Hardware/Software Partitioning with Iterative Improvement Heuristics

Petru Ele$? Zebo Penlyj Krzysztof KuchcinsKi, and Alexa Dobofi
1 Dept. of Computer and Information ScienceComputer Science and Engineering Department

Link6ping University Technical University of Timisoara
Sweden Romania
Abstract features of the system specifications accepted as input. In

our approach we do not necessarily impose such limitations,
The paper presents two heuristics for hardware/software considering more general applications which have to be ac-
partitioning of system level specifications. The main objec-celerated by hardware implementation of some components.
tive is to achieve performance Optimization with a limited Our design environment accepts as input a system |eve|, im-
hardware and software cost. We consider minimization of plementation independent specification of an application. The
communication cost and improvement of the overall parallel- synthesized system has to produce maximal performance, us-
ism as essential criteria. One of the heuristics is based on simqng a given amount of hardware and software resources.
lated annealing and the other on tabu search. Experimentsaytomatic partitioning at a coarse grain level (process, loop,
show the superiority of the tabu search based algorithm. sybprogram, block) is based on metric values derived from
profiling, static analysis of the specification, and cost estima-
1. Introduction tions. We consider that minimization of communication cost
between the software and the hardware partition and improve-
Satisfaction of performance requirements for embeddedment of the overall parallelism are of outstanding importance.
systems can frequently be achieved only by hardware im- We have implemented first a simulated annealing based
plementation of some system components. Selection of thalgorithm for hardwarsbftware partitioning. We then
appropriate part of the system for hardware and software imimplemented our partitioning algorithm using the tabu
plementation respectivelyas a crucial impact both on the search method. Based on extensive experiments we show
cost and the overall performance of the final product. that tabu searctilearly outperforms simulated annealing.
Several approaches have been presented in the literature The paper is divided into 4 sections. Section 2 introduces
for the partitioning of hardware/software systems. In [6, 8, the partitioning steps, the metric values, and the proposed
13, 16] automatic partitioning is performed, while the ap- cost function. In section 3 we discuss our simulated annealing
proach presented in [1] is based on manual partitioningand tabu search based partitioning heuristics, and evaluate
Partitioning at a fine grained level is performed in [6, 8]. In their performance. Finally, section 4 presents the conclusions.
[9, 16] partitioning is performed at a coarser granularity.
lterative improvement algorithms based on neighbor- 2. Partitioning Steps and the Cost Function
hood search are widely used for haade/software
partitioning. In order to avoid being trapped in a local mini- The input specification accepted by our co-synthesis en-
mum heuristics are impteented which very often are based vironment describes system functionality without prescribing
on simulated annealing [6, 14]. This is mainly due to the factthe hardware/software boundary or implementation details.
that simulated annealing algorithms can be quickly imple-The basic assumption is that this specification is formulated
mented and are widely applicable to many different problemsas a set of processes interacting via messages transmitted
In [16] a hardware/software partitioning algorithm is pro- through communication channels. We also assume that the
posed which combines a hill climbing heuristic with binary specification is executable and that profiling information
search algorithm. It minimizes hardware cost while satisfy- can be generated. The current implementation accepts input
ing certain performance constraints. This differs from our designs specified in VHDL [3].
approach which tries to maximize performance under given When the final partitioning is done, the hardware imple-
cost constraints. The partitioning strategy presented in [9]Jmentation is synthesized by the CAMAD high-level
combines a greedy algorithm with an outer loop algorithm synthesis system [15] while the software is generated by a
which takes into account global measures. This approach isompiler. We have made the following assumptions con-
based on knowledge of execution times for each task and oferning the target architecture:
communication times. This imposes hard restrictions on thel. There is a single microprocessor executing the software part;

2. The microprocessor and the hardware coprocessor are
working in parallel;

3. Reducing the amount of communication between the
microprocessor and the hardware coprocessor improves

the overall performance of the system. 2.
The partitioning algorithm generates as output a model3.
consisting of two sets of processes which are the candidates.

for hardware and software implementation respectively.
The main goal of partitioning is to maximize performance
in terms of execution speed. In order to achieve this we try
to distribute functionality between the software and the
hardware partitions taking also into account communication

cost and overall parallelism of the synthesized system.2.

