Size-Constrained Code Placement for Cache Miss Rate Reductién

Hiroyuki Tomiyama' Hiroto Yasuura
Department of Computer Science and Communication Engineering
Graduate School of Information Science and Electrical Engineering

Kyushu University
6—1 Kasuga-koen, Kasuga, Fukuoka 816 Japan

Abstract placement can be obtained by solving the ILP problem.

; Our experiments show that our method achieves about 35%
In design of an embedded system with a cache, it is : .
(max 45%) decrease in cache misses.

important to minimize the cache miss rate to reduce the . .
. . Although the method proposed in [10] achieves great
power consumption as well as to improve the performance of , .
qecrease in cache misses, we have two problems. One

the system. We have previously proposed a code placemen

method which minimizes miss rates of instruction cachesproIOIem IS mcrease n C.Od.e S'.Ze' _Our expoerlments show
[10], but it makes code size larger. In most cases codethat code size after optimization is 25-29% larger than

o before optimization. Increase in code size is a serious
size is a tight design constraint. In this paper, we propose

a size-constrained code placement method which minimizeéjmIOIem in embedded system design because larger main

. . . . memory is required to store the code. In most cases
cache miss rates under constraint on code size given by . .
) . ._~of embedded software design, code size is the one of

system designers. Experimental results show that the size: i : . .
. . the most critical design constraints. Another problem is
constrained code placement method achieves 36% decreas

in cache misses with only 1.6% increase in code size
compared with a naive placement, while the previous method
proposed in [10] decreases 36% of cache misses with 25%
increase in code size.

ﬁigh computation cost for the optimization. Our method
requires long computation time to find an optimal or quasi-
optimal solution for the ILP problem. In embedded software
design, the quality of object code is much more important
than compilation time because embedded software is rarely
) modified after it is stored in ROM. However, this does not
1. Introduction mean that very long compilation time for the optimization

. . is acceptable. Quick estimation of the system performance
Many recent mid- to high-range embedded systems such s Q y P

L . . . IS very important to optimize the whole system, but lon
as communication and multimedia systems consist of RISC y Impor pimize y 9
. . . ompilation time makes it difficult.
processors with an on-chip cache. Indesign of an embedde(?

. L 2 In this paper, we propose a technique, cattage merg-
system with a cache, it is important to minimize the cache . . :) ; -
: : - ing, which saves both increase in code size and compilation
miss rate in terms of maximizing the system performance

S . : time. Trace merging is used to minimize the cache miss
and minimizing power consumption. Cache misses make . : : .
; rates under constraint on code size given by system design-
the execution speed of the program slow because they . . .
) ers. The size-constrained code placement can improve the
require extra-cycles to transfer code or data between the . .
system performance and the power consumption without

cache and the main memory. Furthermore, cache misses”, ..
. additional hardware.

consume much power not only because the main memory is R . . .
P y y The organization of this paper is as follows: Section

activated but also because off-chip busses are driven. ” .
... 2 summarizes our code placement method previously pro-
We have proposed a code placement method to minimize : . .
posed, and Section 3 proposes a size-constrained code

miss rates of instruction caches [10]. We have defined . . .
. . placement method. Experiments are shown in Section 4.
the code placement problem and formulated it as an inte-

ger linear programming (ILP) problem. An optimal code 2 Previous Work

t This work has been partially supported by Grant in Aid for Scientific .
Research of the Ministry of Education, Science and Culture of Japan 2.1. Overview
(N0.9132). . . .
t AResearch Fellow of the Japan Society for the Promotion of Science. N this section, we summarize our code placement method

proposed in [10].

Function A Function B

(b0 [02] [Da] [6]

b

(a) Weighted control flow graph (b) Traces

Figure 1. Weighted control flow graph and

traces
(a) Pseudo-memory (b) Main memory

Figure 2. Trace placement

We assume that the target system has a Harvard architec-
ture whose instruction cache and data cache are separated

each other physically as well as logically. We also as- Ngte that the last instruction of each trace is an uncon-
sume that the associativity of the instruction cache is direct gjtional jump operation or an exit of the function. This

mapped or set associative with the least recently used (LRU)property enables us to place traces in arbitrary order.
algorithm for replacement.

