
Abstract

The paper presents two heuristics for hardware/software
partitioning of system level specifications. The main objec-
tive is to achieve performance optimization with a limited
hardware and software cost. We consider minimization of
communication cost and improvement of the overall parallel-
ism as essential criteria. One of the heuristics is based on simu-
lated annealing and the other on tabu search. Experiments
show the superiority of the tabu search based algorithm.

1. Introduction

Satisfaction of performance requirements for embedded
systems can frequently be achieved only by hardware im-
plementation of some system components. Selection of the
appropriate part of the system for hardware and software im-
plementation respectivelyhas a crucial impact both on the
cost and the overall performance of the final product.

Several approaches have been presented in the literature
for the partitioning of hardware/software systems. In [6, 8,
13, 16] automatic partitioning is performed, while the ap-
proach presented in [1] is based on manual partitioning.
Partitioning at a fine grained level is performed in [6, 8]. In
[9, 16] partitioning is performed at a coarser granularity.

Iterative improvement algorithms based on neighbor-
hood search are widely used for hardware/software
partitioning. In order to avoid being trapped in a local mini-
mum heuristics are implemented which very often are based
on simulated annealing [6, 14]. This is mainly due to the fact
that simulated annealing algorithms can be quickly imple-
mented and are widely applicable to many different problems.

In [16] a hardware/software partitioning algorithm is pro-
posed which combines a hill climbing heuristic with binary
search algorithm. It minimizes hardware cost while satisfy-
ing certain performance constraints. This differs from our
approach which tries to maximize performance under given
cost constraints. The partitioning strategy presented in [9]
combines a greedy algorithm with an outer loop algorithm
which takes into account global measures. This approach is
based on knowledge of execution times for each task and of
communication times. This imposes hard restrictions on the

features of the system specifications accepted as input. In
our approach we do not necessarily impose such limitations,
considering more general applications which have to be ac-
celerated by hardware implementation of some components.

Our design environment accepts as input a system level, im-
plementation independent specification of an application. The
synthesized system has to produce maximal performance, us-
ing a given amount of hardware and software resources.
Automatic partitioning at a coarse grain level (process, loop,
subprogram, block) is based on metric values derived from
profiling, static analysis of the specification, and cost estima-
tions. We consider that minimization of communication cost
between the software and the hardware partition and improve-
ment of the overall parallelism are of outstanding importance.

We have implemented first a simulated annealing based
algorithm for hardware/software partitioning. We then
implemented our partitioning algorithm using the tabu
search method. Based on extensive experiments we show
that tabu searchclearly outperforms simulated annealing.

The paper is divided into 4 sections. Section 2 introduces
the partitioning steps, the metric values, and the proposed
cost function. In section 3 we discuss our simulated annealing
and tabu search based partitioning heuristics, and evaluate
their performance. Finally, section 4 presents the conclusions.

2. Partitioning Steps and the Cost Function

The input specification accepted by our co-synthesis en-
vironment describes system functionality without prescribing
the hardware/software boundary or implementation details.
The basic assumption is that this specification is formulated
as a set of processes interacting via messages transmitted
through communication channels. We also assume that the
specification is executable and that profiling information
can be generated. The current implementation accepts input
designs specified in VHDL [3].

When the final partitioning is done, the hardware imple-
mentation is synthesized by the CAMAD high-level
synthesis system [15] while the software is generated by a
compiler. We have made the following assumptions con-
cerning the target architecture:
1. There is a single microprocessor executing the software part;

Hardware/Software Partitioning with Iterative Improvement Heuristics

Petru Eles1,2, Zebo Peng1, Krzysztof Kuchcinski1, and Alexa Doboli2

2 Computer Science and Engineering Department
Technical University of Timisoara

Romania

1 Dept. of Computer and Information Science
Linköping University

Sweden

2. The microprocessor and the hardware coprocessor are
working in parallel;

3. Reducing the amount of communication between the
microprocessor and the hardware coprocessor improves
the overall performance of the system.
The partitioning algorithm generates as output a model

consisting of two sets of processes which are the candidates
for hardware and software implementation respectively.
The main goal of partitioning is to maximize performance
in terms of execution speed. In order to achieve this we try
to distribute functionality between the software and the
hardware partitions taking also into account communication
cost and overall parallelism of the synthesized system.
Thus, the following three objectives are considered:
1. To identify basic regions (processes, subprograms,

loops, and blocks of statements) responsible for most of
the execution time, in order to be assigned to hardware;