Thus, the following three objectives are considered:
1. To identify basic regions (processes, subprograms,

the original block, loop, or subprogram and communica-
tion channels are established toplaeentprocess. In [4]

we show how extraction of critical regions and process
generation is solved in our current implementation.
Process graph generation

Partitioning of the process graph

Process mergingouring the first step one or severhild
processes are possibly extracted frqpar@ntprocess. If,

as result of step 3, some of the child processes are as-
signed to the same partition with their parent process, they
are, optionally, merged back together.

2. The Process Graph

The data structure on which hardware/software partition-

loops, and blocks of statements) responsible for most ofing is performed is therocess graphEach node in this graph
the execution time, in order to be assigned to hardware;corresponds to a process and an edggeects two nodes if

N

. To minimize communication between partitions;

and only if there exists at least one diresmmunication

3. To increase parallelism within the resulted system at thechannel between the corresponding processes.

following three levels:

The graph partitioning algorithm takes into account

- internal parallelism of each process assigned to hardwara¥€ights associated to each node and edge. Node weights re-
- para”e"sm between processes assigned to hardware;ﬂect the degree of suitability for hardware implementation

- parallelism between the hardware and the microprocessof the corresponding process. Edge weights measure com-
The partitioning algorithm takes into account simulation munication and mutual synchronization between processes.

statistics, information from static analysis of the source specThe weights capture simulation statistics and information
ification, and cost estimations. Two types of simulation extracted from static analysis of the system specification or

statistics are used for partitioning:

of the internal representation resulted after its compilation.

1. Computation loadCL) of a basic region is a quantitative The following data extracted from static analysis are captured:

measure of the total computation executed by that
region, considering all its activations during the simulation
process. It is expressed as the total number of operations

Nr_op: total number of operations in procéss
Nr_kind_og: number of different operations in process
L_path: length of the critical path (in terms of data

(at the level of internal representation) executed insidedeépendency) through process

that region, where each operation is weighted with a
coefficient depending on its relative complexity [5]. The
relative computation load(RCL) of a block of

The first 0ne,WJ1N
cess. The second one is calculated by the following formula:

The weight assigned to process riptlas two components.
, Is equal to the CL of the respective pro-

statements, loop, or a subprogram is the computationVZ'=Mtx KL+ MY x KU + MP x KP —MSOx KSO; where:

load of the respective basic region divided by the
computation load of the process the region belongs to. The
RCL of a process is the computation load of that process
divided by the total computation load of the system.

2. Communication intensit{Cl) on a channel connecting

two processes is expressed as the total number of send

operations executed on the respective channel.
2. 1. The Partitioning Steps

Hardware/software partitioning is performed in four steps:
1. Extraction of basic region®uring the first partitioning

step processes are examined individually to identify re-

gionsthat are responsible for most of the execution time

KiC" is equal to the RCL of procegsand thus is a

measure of the computation load;

U Nr_op u . .
o= ————; K~ isameasure of the unifor-
! Nr_kind_op !
mity of operations in process
p Nr_op P . .
o= ; K. is a measure of the potential par-
! L_pat !
allelism inside process
WOpl
K> = ‘lB_N_ri%_p__ ;. K>° captures the suitability of
— "l

operations of procesgor software implementatio’®R

is the set of such operations in processidw, is a
weight associated to operatiog, measuring the degree
to which the operation has to be implemented in software.

spent inside a process. Candidate regions are typically loops The relation between the above-named coeffici¢fits
and subprograms, but can also be blocks of statements witkV, KP KSCis regulated by four different weight-multipli-
a high CLWhen a region has been identified for extrac- ersMt, MY, MP, andMS®, controlled by the designer.