The code placement method uses profile information on2.3. Trace Placement
the programs to be placed in a main memory. The profile
information is one or more sequence(s) of basic blocks
which are accessed when typical input data is given to the
programs. The code placement method consists of two . ,
techniques,trace selectionand trace placement Trace pseydo-memory blociSimilarly, we call a block in the real
selection is not new idea. It was proposed in [4]. After main memory anemory bl(_)Ck i _
trace selection, trace placement is applied, which is the key ~ First, traces are placed in the pseudo-memory in arbitrary

In [10], we have introduced a termpseudo-memory
which means an imaginary main memory. We call a block

in a pseudo-memory which is mapped onto a cache line a

of the method. order, but differenttraces must be placed in different pseudo-
. memory blocks. In other words, each trace is placed at the
2.2. Trace Selection top of a pseudo-memory block. This restruction requires a

For given assembly code of the programs and the profile!0t of fragments in the main memory where no instruction is
information, a weighted control flow graph is constructed Placed. The fragments are unusable because they are very
firstly. Figure 1 (a) shows a weighted control flow graph Small. As aresult, the code size increases.
of a program with two functions4 and B. Each node We show an example of trace placement in a pseudo-
in the graph, denoted bly;, represents a basic block, and memory in Figure 2 (a), where's denote pseudo-memory
each directed edge represents a control dependency betwedHocks. Then, trace placement can be considered as a match-
basic blocks. A number associated with each edge denote&g problem between pseudo-memory blocks and memory
the ratio of frequency of edge traverse when the programblocks which minimizes the cache miss count. Arrows in
is executed once, which is calculated from the profile Figure 2 between pseudo-memory blogk's and memory
information. blocksm;’s show an example of a matching.

In Figure 1 (a), it is more probable thap will be We have formulated the trace placement problem to
executed aftebg thanby will. In this case,b, should be minimize cache miss count as an ILP problem in [10]. Let
placed just aftebp because it is highly possible that the two z; denote the index number of the memory block where
basic blocks are on the same cache line. Due to the same; matches. The objective function is expressed by a
reasonj, should be placed befotg, b5 afterbs, b, afterbe, function of z;'s which can be linearized. The constraints
andbg afterb;. As a result, the weighted control flow graph are expressed by linear equations:gé. In this paper, due
(a) is partitioned into four paths (linear subgraphs) shown to the limited space, we only explain the key of the ILP
in Figure 1 (b). Each path is calledrace? formulation.

1The termtracewas introduced by Fisher in [2] which addresses global microcode compaction.

After placing trace in the pseudo-memory, a sequence ofexperiments, a greedy algorithm is used for trace selection,
basic blocks to be executed, which is given as profile in- and a local search algorithm is used for trace placement.
formation, is translated into a sequence of pseudo-memory Experimental results also show that our method has
blocks to be accessed. The sequence is calledthess two problems. One problem is increase in code size.
sequence of pseudo-memory blodkssimply access se- Experiments show that code size after optimization is 25—
guence For example, let us use the program illustrated in 29% larger than before optimization. Increase in code size
Figure 1 and Figure 2 and assume that functibis called is a serious problem in embedded system design. If the

at the end of basic blodk, in function A. The profile infor- code size becomes larger than the main memory size, there
mation on the program may contain the following sequence exists no solution for the ILP problem and the designers
of basic blocks. must give up optimization of code placement. Alternatively,
; the designers decide to use larger main memory. In any
(bo, b2, b3, b, be, b7, bg, b3, ba, be, bg, b3, - - -, b3, bs) case, the cost/performance of the designed system becomes
worse.