2. To minimize communication between partitions;
3. To increase parallelism within the resulted system at the

following three levels:
- internal parallelism of each process assigned to hardware;
- parallelism between processes assigned to hardware;
- parallelism between the hardware and the microprocessor.
The partitioning algorithm takes into account simulation

statistics, information from static analysis of the source spec-
ification, and cost estimations. Two types of simulation
statistics are used for partitioning:
1. Computation load (CL) of a basic region is a quantitative

measure of the total computation executed by that
region, considering all its activations during the simulation
process. It is expressed as the total number of operations
(at the level of internal representation) executed inside
that region, where each operation is weighted with a
coefficient depending on its relative complexity [5]. The
relative computation load (RCL) of a block of
statements, loop, or a subprogram is the computation
load of the respective basic region divided by the
computation load of the process the region belongs to. The
RCL of a process is the computation load of that process
divided by the total computation load of the system.

2. Communication intensity (CI) on a channel connecting
two processes is expressed as the total number of send
operations executed on the respective channel.

2. 1. The Partitioning Steps

Hardware/software partitioning is performed in four steps:
1. Extraction of basic regions: During the first partitioning

step processes are examined individually to identify re-
gionsthat are responsible for most of the execution time
spent inside a process. Candidate regions are typically loops
and subprograms, but can also be blocks of statements with
a high CL.When a region has been identified for extrac-
tion, a new process is built to have the functionality of

the original block, loop, or subprogram and communica-
tion channels are established to theparent process. In [4]
we show how extraction of critical regions and process
generation is solved in our current implementation.

2. Process graph generation.
3. Partitioning of the process graph.
4. Process merging: During the first step one or severalchild

processes are possibly extracted from aparent process. If,
as result of step 3, some of the child processes are as-
signed to the same partition with their parent process, they
are, optionally, merged back together.

2. 2. The Process Graph

The data structure on which hardware/software partition-
ing is performed is theprocess graph. Each node in this graph
corresponds to a process and an edgeconnects two nodes if
and only if there exists at least one directcommunication
channel between the corresponding processes.

The graph partitioning algorithm takes into account
weights associated to each node and edge. Node weights re-
flect the degree of suitability for hardware implementation
of the corresponding process. Edge weights measure com-
munication and mutual synchronization between processes.
The weights capture simulation statistics and information
extracted from static analysis of the system specification or
of the internal representation resulted after its compilation.
The following data extracted from static analysis are captured:

Nr_opi: total number of operations in processi;
Nr_kind_opi: number of different operations in processi;
L_pathi: length of the critical path (in terms of data

dependency) through processi.
The weight assigned to process nodei, has two components.

The first one, , is equal to the CL of the respective pro-
cess. The second one is calculated by the following formula:

= ; where:

 is equal to the RCL of processi, and thus is a
measure of the computation load;

; is a measure of the unifor-

mity of operations in processi;

; is a measure of the potential par-

allelism inside processi;

; captures the suitability of

operations of processi for software implementation.SPi
is the set of such operations in processi and is a
weight associated to operationopj, measuring the degree
to which the operation has to be implemented in software.
The relation between the above-named coefficientsKCL,

KU, KP, KSO is regulated by four different weight-multipli-
ersMCL, MU, MP, andMSO, controlled by the designer.

Both components of the weight assigned to an edge con-

W1i
N

W2i
N MCL Ki

CL MU Ki
U MP Ki

P MSO Ki
SO×–×+×+×

Ki
CL

Ki
U Nr_opi

Nr_kind_opi
------------------------------= Ki

U

Ki
P Nr_opi

L_pathi
------------------= Ki

P

Ki
SO

wopj
opj SPi∈

∑
Nr_opi

-----------------------------= Ki
SO

wopj

necting nodes i and j depend on the amount of
communication between processesi andj. The first one is a
measure of the total data quantity transferred between the
two processes. The second one does not consider the num-
ber of bits transferred but only the degree of
synchronization between the processes, expressed in the
total number of mutual interactions they are involved in:

; ;

where Chij is the set of channels used for communication
between processesi andj; is the width of channelck in
bits; is the communication intensity on channelck.