tion, a new process is built to have the functionality of

Both components of the weight assigned to an edge con-

necting nodesi and j depend on the amount of increasing the difference between the average weight of
communication between processasdj. The firstoneisa nodes in the two partitions. This is a basic objective of par-
measure of the total data quantity transferred between théitioning as it places time critical regions into hardware.
two processes. The second one does not consider the num- The criteria combined in the cost function are not ortho-
ber of bits transferred but only the degree of gonal, and sometimes compete with each othi&is
synchronization between the processes, expressed in theompetition between partitioning objectives is controlled by
total number of mutual mteractrons they are involved in: the designer through the cost multipli€$, Q2, andQ3.
;c wd x CIC ; W 2; ;c Cl, = Minimization of the cost function has to be performed in the
Ck S context of certain constraints. Thus, our heuristics have to pro-
whereCh is the set of channels used for communication duce a partitioning with a minimum f6(Hw, Sw)so that the

between processeandj wd, is the width of channe}, in total hardware and software cost is within some specified limits:
bits; Cle, is the communlcaﬁon intensity on changel H_cost < Max' : S _costs Max

(1) (1)
2. 3. Cost Function and Constraints Cost estimation has to be performed before graph parti-

tioning. In the current implementation of our environment,

After generation of the process graph hardware/softwarethe CAMAD high level synthesis system [15] produces
partitioning can be performed as a graph partitioning task. Théardware cost estimations in terms of design area. Software
partitioning information, captured as weights associated to theost, in terms of memory size, is estimated for each process
nodes and edges, have to be combined into a cost function whi¢hrough compilation by our VHDL to C compiler.
guides the partitioning algorithm towards the desired objective.

Our hardware/software partitioning heuristics are guided 3. Process Graph Partitioning
by the following cost function which is to be minimized:

WZ% Hardware/software partitioning, formulated as a graph par-
g L titioning problem, is NP-complete. In order to efficiently ex-
C(HW.SW)= Ol W§+ Q2x () THw W plore the solution space, heuristics have to be developed which
e Ny hopefully converge towards an optimal or_near—optrmal solu-
. \ N tion. We have implemented two such algorithms, one based on
0 w2 % W2 5 simulated annealing (SA) and the other on tabu search (TS).
—Q3x Bi N i r\\All E . where: For evaluation of the partitioning algorithms we used
0 H S 0 random and geometric graphs [17] generated for experi-

Hw andSware sets representing the hardware and the softmental purpose, and graphs resulted from compilation of
ware partition respectiveli, andNgare the cardinality of the ~ real-life examples. We generated for experiments 32 graphs
two setscutis the set of edges connecting the two partitions; altogether, 16 random and 16 geometric. 8 graphs (4 ran-
(ij) is the edge connecting nodesdj; (i) represents node dom, 4 geometric) have been generated for each dimension

The partitioning objectives stated at the beginning of sec-0f 20, 40, 100, and 400 nodes. The generation of these
tion 2 are captured by the three terms of the cost function: graphs and their characteristics are presented in [5]. Exper-

- The first term captures the amount of communication iments have been carried out in order to tune the algorithms
between hardware and software partition. Decreasing thigor each graph dimension so that partitioning converges
component reduces communication cost and also improve&ith a high probability towards an optimufor all test
parallelism between processes in the hardware partition angraphs of the given dimensiand the run time is minimized.
those implemented in software. It still has to be clarified what we call aptimumin this

- Thesecond ternstimulates placement into hardware of context. For the 20 node graphs it was possible to run exhaus-
processes which have a reduced amount of interaction withive search to get threal optimum which we later used as a
the rest of the system relative to their computation load andfeference value. Feach of the other graphs we performed, in
thus, are active most of the time. This strategy improvespreparation of the experiments, very long and expensive runs
parallelism between processes inside the hardware partitiotising both SA and TS. We used aggressively very long cool-
where physical resources are allocated for real parallel exeing schedules, for SA, and a high number of restarting tours,
cution. For a given proceis E WZE[(W:H is the total for TS (see sections 3.1 and 3.2). These runs have been per-

formed starting with different initial configurations and finally

thebest evesolutionproduced for each graph has been con-
sidered as theptimumfor the further experiments.

