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Abstract
The application range of the embedded computing is

going to cover the majority of the market products
spanning from consumer electronic, automotive, telecom
and process control. For such a type of applications,
typically there is a strong cooperation between dedicated
hardware modules and software systems. A important issue
toward a fully automated system-level implementation is
represented by the software developing process. The basic
requirements are: accurate timing characterization to be
used during the early stages of the design to compare
alternative architectures and reliable synthesis techniques
to ensure the respect of the correct functionality by
avoiding, as much as possible, the direct designer’s
intervention during the development process.

This paper aims at describing a novel methodology to
address the needs of concurrently synthesizing the
software component of a control-dominated
hardware-software system, possibly under real-time
constraints. An intermediate model (Virtual Instruction
Set) for the software is presented, suitable for both for
synthesis and analysis purposes. The overall system
synthesis is presented with particular emphasis on the
problem of low level performance estimation, static
scheduling of the software process and retargetable code
synthesis.

1. Introduction

The increasing pressure of the embedded system market
to shrink time-to-market, size, power and cost of products
is facing the designers with the problem of managing the
entire synthesis flow of architectures composed of
programmable software and hardware engines [1]. In this
paper we refer to dedicated designs as those embedded in
equipment for automotive, process control and telecom
applications such as public switching and networking
systems. For this class of systems, the function to be
implemented is well known in advance and it will never
change during their operational life, apart from possible
minor adjustments. As opposed to the general purpose
computer systems, embedded applications do not require a
significant degree of flexibility once they are running.
They are usually produced in large volumes and
sophisticated analyses and optimizations can be carried out
to meet the design requirements. According to the

particular data on which the design is focused, the system
can be roughly classified into: data dominated and control
dominated [1, 2]. We devote our attention mainly to the
control-dominated applications whose purpose is to react
to external stimuli, possibly within some tight deadlines,
but where data intensive functions play a secondary role
[2, 3, 4].

The challenge of finding out a methodology to develop
cost-effective hardware-software systems has been driven
by extending the research in high-level synthesis to cover
the particular requirements of buildings blocks and
specification formalisms for mixed hardware-software
architectures [5]. Our goal is to identify a pragmatic design
methodology for control dominated embedded systems to
be actually used, and therefore interfaced with the
industrial requirements, of an Italian telecom company
whose main products are in the area of public switching.
This project, named TOSCA (Tools for System Codesign
Automation), started some years ago and is currently under
development at the CEFRIEL research center [6]. The aim
is to define a methodology and the related CAD support to
cover a complete co-design flow: the capturing of
uncommitted process-level specification including the
designer’ objectives and constraints (co-specification), the
identification of a suitable system-level modularization of
the initial specification (design-space exploration and
binding) to be mapped onto the hardware or software
components composing the target hardware-software
architecture (co-synthesis). Hence, before committing to a
specific implementation, the initial system specification
can be manipulated to fulfill the target design
requirements. This partitioning process, can be viewed as
an incremental activity of modification of the initial
specification through the application of transformations
under the driving of metrics for system quality evaluation
[6]. The internal model is based on a customization of the
OccamII [7] computational model. The specifications and
constraints can be captured through a built-in mixed
textual/graphical editor. Direct import fron existing design
entry tools (such as speedCHART) is also supported, based
on the use of suitable OccamII process templates.

After the identification of the optimal system
partitioning and binding, the following stage is the
mapping of the system description onto an actual digital
architecture. The TOSCA co-synthesis is performed by two
different tools: a tool for VHDL generation for
hardware-bound architectural units including interface



generation, and a software synthesis tool for
software-bound architectural units, including a lightweight
Operating System. Interfaces are generated with respect to
the adopted model of communication, currently a fixed
protocol is available, consistent with the target architecture
adopted.

This paper emphasizes the problem of the modeling and
synthesis of the software programs running on the
microprocessor. The presented approach aims at providing
a complete solution by taking into account the operating
system including CPU scheduling and I/O management,
direct generation of the software at assembly level, and the
definition of a model of the software for co-design
purposes to allow code retargeting and VHDL-based
co-simulation of hardware-software systems.