2. 3. Cost Function and Constraints

After generation of the process graph hardware/software
partitioning can be performed as a graph partitioning task. The
partitioning information, captured as weights associated to the
nodes and edges, have to be combined into a cost function which
guides the partitioning algorithm towards the desired objective.

Our hardware/software partitioning heuristics are guided
by the following cost function which is to be minimized:

; where:

Hw andSw are sets representing the hardware and the soft-
ware partition respectively; NH andNS are the cardinality of the
two sets; cut is the set of edges connecting the two partitions;
(ij) is the edge connecting nodesi andj; (i) represents nodei.

The partitioning objectives stated at the beginning of sec-
tion 2 are captured by the three terms of the cost function:

- The first term captures the amount of communication
between hardware and software partition. Decreasing this
component reduces communication cost and also improves
parallelism between processes in the hardware partition and
those implemented in software.

- Thesecond term stimulates placement into hardware of
processes which have a reduced amount of interaction with
the rest of the system relative to their computation load and,
thus, are active most of the time. This strategy improves
parallelism between processes inside the hardware partition
where physical resources are allocated for real parallel exe-
cution. For a given processi, is the total

amount of interaction the process is involved in, relative to
its computation load. The whole term represents the aver-
age of this value over the nodes in the hardware partition.

- The third term in the cost function pushes processes
with a high node weight into the hardware partition and
those with a low node weight into the software one, by

W1ij
E

wdck
CIck

×
ck Chij∈

∑= W2ij
E

CIck
ck Chij∈

∑=

wdck
CIck

C(Hw,Sw) Q1 W1ij
E

ij() cut∈
∑× Q2

W2ij
E

ij()∃
∑

W1i
N

i() Hw∈
∑

NH
--×+=

Q3

W2i
N

i Hw∈
∑

NH

W2i
N

i Sw∈
∑

NS
------------------------–

×–

W2ij
E

ij()∃
∑

 W1i
N⁄

increasing the difference between the average weight of
nodes in the two partitions. This is a basic objective of par-
titioning as it places time critical regions into hardware.

The criteria combined in the cost function are not ortho-
gonal, and sometimes compete with each other.This
competition between partitioning objectives is controlled by
the designer through the cost multipliersQ1, Q2, andQ3.

Minimization of the cost function has to be performed in the
context of certain constraints. Thus, our heuristics have to pro-
duce a partitioning with a minimum forC(Hw, Sw) so that the
total hardware and software cost is within some specified limits:

; .

Cost estimation has to be performed before graph parti-
tioning. In the current implementation of our environment,
the CAMAD high level synthesis system [15] produces
hardware cost estimations in terms of design area. Software
cost, in terms of memory size, is estimated for each process
through compilation by our VHDL to C compiler.

3. Process Graph Partitioning

Hardware/software partitioning, formulated as a graph par-
titioning problem, is NP-complete. In order to efficiently ex-
plore the solution space, heuristics have to be developed which
hopefully converge towards an optimal or near-optimal solu-
tion. We have implemented two such algorithms, one based on
simulated annealing (SA) and the other on tabu search (TS).

For evaluation of the partitioning algorithms we used
random and geometric graphs [17] generated for experi-
mental purpose, and graphs resulted from compilation of
real-life examples. We generated for experiments 32 graphs
altogether, 16 random and 16 geometric. 8 graphs (4 ran-
dom, 4 geometric) have been generated for each dimension
of 20, 40, 100, and 400 nodes. The generation of these
graphs and their characteristics are presented in [5]. Exper-
iments have been carried out in order to tune the algorithms
for each graph dimension so that partitioning converges
with a high probability towards an optimumfor all test
graphs of the given dimension and the run time is minimized.

It still has to be clarified what we call anoptimum in this
context. For the 20 node graphs it was possible to run exhaus-
tive search to get thereal optimum which we later used as a
reference value. Foreach of the other graphs we performed, in
preparation of the experiments, very long and expensive runs
using both SA and TS. We used aggressively very long cool-
ing schedules, for SA, and a high number of restarting tours,
for TS (see sections 3.1 and 3.2). These runs have been per-
formed starting with different initial configurations and finally
thebest ever solution produced for each graph has been con-
sidered as theoptimum for the further experiments.