During experiments with SA an additional difficulty
originates from the random nature of this algorithm. The
same implementation with unchanged parameters can pro-

amount of interaction the proce)ss is involved in, relative to
its computation load. The whole term represents the aver
age of this value over the nodes in the hardware partition.
- The third term in the cost function pushes processes
with a high node weight into the hardware partition and
those with a low node weight into the software one, by

Step 1. Construct initial configuratiofi®":=(Hw, Sw) TABLE 1: Partitioning TABLE 2: Parameters and
Step 2. Initialize Temperatufie=TI

Step 3. 3.1.fori:=1to TL do 0 time with SA CPU time with TS
Generate randomly a neighboring solutierd N(x " of[CPU time (s -
Compute chan%e of cost functiakC := C(x) —C(x”"&? nr Of‘ (peedup nr. of T [Nr_f b Nr_r .CPU
if AC<0 then RW=x nodes SM | IM nodeg time (s
EISgenerat =randon(0 1) 20 [0.28] 0.23 22% 20 [7] 30 | O 0.008
if e‘g%’ thenrgo"'v:: X 40 | 1.57| 1.27| 24% 40 | 7| 50 0| 0.04
3.2. Set new temperatufE=o * T 0 .
Step 4. ifstopping criterium not mehen gotdStep 3 100] 7.88) 233 238% 100 7] 50 0 0.19
Step 5. returrsolution corresponding to the minimum cost function 400 | 4036/ 769 425% |400(1§ 850| 2| 305

Fig. 1. Simulated annealing algorithm .)))
one partition to the other, which resulted in a reduction of

duce different results, for the same graph, in different runs.the spectrum of visited solutions. To produce an optimal
We considered that a certain configuration of parameters proexploration of the solution space we combined movement
duces an optimum for a graph if for 100 consecutive runs ofof node groups with that of individual nodes: nodes are
the SA algorithm we got each time the optimal partitioning. moved in groups with a certain probabilityAfter analysis
All experiments presented were run on SPARCSstation 10of experimental results the value fowas fixed at 0.75.
Partitioning times and the speedup produced by the
3. 1. Partitioning with Simulated Annealing improved strategy are presented in Table 1. The times shown
are the average CPU time needed for optimal partitioning
Simulated annealing selects a neighboring solution ran-for all graphs othe given dimension.
domly and always accepts an improved solution. It also
accepts worse solutions with a certain probability that 3. 2. Partitioning with Tabu Search
depends on the deterioration of the cost function and on a
control parameter called temperature [11]. In Fig. 1 we give By contrast to simulated annealing, tabu search controls
a short description of the algorithm. Witlwe denote one uphill moves not purely randomly but in an intelligent way [7].

solution consisting of the two setlv andSw x"°" repre- Two key elements of the TS algorithm are the data struc-
sents the current solution anN(xX"®) denotes the tures called short and long term memory. Short term
neighborhood o%"°Yin the solution space. memory stores information relative to the most recent his-

For implementation of this algorithm the paramefrs tory of the search. It is used in order to avoid cycling that
(initial temperature)TL (temperature length)y (cooling could occur if a certain move returns to a recently visited
ratio), and the stopping criterium have to be determined. Theolution. Long term memory, on the other side, stores infor-
define the so called cooling schedule and have a decisive inmation on the global evolution of the algorithm. These are
pact on the quality of partitioning and the CPU time con- typically frequency measures relative to the occurrence of a
sumed. As result of our experiments we determined for eacltertain event. They can be applied to perfalinersifica-
graph dimension values fdt, TL, anda so that an optimal tion which is used to improve exploration of the solution
partitioning for each graph with the respective number of space by broadening the spectrum of visited solutions.
nodes is produced [5]. The algorithm terminates when for three In Fig. 2 we give a brief description of our implementa-
consecutive temperatures no new solution has been acceptetibn of the TS algorithm. In the first attempt an improving

For the generation of a new solutidnstarting from the ~ move is tried. If no such move exists (or it is tabu and not
current onex"% we implemented two strategies: gimple aspirated) frequency based penalties are applied to the cost
move(SM) and thémproved mové¢lM). function and the best possible non tabu move is performed;

