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Abstract 2.0 Problem Formulation and Complexity

This paper pres_ents a system—lgvel apP“’"’?Ch to ths\le assume that all tasks are defined on semi-infinite
synthesis of multi-task, hard real-time applications. The

: .. streams of data. All tasks are periodic. For each task, three
goal is to select a set of off-the-shelf processors with _ ="~ = ™ ) . ] :
L . e - . periodic timing constraints are imposed: geriod, the

minimal cost while satisfying timing constraints. Our . o o
) ) . start time and thdinish time For each task execution time
approach has three design phases: resource allocation ) :
. ) . . dr upper bound on the execution time on each of the
assignment, and scheduling. With the observation that the . ) .
T available processors is tabulated. Since the tasks are
resource allocation is a search for a set of processors ; o
. X - N ndependent, there is no communication cost.
which requires the minimum cost, we adopted A* searc
based technique. For assignment we use a variation of thBvo implementation constraints are imposed. The first
force-directed technique. Final task scheduling is based oponstraint is that no preemption is allowed. Preemption
the Earliest Deadline First (EDF) algorithm. often drastically simplifies many synthesis problems.

Experimental results show that this approach is highlyHowever, very high context switching times for modern

effective on a variety of examples. operating systems suggest that context switching can
become prohibitively expensive. The second restriction is
1.0 Introduction that all instances (iterations) of a periodic task should be

executed on the same processor.

The proper functioning of a real-time systems on the tim?Ne can now formulate the optimization problems and

at which the results are prod_uced as weI'I as the IOgIC%lstablish their computational complexity. The targeted
correctness of the result [Liu73]. Classical examplessynthesis problems can be defined as follows:
include automobile and airplane monitoring systems. '

Modern real-time systems are often intrinsically multiple-Allocation: A set ofk processors and a set of n
task applications. For example, a video-server has t#idependent periodic hard real-time tasks are given. Each
handle simultaneous requests from several users and@dgocessor has an associated cost. Select a multisubset of
should be able to assemble and deliver both video arfocessors (subset where some processors can be include

sound components in response to such requests. more than once) so that each task is assigned to exactly
one processor and that the sum of costs of the selected

Both behavioral and system synthesis have been focus;) ocessors is at mokt

on synthesis of single task applications [McF90]. Only ] o
few research groups addressed synthesis of multiAssignment (Partitioning): A set ofk processors and a

threaded, real-time [Pra94, Yen95] and multi-taskset ofn periodic hard real-time tasks are given. Assign
applications [Pot95]. each task to one of the processors in such a way that all

. . tasks can be scheduled within their timing constraints.
Our goal is to develop a modular, flexible, and reusable g

synthesis tools for system level synthesis of multi-tasiécheduling: A set of n independent periodic hard real-
hard real-time application specific systems. We are on théme tasks is given. The goal is to generate schedule of the
brink of renaissance in scheduling due to the recognitioftsks so that all timing constraints are satisfied.

of important scheduling problems at the task level. Taskye can prove that allocation, assignment, and scheduling

research and industry-relevant tool development.



NP-complete problems. P1l P2l P3l Pd Tl cil cd ck c4
. . . [ 5 3 6 5 - 20 18] -
3.0 Synthesis Approach: Overview sts s T2 T9 sl 57T 20T
The overall synthesis flow is as follows: t3(7 |4 |2 |5 | 10§105| 8 6 5
System-level synthesis of hard real-time systems 4|5 |7 3|8 100 75| 14 9 8
repeat 5|9 |8 |5 |7 | 150 9 |10.7| 10| 4.7
Allocation(); t6 |10 9 | 4 | 9| 30 5 6 4 3
Assignment(); c | 15| 20| 30| 10
Scheduling(); _ Table 1: Synthesis problem and implementation cost on each
until (a set of feasible schedules is generated); processor: Pi, tj, and Ci denote available processors, tasks, and

“won

plementation cost respectively. “-" in [i][j] indicates the task

. im
The allocation subtask proposes a set of allocated™ 7 -3nnot be implemented on the processor , ¢ - cost.

processors to the assignment and scheduling procedur?ﬁ.