During experiments with SA an additional difficulty
originates from the random nature of this algorithm. The
same implementation with unchanged parameters can pro-

H_costi
i() Hw∈
∑ Max

H≤ S_costi
i() Sw∈
∑ Max

S≤

duce different results, for the same graph, in different runs.
We considered that a certain configuration of parameters pro-
duces an optimum for a graph if for 100 consecutive runs of
the SA algorithm we got each time the optimal partitioning.

All experiments presented were run on SPARCstation 10.

3. 1. Partitioning with Simulated Annealing

Simulated annealing selects a neighboring solution ran-
domly and always accepts an improved solution. It also
accepts worse solutions with a certain probability that
depends on the deterioration of the cost function and on a
control parameter called temperature [11]. In Fig. 1 we give
a short description of the algorithm. Withx we denote one
solution consisting of the two setsHw andSw. xnow repre-
sents the current solution andN(xnow) denotes the
neighborhood ofxnow in the solution space.

For implementation of this algorithm the parametersTI
(initial temperature),TL (temperature length),α (cooling
ratio), and the stopping criterium have to be determined. They
define the so called cooling schedule and have a decisive im-
pact on the quality of partitioning and the CPU time con-
sumed. As result of our experiments we determined for each
graph dimension values forTI, TL, andα so that an optimal
partitioning for each graph with the respective number of
nodes is produced [5]. The algorithm terminates when for three
consecutive temperatures no new solution has been accepted.

For the generation of a new solutionx ,́ starting from the
current onexnow, we implemented two strategies: thesimple
move (SM) and theimproved move (IM).

For theSMa node is randomly selected and moved to the oth-
er partition. The configuration resulted after this move becomes
the candidate solutionx .́ Random node selection is repeated if
transfer of the selected node violates some design constraints.

The IM accelerates convergence by moving, together
with the randomly selected node, also some of its direct
neighbors (nodes which are in the same partition with the
selected one and are directly connected to it). A direct
neighbor is moved together with the selected node if this
movement improves the cost function and does not violate
any constraint. This strategy stimulates transfer of con-
nected node groups instead of individual nodes.
Experiments revealed a negative side effect of this strategy:
the repeated move of the same or similar node groups from

Step 1. Construct initial configurationxnow:=(Hw0, Sw0)
Step 2. Initialize TemperatureT:=TI
Step 3. 3.1.for i:=1 to TL do

Generate randomly a neighboring solutionx ́∈ N(xnow)
Compute change of cost function∆C := C(x)́ - C(xnow)
if ∆C ≤ 0 then xnow:= x´
else

Generate q:=random(0,1)
if q < e-∆C/T then xnow:= x´

3.2. Set new temperature T:= α * T
Step 4. ifstopping criterium not met then gotoStep 3
Step 5. returnsolution corresponding to the minimum cost function

Fig. 1. Simulated annealing algorithm
one partition to the other, which resulted in a reduction of
the spectrum of visited solutions. To produce an optimal
exploration of the solution space we combined movement
of node groups with that of individual nodes: nodes are
moved in groups with a certain probabilityp. After analysis
of experimental results the value forp was fixed at 0.75.

Partitioning times and the speedup produced by the
improved strategy are presented in Table 1. The times shown
are the average CPU time needed for optimal partitioning
for all graphs ofthe given dimension.

3. 2. Partitioning with Tabu Search

By contrast to simulated annealing, tabu search controls
uphill moves not purely randomly but in an intelligent way [7].
Two key elements of the TS algorithm are the data struc-
tures called short and long term memory. Short term
memory stores information relative to the most recent his-
tory of the search. It is used in order to avoid cycling that
could occur if a certain move returns to a recently visited
solution. Long term memory, on the other side, stores infor-
mation on the global evolution of the algorithm. These are
typically frequency measures relative to the occurrence of a
certain event. They can be applied to performdiversifica-
tion which is used to improve exploration of the solution
space by broadening the spectrum of visited solutions.