According to Figure 2 (a), the above sequence is translated Tnhe other problem is high computation cost for the

into the following access sequence. optimization. Our implementation for trace placement
’ ’ ’ o requires 3—6 hours for GNU grep 2.0 and 10-30 hours
(Po: P1: P3: PS5, P6: DT P3: D5, P75 D3 " 5 V3 14) for GNU sed 2.05 to output a locally optimal solution on

In the access sequence, the three pseudo-memory blgcks SPARC Station 5. In embedded software design, the quality
q ' b y 79 of object code is much more important than the compilation

Pe; andpz appear bgtween the first and the second appear—time because embedded software is rarely modified after
ance ofps. If psis displaced by the three pseudo-memory

: stored in ROM. However, this does not mean that very long
blocks, a cache miss occurs at the second appearapge of o . : . o
- compilation time is acceptable. Quick estimation of the
Let N,.; and N,,, denote the number of cache sets and . . -
: - : system performance is very important to optimize the whole
cache ways, respectively. ifs = x3 (mod Ny.), ps iS o . L
system, but long compilation time makes it difficult.
mapped onto the same cache segtzadf there are more than

- s The code placement method proposed in [10] requires
or equal taV,,., pseudo-memory blocks's in {ps, ps, p7} . . . ;
S - o a new technique to save both increase in code size and
satisfyingz; = w3 (mod Ng.), ps is displaced from the

cache. Hencey;'s should satisfy the following inequality: compilation time.
| {1 | pi € {5, po. pr} andis = a3 (mod Nowt) } | 3. Size-Constrained Code Placement
< Nuway (Eq.1) In this section, we propose a technique, caltete

merging which saves increase in code size and compilation

Whenp; appears:; times in the access sequence, there existtime. Next, we propose a size-constrained code placement

>~ ;(n; — 1) inequalities whiche;’s should satisfy, such as method which minimizes cache miss rates under given

(Eg.1). The objective of the ILP problem is to find's constraint on code size.

satisfying as many inequalities as possible.

There are two kinds of constraints in the formulation. 3.1. Trace Merging

As explained in Section 2.3, the code placement method
proposed in [10] requires a lot of unusable fragments in a
2. If p; and p;.1 have the same trace in themselves, main memory, and makes code size larger. £gf. and

T = w1 — L. s; denote the size of a cache line and the size ofithe

. . trace, respectively. The total size of the unusable fragments
Without the second constraint, one trace may be placedg, . . isexpressed by the following equations:

separately in the main memory.

1. All the pseudo-memory blocks must have matches.

For given programs and the profile information, an opti- Sunused = Z unused(s;) (Eq.2)
mal placement can be obtained by solving the ILP problem. ;
2.4. Experimental Results and Problems 0 if res(si, Siine) =0
unused(s;) = Stine — res(Si, Stine) (Eq.3)
Experiments using two benchmark programs, GNU grep otherwise

2.0 and GNU sed 2.05, show that our code placement

method achieves 35% (max 45%) decrease in cache missewhere res(x.y) is defined as the residue of divided
compared with a naive placement [10]. The cache miss rateby y, namelyres(x,y) = = such that 0< =z < y and
after code placement optimization is lower than the miss « = z (mod y). (Eq.2) and (Eq.3) suggest two approaches
rate with the double size cache without optimization. In the to reducing increase in code size.

1o %/// Po %////%
P2 % ?Q;mb'e P2 ..
73 ragments pg: i

(a) Before trace merging (b) After trace merging

Figure 3. An example of trace merging

1. To make the number of traces small. A half number of
traces will result in a half increase in code size.

2. Tomakeres(s;, Siin.) be zero or close t§;,,.. If the
size of each trace is a multiple of the cache line size,
code size does not increase.

The above approaches are realized by the following
technique, callettace merging
After trace selection, to merge a couple of traces such

that the size of the newly created trace becomes a multiple

of the cache line size.

An example of trace merging is illustrated in Figure 3.
The two traceso andt; are merged into a new tracg.
As a result, the number of memory blocks required by the
program are reduced from 4 to 3.

As traces decreases, the cache miss rate may increase.

This is because, in the ILP formulation, there is a constraint

Sine The cache line size.

Ng.: The number of cache sets.

Nuay The number of cache ways.

T A set of traces before trace merging.

Tnergea A Set of traces after trace merging.
AP Assembly code of programs to be placed.
PI Profile information.

FunctionSize,;;,(T) returns the total size of traces in
T including the unusable fragments, afdze ;500 (T)
returns the total size of traces T excluding the unusable
fragments.