In literature, the identification of the software side of
the system is frequently unbalanced between hardware and
software, since typically it is considered at a higher level
such as the C language. A comprehensive analysis of the
proposals can be found in [8]. For many dedicated
applications, it is becoming important to consider the real
time constraints not only during the hardware generation
but also during the system-level partitioning and software
synthesis. Recent works have considered the software
properties at a finer granularity [9, 10]. Specific scheduling
algorithms are emerging to manage the coexistence of
interacting hardware and software parts in the global
design [4, 11] as well as to optimize the interfaces [9].
Software performance modeling and compiling techniques
are now entering as a substantial stage of the co-design
flow both for reactive systems [3, 10] and data dominated
applications [8, 12, 13], possibly with retargeting
capabilities [12, 14].

For our target application field, frequently requiring
hard real-time performance and low-level characterization
of I/O interfaces, we found advantageous to consider the
software at a lower level of detail with respect to C to
predict the effects of the compiler and of the operating
system.

The software generation is based on the use of a generic
Virtual Instruction Set (VIS) acting as an intermediate
language between OCCAMII and the target CPU assembly
aiming at capturing the minimum set of features shared by
microcontrollers for embedded applications. According to
the needs of the application field, requiring simplicity and
predictability, a static schedule approach with a coroutine
scheme has been adopted as the target software structure.
The VIS model is useful both for evaluation and synthesis
purposes and it is conceived to achieve the following goals:
• simulation of the mixed hardware-software system

within the same VHDL simulation environment by
using simplified non-proprietary microprocessor
models [15].

• extension of the analysis to cover also multiple
processor families with minimal user intervention;

• good predictability of the final running software
behavior and cost;

• integrated design flow able to cover the entire system
synthesis in terms of hardware, interfaces and software.

The actual use of VIS within the TOSCA environment
provides similar properties of flexibility and retargeting
typically reserved to high level programming languages. In
fact, it is possible to map the VIS code onto different target

assembly instruction sets while accurately predicting the
performance of the CPU and I/O. Even if the VIS code is
readable, it has to be pointed out that user should interact
with it only during the final system-level co-simulation,
the maintenance of the system has to be performed at
system-level.

The paper is organized as follows. After a brief
description of the target architecture we are considering to
physically implement the system, the problem of
scheduling the software-bound  modules identified during
the system exploration is detailed. In particular, section 3
presents an overview of our solution based on a static
scheduling using the information obtained during the VIS
generation, detailed in section 4. The main features of the
VIS notation are introduced by means of a small
illustrative example. The paper is concluded by an outline
of the results of our researches in the field of software
modeling and generation for embedded systems and by the
guidelines of current investigation effort.

2. The target architecture for system synthesis

Once a pair of hardware and software bound sets of
modules have been defined, the following step is to
produce their implementations. The synthesis stage will
produce a mapping of the system onto the target
architecture reported in terms of:
• assembly-level code for each sw-bound process,

according to the target microprocessor instruction set;
• operating system support for process to process

communication (both between sw to sw and sw to hw),
as well as for CPU scheduling;

• VHDL code for each architectural unit (coprocessor)
corresponding to hw-bound processes; this includes
also the implementation of the hardware side of the
interfacing subsystem, allowing the mapping of the
abstract process to process communication onto an
actual system architecture.

The entire system is intended to be implemented via a
single ASIC including a microprocessor core with its
memory, even if part of the memory can be external, and
the dedicated logic implementing the set of hw-bound
modules (called coprocessors) identified during the
system-level design phase.

The master processor is programmable and the software
can be either on-chip resident or read from an external
memory; dedicated units operate as peripheral
coprocessors. Hardware and software bound elements are
interfaced by means of a master-slave shared bus
communication strategy. All hardware to hardware
communications are managed through dedicated lines. The
RAM memory required for program/data storage shares
the main data bus with the coprocessors, but can be
accessed only by the master CPU. Communications among
CPU and coprocessors are based on a memory mapped I/O
scheme with one bus interface manager per coprocessor
based on a common I/O buffered protocol manager.