In Fig. 2 we give a brief description of our implementa-
tion of the TS algorithm. In the first attempt an improving
move is tried. If no such move exists (or it is tabu and not
aspirated) frequency based penalties are applied to the cost
function and the best possible non tabu move is performed;
this move can be an uphill step. Finally, in a last attempt, the
move which is closest to leave the tabu state is executed.

We consider as a candidate solutionxk the configuration
obtained fromxnow by moving nodek from its current par-
tition to the other one, if this movement does not violate any
constraints. In thetabu list we store the list of the reverse
moves of the lastτ moves performed, which are considered as
being forbidden (tabu). The sizeτ of this list (thetabu tenure)
is an essential parameter of the algorithm. In Table 2 we pre-
sent the optimal values forτ as resulted from our experiments.

Under certain circumstances it can be useful to ignore
the tabu character of a move (the tabu isaspirated). We
ignore the tabu status of a move if the solution produced is
better than the best obtained so far.

TABLE 1: Partitioning
time with SA

nr. of
nodes

CPU time (s)
speedup

SM IM

20 0.28 0.23 22%
40 1.57 1.27 24%
100 7.88 2.33 238%
400 4036 769 425%

TABLE 2: Parameters and
CPU time with TS

nr. of
nodes

τ Nr_f_b Nr_r
CPU

time (s)

20 7 30 0 0.008
40 7 50 0 0.04
100 7 50 0 0.19
400 18 850 2 30.5

Three means of improving the search strategy by diversi-
fication have been implemented:
1. For the second attempt to generate a new configuration,

moves are ordered according to a penalized cost function
which favors the transfer of nodes that have spent a long
time in their current partition:

; where

if node

if node

Node_in_Hwk is the number of iterations nodek spent in
the hardware partition; Niter is the total number of iterations;
Nr_of_nodes is the total number of nodes; Coefficients
have been experimentally set toCH=0.4 andCS=0.15.

2. We consider a move as forbidden (tabu) if the frequency
of the node in its current partition is smaller than a cer-
tain threshold; thus, a move of nodek can be accepted if:

if node

if node

Thresholds have been experimentally set toTH=0.2,TS=0.4.
3. If the system is frozen (more thanNr_f_b iterations have

passed since the current best solution was found) a new
search can be started from an initial configuration which
is different from those encountered previously.
The number of iterations performed for partitioning is

influenced by parametersNr_f_b (number of iterations
without improvement of the solution after which the system
is considered frozen) andNr_r (number of restarts with a
new initial configuration). The minimal values needed for
an optimal partitioning of all graphs of the respective
dimension and the resulted CPU times are presented in
Table 2. The times have been computed as the average of
the partitioning time for all graphs of the given dimension.

Step 1. Construct initial configurationxnow:=(Hw0, Sw0)
Step 2. for each solutionxk ∈ N(xnow) do

Compute change of cost function∆Ck := C(xk) - C(xnow)
Step 3. 3.1.for each∆Ck < 0, in increasing order of∆Ck do

if not tabu(xk) or tabu_aspirated(xk) then
xnow:=xk
goto Step 4

3.2. for each solutionxk ∈ N(xnow) do Compute∆C´k :=
∆Ck+penalty(xk)

3.3. for each∆C´k in increasing order of∆C´k do
if not tabu(xk) then

xnow:=xk
goto Step 4

3.4. Generatexnow by performing the least tabu move
Step 4. 4.1. if iterations since previous best solution <Nr_f_b then goto Step 2

4.2. if restarts <Nr_r then
Generate initial configurationxnow considering frequencies
goto Step 2

Step 5. return solution corresponding to the minimum cost function

Fig. 2. Tabu search algorithm

C'k∆ Ck∆
Ci∆

i
∑

Nr_of_nodes
------------------------------- pen k()×+=

k Hw∈
pen k()

CH–
Node_in_Hwk

Niter
----------------------------------×

CS– 1
Node_in_Hwk

Niter
----------------------------------–

×

=
k Sw∈

Node_in_Hwk
Niter

---------------------------------- TH> k Hw∈

1
Node_in_Hwk

Niter
----------------------------------–

TS> k Sw∈

3. 3. Evaluation of the SA and TS approaches

The experiments presented in the previous sections lead
to the following main conclusions:
1. Near-optimal partitioning can be produced both by the SA

and TS based algorithm.
2. SA is based on a random exploration of the neighborhood

while TS is completely deterministic. The deterministic
nature of TS makes experimental tuning of the algorithm
and setting of the parameters less laborious than for SA.
At the same time adaptation of the SA strategy for a
particular problem is relatively easy and can be performed
without a deep study of domain specific aspects. Although,
problem specific improvements can result, as we have
shown, in large gains of performance. On the contrary,
development of a TS algorithm is more complex and has to
consider particular aspects of the given problem.