Here, we summarize the size-constrained code placement
algorithm.

(1) Perform trace selection, and §éto a set of traces.

(2) SetT,,,..4.q to ¢, move all traces with a multiple size
of the cache line i’ to T},cr.geq, @and set to 2.

(3) If Sizewin(T'U L merged) < Nimem, goto step (7).

(4) If there existsT” C T such that|T’| = » and that
Sizewitnout(T") is @ multiple ofSy;,.., goto step (6).

(5) Incremente. If n > Sjine/Sinst, merge all traces iff
into a new trace’, join ¢’ into T,,,..4.q, and goto step
(8). Otherwise, goto step (3).

(6) Merge traces i’ and create a new tra¢é remove
all traces inT” from T', and joint’ into 7},,.,.4.q, and
goto step (3).

ensuring that a sequence of pseudo-memory blocks where(7) Move all traces if¥" into 1}, gcq-

atrace is placed must be placed consecutively (See Section

(8) Perform trace placement.

2.3). If two traces are merged into one, one more constraint

equation for the ILP problem is derived. In usual, as
constraints for an ILP problem increase, the quality of a

solution for the problem becomes worse. Hence, we reach

the following policy for trace merging:

There should be more traces in the program. In other
words, the number of traces which are merged should be
small.

3.2. Size-Constrained Code Placement Al-
gorithm

One of the merits of the size-constraint code placement
algorithm is that it can save not only the code size but
also the compilation time. In the algorithm, the trace
placement spends most of the total compilation time to
solve the ILP problem. Since traces are decreased by trace
merging, constraint equations in the ILP problem increase.
As constraints in the ILP problem increase, the computation
time becomes shorter. There is no need to solve the ILP
problem more than once because the constraint on code size
is satisfied before trace placement. Hence, the compilation

Based on the discussions in Section 3.1, we propose artime is saved.

algorithm for the size-constrained code placement. The
algorithm is shown in Figure 4. We use the following
notations in the algorithm:

N,em The maximum number of memory blocks for
the programsXN,,,.,, is the constraint on code
size given by system designers.

The instruction length of the CPU. If the CPU
has the variable instruction lengtl§;,s; de-
notes the smallest one.

S/f‘u,sl,

4. Experiments

We have applied the size-constrained code placement
method to a benchmark program. We vary the constraint
on code size, and calculate cache miss counts, miss rates,
and compilation time, for various cache organization. The
constraint on code size is given in terms of the number of
memory blocks for the program, denoted By,.,, in the
previous section. The benchmark program is GNU grep