For theSMa node is randomly selected and moved to the oththis move can be an uphill step. Finally, in a last attempt, the
er partition. The configuration resulted after this move becomesove which is closest to leave the tabu state is executed.
the candidate solutiofi. Random node selection is repeated if ~ We consider as a candidate solutiithe configuration
transfer of the selected node violates some design constraintsbtained fromx"®" by moving node from its current par-

The IM accelerates convergence by moving, togethertition to the other one, if this movement does not violate any
with the randomly selected node, also some of its directconstraints. In théabu listwe store the list of the reverse
neighbors (nodes which are in the same partition with themoves of the lagtmoves performed, which are considered as
selected one and are directly connected to it). A directbeing forbidden (tabu). The sizef this list (thetabu tenurg
neighbor is moved together with the selected node if thisis an essential parameter of the algorithm. In Table 2 we pre-
movement improves the cost function and does not violatesent the optimal values fomas resulted from our experiments.
any constraint. This strategy stimulates transfer of con- Under certain circumstances it can be useful to ignore
nected node groups instead of individual nodes.the tabu character of a move (the tabaspirated. We
Experiments revealed a negative side effect of this strategyignore the tabu status of a move if the solution produced is
the repeated move of the same or similar node groups fronbetter than the best obtained so far.

Step 1. Construct initial configuratiof®=(Hwg, Svy)
Step 2. for each solution, 0 N(x"") do
Compute change of cost functidg := C(x) - C(x"°%
Step 3. 3.1.for eachACy < 0, in increasing order &C, do
if nrc])(t“kabL(xk) or tabu_aspiratek,) then
XNOWe=y,

om
om

Execution time (s)
(logarithmic)
'_\

gotdStep 4 L] -
3.2. for each solution, 0 N(x"°") do ComputeAC", := 0.1 . 1Se
AC,+penalty(x,) 0.0 ¢ Ef‘;
3.3. for eachAC’y in increasing order akC" do 0.001l
if nottabu(x) then 00575 100 400 1000
)g;otdg)t(g 4 Number of graph nodes (logarithmic)
3.4. Generata"o‘ﬁby performing the least tabu move Fig. 3. Partitioning times with SA, TS, and KL
Step 4. 4.1.if iterations since previous best solutidwr<f_b then got&tep 2
4.2. if restarts Nr_r then i
Generate initial configuratio®" considering frequencies 3. 3. Evaluation of the SA and TS approaches
goto Step 2
Step 5. return solution corresponding to the minimum cost function The experiments presented in the previous sections lead
Fig. 2. Tabu search algorithm to the following main conclusions:
_ _ _ ~ 1. Near-optimal partitioning can be produced both by the SA
Three means of improving tsearch strategy by diversi- and TS based algorithm.
fication have been implemented: 2. SAis based on a random exploration of the neighborhood

1. For the second attempt to generate a new configuration, \hjle TS is completely deterministic. The deterministic
moves are ordered according to a penalized cost function npatyre of TS makes experimental tuning of the algorithm
which favors the transfer of nodes that have spentalong ang setting of the parameters less laborious than for SA.

time in their current partition: At the same time adaptation of the SA strategy for a

Z [ACH particular problem is relatively easy and can be performed

ACy = AC, + Wésx pen(R ; where without a deep study of domain specific aspects. Although,

E Node_in_Hyy _ problem_ specific |rr_1provements can result, as we have

g CuX N if node k O Hw shown, in large gains of performance. On the contrary,

pen(R = E 0N d'te’_ . development of a TS algorithm is more complex and has to
0 _Cox 01— 0de_N_"5 if node kO Sw consider particular aspects of the given problem.