3. Performances obtained with TS are definitely superior in
comparison to those given by SA, as shown in Fig. 3 (for SA
the execution time with IM is represented). This conclusion
is very important especially in the context that, to our knowl-
edge, no TS based hardware/software partitioning approach
has yet been reported, while SA continues to be one of
the most popular approaches for automatic partitioning.
Finally, we compared our SA and TS-based heuristics

with a classical iterative-improvement approach, the Ker-
nighan-Lin (KL) algorithm [10]. Given the relatively limited
capacity of the KL-based algorithm to escape from local min-
ima and its sensitivity to the initial configuration, we had to
perform several runs for each graph, with randomly deter-
mined starting configurations. The number of necessary
restarting tours has been fixed so that all graphs of a given
dimension are optimally partitioned with a sufficiently high
probability (for 100consecutive runs we got each time the
optimal1 partitioning). As shown in Fig. 3, partitioning times
with KL are slightly better than those with SA for small and
medium graphs. For the 400 nodes graphs SA already outper-
forms the KL-based algorithm. TS is on average 10 times
faster than KL for 40 and 100 nodes graphs, and 30 times
faster for graphs with 400 nodes.

In order to validate our system level partitioning ap-
proach we performed two further experiments on real-life

1. We use "optimal" in the sense introduced at the beginning of section 3.

0.001

0.01

0.1

1

10

100

1000

10 100 100020 40040

SA
TS

KL

Number of graph nodes (logarithmic)

E
xe

cu
tio

n
tim

e
(s

)
(lo

ga
rit

hm
ic

)

Fig. 3. Partitioning times with SA, TS, and KL

models: theEthernet network coprocessor and theOAM
block of an ATM switch. Both models were specified at system
level in VHDL. Partitioning was performed using both the SA
based and the TS algorithm, with the cost function presented
in section 2.3 and a constraint on the hardware cost repre-
senting 30% of the cost of a pure hardware implementation.

TheEthernet network coprocessor is given in [12] as an
example for system specification in SpecCharts and has
been used, in a HardwareC version, in [8]. We have rewrit-
ten it in VHDL, as a model consisting of 10 cooperating
processes (730 lines of code). After the first partitioning
step, extraction of performance critical loops and subpro-
grams, we got a VHDL specification consisting of 20
processes. Process graph generation and partitioning pro-
duced a hardware partition with 14 processes and a software
partition with 6 processes. The most time critical part of
those processes that are handling transmission and recep-
tion of data on the ethernet line as well as processes which
are strongly connected to them have been assigned to hard-
ware and the rest belong to the software partition.

Our second example implements theoperation and
maintenance (OAM) functions corresponding to the F4 lev-
el of the ATM protocol layer [2]. We specified functionality
as a VHDL model consisting of 19 interacting processes
(1321 lines of code). The model resulted after extraction of
basic regions has 27 processes. The resulted process graph
has been partitioned into 14 processes assigned to hardware
and 13 to software. Processes performing the filtering of in-
put cells and those handling user cells (which constitute the
majority of received cells) were assigned to hardware. Pro-
cesses handling exclusively OAM cells (which are arriving at
a very low rate) were assigned to software.

In Table 3 we show the partitioning times using SA and TS
for both examples which confirm the conclusions drawn
from experiments with geometric and random graphs.

4. Conclusion

We have presented an approach to automatic hardware/
software partitioning of system level specifications. Parti-
tioning is performed at the granularity level of blocks,
loops, subprograms, and processes and produces an imple-
mentation with maximal performance using a limited
amount of hardware and software resources. Partitioning is
based on metric values derived from simulation, static anal-
ysis of the specification, and cost estimations. A cost
function that combines these metrics and guides partition-
ing towards the desired objective has been developed.