Table 1. Miss rate and computation time vary-

ing associativity

Table 2. Miss rate and computation time vary-

ing cache size

(A) 1-way set associative cache (direct mapped) (A) 256 byte cache
Niem Misses Rate | CPU time | Traces Niem Misses Rate | CPU time | Traces
(a) 2,673 (85.5KB 584| 3.68% 17,382 setc 1,067 (a) 2,673 (85.5KB|| 1,198 7.55% 5,522 se¢ 1,067
(b) 2,271 (72.7KB 590 3.72% 7,121se¢ 665 (b) 2,271 (72.7KB), 1,203 7.58% 3,031se¢ 665
(c) 2,166 (69.3KB 592 3.73% 6,159se¢ 554 (c) 2,166 (69.3KB)| 1,206 7.6099 2,118 se¢ 554
(d) — (68.2KB)|| 1,071 6.80% — sedq — (d) — (68.2KB)|| 1,701/10.81% —seq —
(B) 2-way set associative cache (B) 512 byte cache
Noem Misses| Rate | CPU time | Traces Noiem Misses| Rate | CPU time | Traces
(a) 2,673 (85.5KB 636/ 4.01% 11,923 sec 1,067 (a) 2,673 (85.5KB 865 5.45% 13,078 sec 1,067
(b) 2,271 (72.7KB 617| 3.89% 4,992se¢ 665 (b) 2,271 (72.7KB 880 5.55% 5,402se¢ 665
(c) 2,166 (69.3KB 616 3.88% 5,040se¢ 554 (c) 2,166 (69.3KB 890 5.61% 4,611sec 554
(d) — (68.2KB)|| 1,025 6.51% — sedq — (d) — (68.2KB)|| 1,355 8.61% —seq —
(C) 4-way set associative cache (C) 1,024 byte cache
Novem Misses| Rate | CPU time | Traces Novem Misses| Rate | CPU time | Traces
(a) 2,673 (85.5KB 631 3.98% 20,187 sec 1,067 (a) 2,673 (85.5KB| 584| 3.68% 17,382 sec 1,067
(b) 2,271 (72.7KB 638| 4.02% 5,216se¢ 665 (b) 2,271 (72.7KB 590 3.72% 7,121se¢c 665
(c) 2,166 (69.3KB 649 4.09% 3,806se¢ 554 (c) 2,166 (69.3KB 592 3.73% 6,159se¢c 554
(d — (68.2KB)|| 1,039 6.60% — seq — (d) — (68.2KB)|| 1,071 6.80% —seaq —
(D) 8-way set associative cache (D) 2,048 byte cache
Nmem Misses| Rate | CPU time | Traces Niem Misses| Rate | CPU time | Traces
(a) 2,673 (85.5KB 696| 4.39% 22,612 sec 1,067 (a) 2,673 (85.5KB| 438 2.76% 14,414 sec 1,067
(b) 2,271 (72.7KB 693| 4.37% 3,197 se¢ 665 (b) 2,271 (72.7KB 436| 2.75% 7,994 se¢ 665
(c) 2,166 (69.3KB 687 4.33% 6,101se¢ 554 (c) 2,166 (69.3KB 432 2.72% 5,627 se¢ 554
(d) — (68.2KB)|| 1,032 6.55% — sedq — (d) — (68.2KB) 693 4.40% —seq —

2.¢%, and the target architecture is the SPARC architec- o cache miss count caused by the constraint on code size.
ture. The experiments are performed on SPARCstation Synger any constraint on code size, the size-constrained code
(microSPARC-II, 85MHz, 32MB, Solaris 2.4). placement achieves about 36% decrease in cache misses on
~ First, we assume a 1K byte cache with 32 byte cache ayerage, compared with the naive placement. Table 2 shows
lines, _an_d_vary the constraint on code size anc_i the cachghat the cache miss rate after code placement optimization is
associativity. Experimental results are shown in Table 1. |oer than the miss rate with the double size cache without
For each associativityN,,.m is set to 2,673, 2,271, and gptimization. On the other hand, as constraint on code size
2,166. When case (a), trace merging is not applied. This isjs tighter, the CPU time becomes shorter because traces are
the case the previous code placement method proposed iQjgcreased.

[1.O] IS applle_d. When case (b), the range ofyarlabiethe Our experimental results show that trace merging can
size-constrained code placement algorlthm'f_s& <2 In_ reduce both code size and computation time keeping the
other words, only two ”?‘CGS are mefg‘?d mto one a}t a Ume. miss rate low. Further experiments using various embedded
When case (c), code size after opt|m|gat|on IS MINIMUM. ¢ svvare are required to validate our method.

The case (d) shows the results of a naive placement. This When trace merging is not applied, code size is increased

is the case no code placement optimization is applied. A 0 . X

number in parentheses in the first column gives the code sizeby 25./0 compared with thgz haive plgcement. Even when

in terms of kilo bytes. The forth column in each table shows Nimem is the smallest, the size-constrained placement makes
.) 0 .

the CPU time required to find a locally optimal solution for code slze 1.6% larger. In some cases, frace selection mal_<es

the ILP problem in trace placement, code size larger. Let us consider the program shown in

Next, we assume a direct mapped cache with 32 byteFlgure 5 (a). The naive placement places basic blocks in

cache lines, and vary the constraint on code size and the:E.eS r;‘:ég ”r‘]‘;”.“’g 'gtgfa?gierssreowﬁég F:gutr(z 5r (rg)éthlcr: q
cache size. Experimental results are shown in Table 2. ' » N0 Jump operation 1S required. . But ou

In Table 1 and Table 2, there is no significant difference select .trac_es as §h0wn In Flggre 5(0). In t.h|s case, ajump
operation is required at the exitf. If only alittle increase

in code size is not permitted, we should select traces such

2The program is written in C with 12,436 lines including comments.

that the number of traces is minimized, and apply trace
merging and trace placement.