) . Nier O) 3. Performances obtained with TS are definitely superior in
Node_in_Hywis the number of iterations noklepent in comparison to those given by SA, as shown in Fig. 3 (for SA
the hardware partitiofNe is the total number of iterations; the execution time with IM is represented). This conclusion
Nr_of_nodess the total number of nodes; Coefficients s very important especially in the context that, to our knowl-
have been experimentally setd3n=0.4 andCs=0.15. edge, no TS based hardware/software partitioning approach

2. We consider a move as forbidden (tabu) if the frequency has yet been reported, while SA continues to be one of

t?\igézr?nshi_?ld; thus, a move of nddean be accepted if: Finally, we compared our SA and TS-based heuristics
rode_in_m " if node k0 Hw with a classical iterative-improvement approach, the Ker-
Niter nighan-Lin (KL) algorithm [10]. Given the relatively limited

%1 ~ Node_in_Hvxg capacity of the KL-based algorithm to escape from local min-

0 Niier ima and its sensitivity to the initial configuration, we had to

Thresholds have been experimentally s&ft0.2,Ts=0.4. Pperform several runs for each graph, with randomly deter-
3. If the system is frozen (more thiin f_biterations have ~ Mined starting configurations. The number of necessary
passed since the current best solution was found) a neWestarting tours has been fixed so that all graphs of a given
search can be started from an initial configuration which dimension are optimally partitioned with a sufficiently high
is different from those encountered previously. probability (for 100consecutive runs we got each time the

The number of iterations performed for partitioning is optimal' partitioning). Asshown in Fig. 3, partitioning times
influenced by parametemsr f b (number of iterations with KL are slightly better than those with SA for small and
without improvement of the solution after which the system Medium graphs. For the 400 nodes graphs SA already outper-
is considered frozen) ardr_r (number of restarts with a [orMs the KL-based algorithm. TS is on average 10 times
new initial configuration). The minimal values needed for faster than KL for 40 and 100 nodes graphs, and 30 times

an optimal partitioning of all graphs of the respective faster for graphs with 400 nodes. o
dimension and the resulted CPU times are presented in N Order to validate our system level partitioning ap-
Table 2. The times have been computed as the average Hroach we performed two further experiments on real-life

the partitioning time for all graphs of the given dimension. 1 \e use "optimal" in the sense introduced at the beginning of section 3.

>T if node kO Sw

S

TABLE 3: Partitioning of the VHDL models We formulated hardware/software partitioning as a

. of processefpart, with SA part, with TS graph partitioning problem and solved it by implementing
model model after extl. tsa (SeC) | trs (sec) tro/tsa iterative improvement heuristics based on simulated an-
Eth cop| 10 >0 ' SAO 58 TSO 506 10075 nealing and tabu search respectively. We have demonstrated

i i i i that both algorithms can produce high quality solutions. We
OAMDbl.| 19 21 0.10 0.007 | 0.07 have also shown that performances obtained withr&Su-

models: theEthernet network coprocessand theOAM Perior in comparison to those given leyen improved
block of an ATM switclBoth models were specified at system IMplementations of SA, or by classical aigfums like KL.
level in VHDL. Partitioning was performed using both the SA _ The algorithms we presented can be used also for partition-

based and the TS algorithm, with the cost function presented'd Purposes other than system level hardware/software
in section 2.3 and a constraint on the hardware cost reprePartitioning. They can be, for instance, equally useful, and can

senting 30% of the cost of a pure hardware implementation.be easily extended, for partitioning at finer levels of granularity.

The Ethernet network coprocessisrgiven in [12] as an
example for system specification in SpecCharts and ha
been used, in a HardwareC version, in [8]. We have rewrit-[1]
ten it in VHDL, as a model consisting of 10 cooperating
processes (730 lines of code). After the first partitioning 2]
step, extraction of performance critical loops and subpro-
grams, we got a VHDL specification consisting of 20 [3]
processes. Process graph generation and partitioning pro-
duced a hardware partition with 14 processes and a softwarﬁ]
partition with 6 processes. The most time critical part of
those processes that are handling transmission and recep-
tion of data on the ethernet line as well as processes which
are strongly connected to them have been assigned to haréé]
ware and the rest belong to the software partition.

Our second example implements tbperation and
maintenance (OAM) functions corresponding to the F4 lev- [6]
el of the ATM protocol layde]. We specified functionality
as a VHDL model consisting of 19 interacting processes[7]
(1321 lines of code). The model resulted after extraction of
basic regions has 27 processes. The resulted process gra
has been partitioned into 14 processes assigned to hardware
and 13 to software. Processes performing the filtering of in{9]
put cells and those handling user cells (which constitute the
majority of received cells) were assigned to hardware. Pro-
cesses handling exclusively OAM cells (which are arriving at[10]
a very low rate) were assigned to software.