TABLE 3: Partitioning of the VHDL models

model
nr. of processespart. with SA

tSA (sec)
part. with TS

tTS (sec)
tTS/tSAmodel after extr.

Eth. cop. 10 20 0.08 0.006 0.075
OAM bl. 19 27 0.10 0.007 0.07

We formulated hardware/software partitioning as a
graph partitioning problem and solved it by implementing
iterative improvement heuristics based on simulated an-
nealing and tabu search respectively. We have demonstrated
that both algorithms can produce high quality solutions. We
have also shown that performances obtained with TSare su-
perior in comparison to those given by even improved
implementations of SA, or by classical algorithms like KL.

The algorithms we presented can be used also for partition-
ing purposes other than system level hardware/software
partitioning. They can be, for instance, equally useful, and can
be easily extended, for partitioning at finer levels of granularity.

References
[1] P.H. Chou, R.B. Ortega, G. Boriello,The Chinook

Hardware/Software Co-Synthesis System, Proc. Int. Symp.
on Syst. Synth., September ’95, 22-27.

[2] M. De Prycker,Asynchronous Transfer Mode: Solution for
Broadband ISDN, Ellis Horwood, New York, 1993.

[3] P. Eles, K. Kuchcinski, Z. Peng, M. Minea,Synthesis of
VHDL Concurrent Processes, Proc. of EURO-DAC/
VHDL’94, 1994, 540-545.

[4] P. Eles, Z. Peng, A. Dobol i ,VHDL System-Level
Specification and Partitioning in a Hardware/software Co-
Synthesis Environment, Proc. of Third International
Workshop on Hardware/Software Codesign, 1994, 49-55.

[5] P. Eles, Z. Peng, K. Kuchcinski, A. Doboli,Performance Guid-
ed System Level Hardware/Software Partitioning with Iterative
Improvement Heuristics, Res. Rep. LiTH-IDA-R-95-26,
Dep. of Comp. and Inf. Science, Linköping University, 1995.

[6] R. Ernst, J. Henkel, T. Benner,Hardware-Software Co-
Synthesis for Microcontrollers, IEEE Design & Test of
Computers, September 1993, 64-75.

[7] Glover, E. Taillard, D. de Werra,A User’s Guide to Tabu
Search, Annals of Operations Research, vol. 41, 1993, 3-28.

[8] R.K. Gupta, G. De Micheli,Hardware-Software Cosynthesis
for Digital Systems, IEEE Design & Test of Computers,
September 1993, 29-41.

[9] A. Kalavade, E.A. Lee,A Global Criticality/Local Phase
Driven Algorithm for the Constrained Hardware/Software
Partitioning Problem, Proc. of Third International Workshop
on Hardware/Software Codesign, 1994, 42-48.

[10] B.W. Kernighan, S. Lin,An Efficient Heuristic Procedure for
Partitioning Graphs, Bell Systems Tech. J. vol. 49, no. 2,
1970, 291-307.

[11] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi,Optimization by sim-
ulated annealing, Science, vol. 220, no. 4598, 1983, 671-680.

[12] S. Narayan, F. Vahid, D.D. Gajski,Modeling with
SpecCharts, Technical Report #90-20, Dept. of Inf. and
Comp. Science, Univ. of California, Irvine, 1990/1992.

[13] R. Niemann, P. Marwedel,Hardware/Software Partitioning using
Integer Programming, Proc. of ED&TC’96, 1996, 473-479.

[14] Z. Peng, K. Kuchcinski, An Algorithm for Partitioning of
Application Specific Systems, Proc. EDAC’93, 1993, 316-321.

[15] Z. Peng, K. Kuchcinski,Automated Transformation of
Algorithms into Register-Transfer Level Implementation,
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 13, no. 2, February 1994, 150-166.

[16] F. Vahid, J. Gong, D. Gajski,A Binary-Constraint Search Algo-
rithm for Minimizing Hardware during Hardware/software
Partitioning, Proc. of EURO-DAC/VHDL’94, 1994, 214-219.

[17] C.W. Yeh, C.K. Cheng, T.T.Y. Lin,Optimization by Iterative
Improvement: An Experimental Evaluation on Two-Way Parti-
tioning, IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, vol. 14, no. 2, February 1995, 145-153.

	CD-ROM Home Page
	ISSS Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