Partitioning, in turn, assigns tasks to processors and passaeﬁii(;rl:goﬁgoghséipk’ E gl\c/(v)rsvzllprt(;\ceessse?tr :)Sf C;I(I)sig ttg dbe
the result over to the scheduling procedure. Finally '

scheduling generates a feasible schedule for each :’;\Ilocatgré)cessorS will be _ut|I|zed and how many MOore processars
hould be added in the following allocation steps if the

processor if there exists one. If there is no feasible?r r being examined is chosen. Th imat .
schedule, the allocation procedure enters again at the po {0CESSOr LEING examined IS chosen. 1hese estimates are

where it left before and the procedures are repeated until’& tained through the relaxed partitioning and scheduling.
set of feasible schedules is obtained. Our original problem has a set of timing constraints, the
atomic execution constraint, and the non-preemptive
g heduling constraint. We relax the atomicity restrictions
nd perform partitioning. Each instance of a task is
solution tree. The root node of the solution tree represen lvided into several preces based on th? number of
the empty initial solution. At each step of the search, oné located processors and 'FS execution tlme_ on _each
processor. For example, consider the problem given in the

out of k branches is chosen. The search follows the A -
search strategy. The partitioning procedure assigns a ta-srﬁble 1. WherP1 andP2 are allocated, the probability

The allocation subtask finds a set of resources b
searching the solution space using the A* search strate
[Rus95]. The solution can be represented by a path in

at a time to a processor. The assignment heuristic is based | P1 P2 T S D A
on the force-directed scheduling [Pau89] . Our scheduler
is based on the EDF scheduling, as explained in Section 6 t 3 2 > ! 3 3
' uling, as explained 'on b 2 |3 |5 |1 |3 |3

. 3 3 5 10 3 7 5
4.0 Resource Allocation

cost 16 10

The allocation algorithm adopts the A* search strategyTable 2: An instance of synthesis problem: T- period, S start
[Rus95]. The heuristic function used in the search is based time, D- deadline, and A - available time.

on a relaxed partitioning and scheduling.

The lower bound of the implementation cost of each task2P!€ shown in the Table 2 is computed. The numbers in

is the minimum among the products of the costs gf P1 | P2 | P1-estimated cokt P2- estimated ¢ost
processors and the corresponding run time of the task. B 25 1 35 | (253 R

example, given a set of tasks and processors as in Table ! . .

the minimum implementation cost of each task ig 2] 35 | 25| (352 (2/5)*3

computed as  M[i] = min{C[jI*E[I[j]/T[i}} 3|58 | 38 (5/8)3 (3/8)*5

whereM][i] is the minimum implementation cost for a task  Table 3: Probability and execution time table for relaxed
i, C[j] is the cost of a processgr E[i][j] is the assignment and scheduling

computation time of a taskon a processdgr andT][i] is
the period of a task The result is given in the Table 1. the table are estimated execution times of corresponding
The sum ofM[i] s signifies the lower bound of the tasks on the combined superprocessor which combines all

implementation cost. That is, we have to spend at lealf® COMPUting capacities of the allocated processors.

54.9 to implement all the tasks. Thagi§i] 's are goals  With the observation that the utilization factor reveals an
which guide our search for the low cost implementation. upper bound [Liu73] for preemptive schedulability and the



fact that the non-preemptive scheduling is more difficult5.0  Partitioning (Assignment)

(in both terms of checking the schedulability and having a

feasible schedule) [Sta95], we can incorporate it in oufur partitioning procedure is based on the observation that
heuristic function as the means to estimate if a set o€ have the best chance of finding a feasible schedule if
allocated processors can be a feasible solution. Fa¥e assign tasks onto the allocated processors in such a
example, the utilization of the processor sePdfandP2 ~ way that the distribution graphs on all the allocated
given in the Table 5 is (2/5)*(3/5) + (3/5)*(2/5) + (5/8)*(3/ Processors are as even as possible. We modify the force-
10) = 0.67. The utilization provides a good measure as tdirected scheduling algorithm for behavioral synthesis
whether a feasible schedule can be found or not. [Pau89] to find a good partitioning of a given task set.