5. Conclusion

In this paper, we have proposed a size-constrained code
placement method which minimizes miss rates of instruction
caches under constraint on code size given by system
designers. Experimental results show that our method
achieves 36% decrease in cache misses with only 1.6%
increase in code size. Our method can improve both the
system performance and the power consumption without
additional hardware cost.

In our experiments, there is no significant trade-off
between the code size and the cache miss rate. In future, we
will continue experiments using various embedded software.

Many embedded systems are real-time systems. In
design of real-time systems, it is important to minimize
the worst case execution time of programs. Our current
code placement method takes no account of the worst case
execution time. Development of a code placement method
for real-time systems is also one of our future works.

References

[1] A.V.Aho,R. Sethi,and J. D. Ullmar€Compilers: Principles,
Techniques, and Toolé\ddition-Wesley, 1986.

[2] J. A. Fisher. “Trace Scheduling: A Technique for Global
Microcode Compaction”. IEEE Trans. ComputersC—
30(7):478-490, July 1981.

[3] J.L.Hennessy and D. A. Pattersddomputer Architecture:
A Quantitative Approach Morgan Kaufmann Publishers,
Inc., 2nd edition, 1996.

[4] W. W. Hwu and P. P. Chang. “Achieving High Instruction
Cache Performance with an Optimizing Compiler”Hroc.
of 16th Int'l Symp. on Computer Architectungages 242—
251, 1989.

[5] Y.-T.S.Li, S. Malik, and A. Wolfe. “Performance Estimation
of Embedded Software with Instruction Cache Modeling”.
In Proc. of ICCAD-95 pages 380-387, 1995.

[6] P. Marwedel and G. Goossens, editdade Generation for
Embedded Processor&luwer Academic Publishers, 1995.

[7] S.McFarling. “Program Optimization for Instruction Caches
". In Proc. of 3rd Int'l Conf. on Architectural Support for
Programming Languages and Operating Systepages
183-191, 1989.

[8] S.McFarling. “Procedure Merging with Instruction Caches”.
In Proc. of Programming Language Design and Implemen-
tation, pages 71-79, 1991.

[9] SPARC International, IncThe SPARC Architecture Manual

\ersion 8 1992.

H. Tomiyama and H. Yasuura. “Optimal Code Placement

of Embedded Software for Instruction Caches”.Froc. of

ED&TC96, pages 96-101, 1996.

[11] A. Wolfe. “Software-Based Cache Partitioning for Real-

Time Applications”. Journal of Computer & Software En-
gineering 1(3):315-327, 1994.

(10]

/* Size constrained code placement */
SCYC'P(AAP7 PI7 j\rmemy Sz’nsty Slinm A/v.set-,« j\rway)

T = TraceSelection(AP, PI);
Tmerged = SCTJ\/[(ZVmEm, Sinst-; Slinm T),
TracePlacement(AP, PI, Trergedy Nmem, Nset,
Nuway);
}

/* Size constrained trace merging */
subroutine SCT M (Npem, Sinst, Stine, I')
{
Trierged = ¢; n=1;
while (Sizewitn(T U Tharged) < Nuem) {
T' = Select(n, T, Stine);
if (T" = ¢) {
n=n+4+1;
if (n > (Stine/Sinst)) {
Merge all traces il and create a new tra¢g
Tmerged = Tme?‘ged U {t,}’
return (Tonergea);

} else{
Merge all traces if” and create a new trac¢g
T=T-T" Tmerged = Tmergea Y {t'};
}
}

Tmerged = T’me'rged u T1
return (Thierged);

}

subroutine Select(n, T, Stine)
{
T' = asubset of such tha{T'| = n
and thatSize,ithou: (") is @ multiple of Sy, ;
return (T7);

}

Figure 4. Size-constrained code placement
algorithm

(b) (©)

Figure 5. An example of trace selection which
makes code size larger

	CD-ROM Home Page
	ISSS Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