A suitable VHDL generator has been developed,
starting from the OCCAMII description stored within the
database and building a tree modeling the statements
nesting. It produces a set of modules corresponding to the
hardware bound architectural units (coprocessors) with
their communication interfaces. The VHDL code generator



performs a depth-first scan of the tree representing the
OCCAMII structure and produces two output files: the first
contains the entities declarations with the corresponding
behavioral description while the second is a package
containing all the procedures necessary to realize the
communication among processes.

Since channels are not supported by VHDL, ad hoc
fully hardware interface structures covering both buffered
and unbuffered communication have been introduced [6,
15].

3. The software scheduling strategy

The software system is designed according to the
reference architecture that is itself strongly influenced in
terms of programming paradigm and hardware by the
application field and the cost/performance goals. The
run-time support provided in TOSCA has been kept
minimal and includes only those features that are actually
needed to support exception handling, configuration
control, communication management and process
activation, chosen during the customization phase. The
operating system micro-kernel actually acts as a high-level
process manager whose evolution is controlled by a
deterministic algorithm, with synchronization among
processes or with the environment (i.e. the coprocessors or
external devices connected to the system).

Since the current target architecture considers just one
microprocessor, concurrency is emulated through
interleaving of processes, each corresponding to a
software-bound part of the system modularization, whose
ordering is statically defined, i.e. a pre-runtime schedule
has been adopted. This solution has been chosen because
high processor utilization is foreseen to reduce
implementation costs, therefore not much spare CPU time
is available. As a consequence, a solution able to guarantee
a priori that all the stringent timing constraints will be
met, seems to be the only viable. We found many
advantages of this solution compared to the presence of an
on-line schedule policy [16], such as the significant
reduction in the share of run-time resources necessary to
implement context switching and the scheduling itself, but
the most important is that it is easier to satisfy our primary
goal of meeting the real-time deadline.

Software-bound processes, that are viewed as a set of
sequential cooperating threads with shared memory similar
to a coroutine scheme, are constituted by operations that
must be executed in a prescribed order. The number of
processes is known in advance, and it will never change
run-time. This implies that the operating system does not
require a dynamic scheduling since the scheduling policy
can be computed off-line and code-wired. Therefore, the
solution proposed requires only a small operating system
providing the mechanisms for process activation and the
communication support.

In general, two classes of processes can be present:
periodic, whose computation is executed repeatedly in a
fixed amount of time and asynchronous, that usually
consist of computations responding to an event (internal or
external). Different and more general techniques for
mapping asynchronous processes onto an equivalent set of
periodic processes can be found in [17], therefore we
considered only the problem of scheduling periodic

processes.
The algorithm we implemented, given the set of

processes constituting the sw-bound part of the system,
determines a schedule (whenever it exists) such that each
process is activated after its release time and carries out its
computation before its deadline. Even though the exact
timing characteristics of system components and events
sometimes cannot be predicted, we overcome such a
problem by using a worst case estimation of these
parameters so that the scheduling algorithm can guarantee
a predictable behavior.

The methodology we adopted to obtain the pre-run time
schedule is based upon a systematic improvement of an
initial schedule until a feasible (near optimal) schedule is
found. The analysis of the VIS code corresponding to each
software-bound part allows the VIS scheduler to consider
each software process characterized by a release time, the
duration and a deadline, which can be broken into a set of
code segments. An analysis of the internal composition of
the process provides the start time of each code segment
relative to the beginning of the process it belongs.
Exclusion relations may be present among segments when
some of them must avoid interruption by others to prevent
possible errors caused by simultaneous access to shared
resources, e.g. data structures, I/O devices, coprocessors.
Precedence relations, that occur when a segment requires
some information produced by other process segments, are
also considered.

The scheduler produces an ordered set of code segments
fulfilling deadlines and constraints (if they exist) where the
lateness of all segments is minimized. The context
switching overhead has been considered by including an
additional delay to the purely computational time. To
characterize the software running onto the microprocessor,
specific information is produced by the scheduler by
inspecting the final schedule produced: the level of process
fragmentation and the relative overhead, the slack time,
the CPU utilization and, in case of non feasible schedule,
the critical segments responsible of the algorithm failure.

The details of the implemented scheduling algorithm
can be found in [15].