When the utilization is too high, we need to know whatFirst we define probabilities of each task based on
portion of the task sets can be scheduled on the allocat@¥€cution times of a task on each processor with which a
processors to proceed with the search. To do that, wi@sk is tentatively assigned onto processors as follows:
perform a relaxed scheduling on the partitioned task set  Plil[il = 1/(E[I[JI*E[IL1* Y @/ (E[ILIT*ELIID))

using our force-directed EDF. In the process, if wegy doing so, we take into account the fact that it we prefer
encounter a task that cannot be scheduled, the task{§ assign a task to a processor which executes it more
thrown away and the scheduling continues until it finisheg,yickly. Next, we use a modified force-directed
identifying a set of tasks that is scheduled. As described igssignment procedure to balance the loads among the
Section 7, our scheduling is based on the EDF whiclyrgcessors and to make distribution graphs on all the
offers the optimal length schedule if it finds a feasibleyygcessors as even as possible. In addition to the

schedule. With the set of tasks that is scheduled, thgropabilities, we compute the overall distribution of the
utilization is computed. By combining the utilization andtasks over the allocated processors by:

the estimate of the future cost that is required for the tasks  pg(task | processor )j= P[il[j]* (E[i][j]/Ali])

that were thrown away, we get an estimate of the overall ] )
We illustrate the procedure using the following example.

implementation cost. The estimate is given by T
The Table 4 shows characteristics of each task and each
YCLl+ Y CLil(A-U) + 5 min{ C[JI*E[i][j]/T[i]}
whereC[j] refers to the cost of procesgplJ utilization
of allocated processors. tl 3 2 ° 1 3 3

. t2 2 3 5 1 3 3
When a set of processors is allocated, the cost, the = 3 E 10 3 5 E
utilization, and the estimated future cost is checked. If the : : 1
cost is greater than the current minimum and the relaxed ~ Table 4: An illustrative example for partitioning

P1 P2 T S D A

partitioning and scheduling are completed successfully for P1 P2
all the given tasks, the actual partitioning of the task set T3 T
onto the set of allocated processors is performed. t 411 L
I o ved by th llowi q de: t2 9/13 4/13
Allocation is summarized by the following pseudo-code: B 55734 9734
Allocation () Table 5: Probability table for tentative assignment.
repeat
perform the relaxed assignment and scheduling for all processor. In the Table 5, probabilities associated with
processors; _ . o each task on each processor are computed. Figures 1 and 2
collect a processor at a time that is most promising;  show the respective probabilities of tasks multiplied by
if the relaxed assignment and scheduling are successful
then check the utilization factor; u (4113)* 1 = 0.3077 ]
if the utilization is too high then allocate more 8'9 0 (9/13) * (2/3) = 0.4615
resources; "9T23455678%9
else go to the actual partitioning; 2 (9/13) % (2/3) = 04615 —— ,_l
. ) (4/13) * 1 =0.3077
_ else continue; _ SRR S TE e T
until all the tasks can be scheduled using (25/34) * (3/5) = 04615
relaXGd_SChedU”ng; t3' — T ’ﬁ_f—J;L_F (9/34) * 1 = 0.2647
0123456789 9

Figure 1: Distribution graph of each task on P1 (left)and P2
(right).



their respective distribution over the time frame during#3. The EDF is optimal if the deadlines are non-decreasing
which they can be executed. when the tasks are ordered in the non-decreasing order of
it is not possible to assign all the tasks on éhe start times (i.e., tasks are released according to the

Clearly, . . .
eary %%er of their respective deadlines).

processor and to have a feasible schedule because there
time slots where the sum of distribution graphs is greatdeDF gives the shortest schedule if it is possible for EDF to
than 1. When we attempt to assign a task on a processénd a feasible schedule at all. If a task misses its deadline

the self-force is computed as when EDF is used, then it would be beneficial to delay one
follows: or more tasks executed prior to the task missing its
self— forcq task ,i processor)j= ZZDG[K i1* X[i] deadline. Therefore, the candidates that will be delayed

ghould have deadlines that are later than that of our target
ask and start times earlier than those of the target task.
Ee target task means the task that our algorithm will
make meet its deadline. When a candidate is selected to be
delayed, we want to make sure that the number of unused