In Table 3 we show the partitioning times using SAand TS
for both examples which confirm the conclusions drawn
from experiments with geometric and random graphs.

[11]
[12]

4. Conclusion [13]

We have presented an approach to automatic hardwargZ4]
software partitioning of system level specifications. Parti- [15]
tioning is performed at the granularity level of blocks,
loops, subprograms, and processes and produces an imple-
mentation with maximal performance using a limited 16]
amount of hardware and software resources. Partitioning i4
based on metric values derived from simulation, static anal-
ysis of the specification, and cost estimations. A cost[17]
function that combines these metrics and guides partition-
ing towards the desired objective has been developed.

5eferences

P.H. Chou, R.B. Ortega, G. Borielldhe Chinook
Hardware/Software Co-Synthesis Syst@&moc. Int. Symp.

on Syst. Synth., September '95, 22-27.

M. De Prycker,Asynchronous Transfer Mode: Solution for
Broadband ISDNElIlis Horwood, New York, 1993.

P. Eles, K. Kuchcinski, Z. Peng, M. Mine8ynthesis of
VHDL Concurrent Processe$roc. of EURO-DAC/
VHDL'94, 1994, 540-545.

P. Eles, Z. Peng, A. DoboliyHDL System-Level
Specification and Partitioning in a Hardware/software Co-
Synthesis EnvironmenProc. of Third International
Workshop on Hardware/Software Codesign, 1994, 49-55.
P. Eles, Z. Peng, K. Kuchcinski, A. Dob&grformance Guid-

ed System Level Hardware/Software Partitioning with Iterative
Improvement HeuristicsRes. Rep. LiTH-IDA-R-95-26,
Dep. of Comp. and Inf. Science, Linkdping University, 1995.
R. Ernst, J. Henkel, T. Bennadardware-Software Co-
Synthesis for MicrocontrollefdEEE Design & Test of
Computers, September 1993, 64-75.

Glover, E. Taillard, D. de Werra User’s Guide to Tabu
Search Annals of Operations Research, vol. 41, 1993, 3-28.
R.K. Gupta, G. De Micheliardware-Software Cosynthesis
for Digital SystemslEEE Design & Test of Computers,
September 1993, 29-41.

A. Kalavade, E.A. LeeA Global Criticality/Local Phase
Driven Algorithm for the Constrained Hardware/Software
Partitioning Problem Proc. of Third International Workshop
on Hardware/Software Codesign, 1994, 42-48.

B.W. Kernighan, S. LinAn Efficient Heuristic Procedure for
Partitioning Graphs Bell Systems Tech. J. vol. 49, no. 2,
1970, 291-307.

S. Kirkpatrick, C.D. Gelatt, M.P. Veccl@ptimization by sim-
ulated annealingScience, vol. 220, no. 4598, 1983, 671-680.
S. Narayan, F. Vahid, D.D. GajskModeling with
SpecChartsTechnical Report #90-20, Dept. of Inf. and
Comp. Science, Univ. of California, Irvine, 1990/1992.
R.Niemann, P. Marweddtardware/Software Partitioning using
Integer ProgrammingProc. of ED&TC’96, 1996, 473-479.

Z. Peng, K. Kuchcinski, A Algorithm for Partitioning of
Application Specific Systeniaroc. EDAC'93, 1993, 316-321.
Z. Peng, K. KuchcinskiAutomated Transformation of
Algorithms into Register-Transfer Level Implementation
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 13, no. 2, February 1994, 150-166.
F. Vahid, J. Gong, D. Gajsi Binary-Constraint Search Algo-
rithm for Minimizing Hardware during Hardware/software
Partitioning, Proc. of EURO-DAC/VHDL'94, 1994, 214-219.
C.W. Yeh, C.K. Cheng, T.T.V. LiQptimization by Iterative
Improvement: An Experimental Evaluation on Two-Way Parti-
tioning, IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, vol. 14, no. 2, February 1995, 145-153.

	CD-ROM Home Page
	ISSS Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