4. The VIS-based software synthesis

The VIS is defined in terms of a customizable and
orthogonal register-oriented machine with a common
address space for both code and data. This means that each
register can act as accumulator and all the operations (e.g.
addressing, arithmetic-logic, data transfer) can be
performed no matter which register is used as operand.
The instruction set has been designed in order to be easily
retargeted onto different CPUs: a mix of CISC and RISC
typical instructions are included. A generic VIS instruction
can either be one-to-one mapped on a native target
assembly instruction or correspond to a group of assembly
instructions. In such a way, if the selected CPU does not
match the VIS instruction, the retargeting of the code is
performed via an alternative definition of the instruction
using only the RISC-side of the VIS, thus reducing the
effort to reconfigure the software whenever alternative
CPUs are evaluated.

The VIS supports unsigned/signed integer data types
(BIT, BYTE, INT16 or word and 32-bits integer called



longword) as well as all typical arithmetic/logic operations.
The address space spans over 32 bits so that each VIS
argument is always contained within a longword. The
memory format for the data is aligned in terms of 32-bits
words, as a consequence four memory locations are
necessary to store a byte. Boolean variables can be packed
to save memory space.

The instruction format is similar to the one of the
MC68000 with a suffix indicating the operand type, e.g.
MOVE.B R1, R2  copies a byte from R1 to R2. The
number of arguments of each VIS instruction ranges from
0 to three. Control instruction are usually characterized by
zero operands, while three operands instructions are
typically arithmetic-logic operations such as
SUB.W R0,R1,R2  where the R0 and R1 are the
operands and R2 will contain the result. Both destination
and source can be registers or memory references (source
can also be an immediate operand).

The generation of the VIS code as well as the final
implementation of the software running on the target
microprocessor follows the phases depicted in fig.1. Three
main steps compose the top part of such an activity:
initialization, code generation, estimation of time delays
and binary code size.
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report on
VIS code
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Figure 1. The software generation process.

At the beginning the system is initialized by reading
from a technology file the information characterizing the
selected CPU, e.g. the clock period, the instruction set, the
registers number, type and size of the registers, the number
of clock cycles per instruction, etc. The code generation
involves registers use optimization and automated packing
of bit variables. The estimation of timing performance and
memory requirements for back-annotation towards the
system design exploration phase can be obtained for
several possible microprocessor cores. In fact, its actual
behavior is represented by the following three groups of
information (for each foreseen CPU):
• retargeting rules (RR): specifying the rules for mapping

VIS code onto the target microprocessor instruction set;
• time/size table (TST): reporting for each VIS

instruction the number of clock cycles and bytes of the
corresponding target CPU mapping (which, in general,
is not composed of a single instruction).

• technology (TF): containing information on the
adopted CPU as the BUS width, the power

consumption, the pin-out of the microprocessor, the
particular characteristics of the adopted model of
microprocessor with respect to the rest of the CPU
family, such as, for instance the memory size.

The first step is the compilation of the OCCAMII
specification in VIS. Although the entire system
specification will not probably be implemented in software,
the estimation of the VIS performance and cost is initially
carried out for all the OCCAMII modules composing the
description. The obtained result is employed during the
system partitioning to compare/drive alternative
modularizations and hardware vs software bindings. The
obtained code is not executable since the following
decisions have yet to be taken: register mapping, process
scheduling, system bootstrap, memory allocation including
symbolic vs actual address determination.

A pre-allocation of the register to extract execution
times and memory requirements is performed according to
the information included within the technology file. The
VIS code is then annotated with the information needed by
the scheduler to produce a correct ordering of the processes
execution, by adding some bracket-encapsulated tags. A
simple example of VIS compilation for a sub-part
(Hamming encoder) belonging to a car antitheft system
that we use as a small benchmark, is here reported. The
example is composed of a process receiving data from the
channel dataIn  where two parallel sections allow the
system to compute the Hamming encoding of the input to
be transmitted on the dataOut  channel (see fig.2).

Figure 2. The textual part of a sub-module of a car
antitheft system containing the description of a
Hamming decoder captured by using the TOSCA
OCCAMII visual editor.