The algorithm assigns tasks onto processors one at a timgne slots and overlaps are minimized. If every deadline is
When a task is identified to be assigned on a processor, thfst, we have a feasible schedule.

probability table is updated. As a result of assigning the . . :
task 1 on the processor 2 we get the probability table givjr:fgi 3 dleplct? ar; mstancet_ of 3 sc(ngduhngdprct)blte?ﬂ. Thef
in the Table 5. After updating the probability table, the€ctangies reterto respective deadlinés and start imes o

values of the self force for the rest of the tasks with théhe tats_ks.t_The numbersllrt])Tldtg the goxezgggate th(ta
new probability table are computed using the sam&Xecution imes over available imes. Fure 0es no

For example, self-force of task 1 on P2 is -0.7178. Of th
values of the self-force, this one is the minimum. This ca
be interpreted as assigning the task 1 onto the processo
is the best choice in terms of maximizing schedulability.

procedure. In our example, the algorithm assigns the task 2
. task 1 1/2 task 1
on the processor 1 and finally the task 3 on the processor 1. ’J:
task 2 2/6 task 2
Here is the complete assignment algorithm: | 4110 task 3 3
= / task 3
. 0123456789
Assignment () | 212 ] task4
01234567 89011°
repeat Figure 2: (a) Example #1.: ot ot
for all tasks t Distribution graphs of tasks  Figure 2: (b) Example #2:
compute self force(t,p); be scheduled
endfor;
endfor; give a feasible schedule in this case. But if task 3 yields its
pick a combination of a task and a processor with least execution turn in favor of meeting the deadline of the task
self force; 1 (or task 2), then there is a feasible schedule which can be
until all the tasks are assigned; found by applying EDF to the transformed system. Note
that in order to have a feasible schedule we must not use
6.0 Task-Level Scheduling the first time slot. The schedule, however, is optimal.

The example shown in Fig. 2b cannot be solved using EDF

The basis for our scheduling algorithm is EDF schedulin%. : : . X
. o ither. But if at most two tasks yield their execution turns,
[Sta95]. We turn our attention to a heuristic procedure y

which transforms the given scheduling problem into all tasks can meet their deadlines. When the standard EDF

different form in such a way that the EDF can be applie{i‘iS used, the schedule would be task sk 3 task 1 -

to nearly optimally find a feasible schedule. By"’Wh'Fh is not fga5|ble. Note that there is only one task the

transforming the schedule to delay execution of one O%tart t'.me of which can be delayed, namely, Fask 4. After
X : changing the start time of task 4 to the start time of task 3

more tasks, we can often find a feasible schedule even

when pure EDF cannot. The scheduling algorithm is bas of task 1, the EDF generates the schedule tastagk
on thepfollowin three e.as {0-DIOVe obgser?/ationS' —task 1 .. Again it is not feasible. By moving the start
9 y-to-p ' time of task 2 to the start time of task 3 or task 1, the EDF

#1. Any sequence is optimal if all the tasks have the samfinds a feasible schedule.

start time and the same deadline. Next consider the example shown in Fig. 3. The schedule

#2. The EDF is optimal if all the tasks have the sameby the EDF without transformations would be taskt&ask
deadline and different start times. 2-task 1- ..,. There is no feasible schedule. By delaying
the start time of task 5, the modified EDF finds a new



Each task has a self force associated with each time slot of

12 sk 1 12 task1  its time frame wh!ch reflects the effect of an attempted
213 task 2 delay of a start time of a task on the overall demand
23 task 2 576 ks  requested by all the tasks givenfoyce = DGIi] * x[i]
,JLL‘ task 3 IJTLI task4  whereDGJi] is the current distribution value amfl] is
| 2/84/13 | iiiié N 4/8 task5  the change in the operation’s probability. Our goal is that
"012345678abril2 0123456780011l2 at each scheduling step every possible time slot at the
Figure 3: (a) An example of origin side of time axis is used. Therefore, unlike the self

scheduling problem requirin _ Figure 3: (b) The scheduling

o apnieation of foree. problem after one application of force of force-directed scheduling [Pau89], our self force

