0 b0 b1

b2b1

b2

b0

b2

b1

(c)(a)

Figure 5. An example of trace selection which
makes code size larger

	CD-ROM Home Page
	ISSS Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