The VIS code maintains a structure similar to the
original OCCAMII model: the body of each process is
identified through the <process>  and </process>



tags while concurrent processes (corresponding to the PAR
construct of OCCAM) fall within the scope of a <group>
identifier.

As reported above, the scheduler may require to break
the processes to meet time deadlines; as a consequence, it
is necessary to consider the impact of additional
context-switching overheads. The scheduler performs such
an analysis by considering the <USE Regs-List>   and
<LEAVE Regs-List>  tags which represent,
incrementally, the registers necessary to be saved at any
point in time. Critical sections, corresponding to
non-breakable actions such as an interrupt handling, are
enclosed within <atomic> </atomic>  to prevent a
possible preemption.

Data transfer from software to hardware and viceversa
is modeled via memory-mapped coprocessor registers,
associated with each port. In this example, the 12-bits
channel has been mapped onto a 16 bits word
corresponding to a pair of contiguous memory locations.
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Figure 3. VIS code corresponding to the Hamming
decoder of fig.2.

Timing characterization is also performed with a fine
granularity to improve the freedom of the scheduler to
choose the point where to break processes. The left-most
tags of each VIS instruction contain the computation of
<min-delay max-delay bytes>  where the first
two items are the delays to execute the operation according
to the target CPU and bytes  is the corresponding
memory occupation. Up to now, according to the most
common types of embedded system microprocessors,
effects concerning pipelined instruction execution or
parallel fetch have not been considered. For an analysis on
how these issues can be managed for DSP applications, see
[12].

During software synthesis, processes as well as the
operating system microkernel are directly assembled into
VIS code. As reported above, the software system is
composed of processes and of a kernel basically operating
as a context “switcher”: although no sophisticated



mechanisms for memory protection are necessary,
particular attention has been devoted to the software
section responsible for communication by adopting ad-hoc
solutions to suit each specific circumstance. Our software
synthesis system has to implement two different
communication schemes: software to software, hardware to
software (and viceversa). Processes communication takes
place through buffered channels that will be implemented
according to the type of data protocol and the hw/sw
binding of the source and target processes.

Protocol implementation of complex data types is
defined in terms of composition of basic types, such as
BOOL, BYTE, INT16 (16-bit integer). The needs for
communication involving the system bus have been
reduced during the system partitioning phase since, under
the scheduling algorithm viewpoint, the bus is a shared
resource that will originate a critical section within the
software-bound process requiring its use, thus increasing
the difficulty to determine a feasible schedule.

Even though the basic OCCAMII model is composed of
direct, point-to-point, asynchronous channels, our
implementation has been extended to provide also a
broadcasting node by expanding its definition into a
software process able to copy the datum on all the target
channels. The channel is mapped onto a pair {memory
variable, data ready flag} shared by all processes. Since
communication rates can vary across different processes,
no matter if they belong to the same hardware or software
partition, appropriate FIFO buffering capability has been
introduced. hardware/software interface is performed via
memory mapped registers.

A parametrizable retargeting tool, able to map VIS code
on different target CPU has been implemented and tested
for a Motorola 68000 microprocessor family.

5. Concluding remarks

A design methodology (which is currently part of the
TOSCA co-design environment) to synthesize the
software-bound sub-systems of control dominated
embedded applications has been presented.

The model adopted to represent the software has been
discussed, based on the concept of Virtual Instruction Set.
Such a level of representation has been adopted since it
provides the following advantages with respect to the use
of high-level languages:
• fine-grain predictability of software cost and

performance;
• code retargeting;
• hw-sw co-simulation for different microprocessor

families with minimal customization effort based on
the use of VHDL models (see [15] for more details).

The operating system has been also discussed in the
paper. A static schedule algorithm has been adopted, based
on the use of the information derived from the VIS model
to assure the fulfillment of real-time constraints.

Evaluation of these strategies has been performed on a
number of medium size examples, allowing the identifi
cation of the optimal solution in a reduced time. We are
currently developing a large telecom example to test all
features of the proposed approach. Furthermore we are
extending the model to consider also pipelined
microprocessors and to analyze the power consumption of

the software as one of the figures of merit driving the
co-design activity.
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