. ; delaying a task. has a positive value when the DG is lower than 1.0 at the
directed gglgg}g)ynegf ataski origin side of the time axis. We want to select a task to be
there are more than one tasks that can be delayed (task@using holes (unused time slots) and the possibility of
and 3). The choice for delaying its start time will impactoverloading time slots, it is desirable to ensure distribution
the feasibility and effectiveness of the procedure. Foft €ach time slot to be as close as possible to 1.0.
example, if task 4 is chosen, the EDF cannot find &inally, the self-force associated with delaying the start
feasible schedule. On the other hand, if task 3 is chosefime of a task is 5 force(i) for all affected time slots

the schedule length might be longer because the proces

r. T
will be idle at time 1 sIoo illustrate the application of self force to choose a task to

. be delayed, we use example 3. We first obtain the
The first example shows that we can improve our chancgistribution graphs in Fig. 3. We attempt to delay the start

of having a feasible schedule by checking to see if any taslnes of task 3 and 4, and calculate self-force(3) = 2.0208
misses its deadline if a task which arrived prior to the taslind self-force(4) = 1.625.

missing its deadline executes before the task. We do ngt

check all the combinations of start time changes here. I%rom Fhe two resu!tmg self-force values, we see that
. é:hanglng the start time of task 4 has less overall adverse

then task 1 misses its deadline. So. it is our advantage'?’ ect on the schedulability. In fact, changing the start time
' task 3 will lead to no feasible schedule. The point that

move the start time of task 3 to that of task 1 so that task .. .
e have to have minimal amount of unclaimed holes at the

can go first. The second example, however, is moré’

complex. No task misses its deadline if one of the prioprigin side of the time axisis is valid in the sense that the
task exécutes first. The third example is even mor chedulability might be hampered later on if we do not use

complex. To address it we propose force-directed delaya-‘" the possible time slots. In the example, EDF now finds

based EDF that is the described in the rest of this section® feasible schedule: task 3 -> task 2 -> task 1 -> task 4 ->

task 5. Next scheduling will be continued at the time slot
The algorithm first tries EDF to find a feasible schedule. If 4,

it cannot, then it checks the given set of tasks to see if EDJIEh tollowi q heck if there is a feasibl
is optimal using the criteria given in 1-3. If it is the case, € foflowing procedure checks to see i there Is a feasible
there is no a feasible schedule. Otherwise, it selects a tag&hedule for the given set of tasks.

at a time to be delayed using modified force-directed.. Identify the set of released tasks. That is, look for the
scheduling [Pau89]. set of tasks that are arrived before the first deadline of a

The distribution is defined as the probability by which a @Sk in the set.

task demands a particular time slot for its execution. By. Try EDF for the task set. If there is no feasible sched-
taking the summation of the probabilities of all tasks, we ule, compute the self-force for each task that is released
obtain distribution graphs. The resulting distribution  prior to the deadline and have a deadline later than that
graphs in our problem indicate the demand at a time slot of the target.
for the resource requested by all the tasks. The DG at time
2 in Fig. 2ais 2/5 + 1/3 + 1/2 = 37/30, which means a?'
least one task must be able to be scheduled not claiming
the time slot in order for us to have a feasible schedule.
Interestingly, if task 3 is scheduled solely based on the
start time of it, it must use the time slot 2 and there is na. Repeat steps #2-#3 until a feasible schedule is found or
feasible schedule for the task set. The distribution graphs there is no more possible candidate that can be delayed.
are given by ¥ (ELiLi1/ALiT)

|

Select a task that will be scheduled after the target task
based on the values of the self-force found in #2.
Adjust the start time of the selected task to the start
time of the target task.



5. When a feasible schedule is obtained, compute the  10.0 Acknowledgements
schedule length and adjust start times of subsequent
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