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Abstract

This paper presents a new pipeline structure that
dramatically reduces the power consumption of multimedia
processors by using the commonly observed characteristic
that most of the execution cycles of signal processing
programs are used for loop executions. In our pipeline, the
signals obtained by decoding the instructions included in a
loop are temporarily stored in a small-capacity RAM that
we call decoded instruction buffer (DIB), and are reused at
every cycle of the loop iterations. The power saving is
achieved by stopping the instruction fetch and decode stages
of the processor during the loop execution except its first
iteration. The result of our power analysis shows that
about 40% power saving can be achieved when our pipeline
structure is incorporated into a digital signal processor or
RISC processor. The area of the DIB is estimated to be
about 0.7mm?2 assuming triple-metal 0.5um CMOS
technology.

I. Introduction

Multimedia capabilities are being incorporated into many
kinds of computer systems, such as personal computers,
personal digital assistants, digital cellular phones, car
navigation systems, and video games. To handle these
computationally intensive applications, the required LSI
performance is increasing greatly, and this is a major factor
in the increased power consumption of LSIs.
especially true for processors because more and more
multimedia applications are being handled by software as
the performance of various kinds of processors improves
drastically [1], [2]. ‘

Thus, it is evident that low power design methodologies
directed toward multimedia processors are desired. So far,
low power design research has been made extensively in
various areas, including digital architecture, circuit design,
process/device technology, and CAD. Although many of
the research results for the latter three can be directly
applied to multimedia processors, those for digital
architecture are of little use in this area. This is because
most of the recent research into low power architectures [3]-
[5] assumed a dedicated LSI designed for a specific purpose
rather than a programmable processor. We have thus
focused on a low power architecture for multimedia
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processors whose functions can be changed by
programming.

In this paper, we present a new pipeline structure that
dramatically reduces the power consumption of multimedia
processors by using characteristics commonly observed in
signal processing programs. In Section II, the power
wasted in conventional pipeline structures is briefly
discussed to explain our motive for this research. The
concept of our low power pipeline structure is presented in
Section III. Section IV presents application examples of
our pipeline structure to demonstrate its power reduction
capability. Some variants of our pipeline structure are
discussed in Section V. Section VI summarizes the key
points of this paper.

II. Problem of Conventional Pipelines
The majority of multimedia applications use digital
signal processing. In processors handling signal
processing, most of the execution cycles are used for
executing loops because the typical core routines of these
programs perform multiply-accumulate operations (given
by (1) for example),

N
c= Y x(n)y(m) 8))

and these operations a;.'rel accomplished by iterating
multiplication and addition many times (N times in the
case of (1)).

Processors are generally pipelined to increase
throughput. Fig. 1 (a) illustrates the concept of a
conventional pipeline. The pipeline is conceptually divided
into the following three parts.

1) Instruction memory (or instruction fetch part):
provides instruction code stored at the instruction
address to which program controller points.

2) Instruction decoder: decodes the instruction code
and provides the decoded signal.

3) Execution units: execute the instruction according
to the decoded signal.

All three parts of a conventional pipeline are sequentially
activated to execute any instruction. From the viewpoint
of low power design, however, this is not desirable for loop
executions, which cover most of the execution cycles of
signal processing programs. This is because instruction
fetching and instruction decoding waste precious power
budget each time the loop is iterated after the first loop
because the codes and decoded signals are the same for each
iteration of the loop no matter how many times the loop is
iterated.
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Fig. 1. Concept of conventional and proposed pipelines.

III. Concept of the Stage-Skip Pipeline

Our proposed pipeline structure dramatically reduces the
power consumption of multimedia processors by using the
characteristic that most execution cycles in signal
processing programs are used for loop executions. The
concept of our pipeline is illustrated in Fig. 1 (b). The
following two elements are inserted between the instruction
decoder and execution units:

- Decoded Instruction Buffer (DIB): stores decoded
signals for a whole loop.

- Selector: selects the output from either the
instruction decoder or DIB.

The decoded instruction signals for a loop are
temporarily stored in the DIB and are reused in each
iteration of the loop. The power wasted in the
conventional pipeline is saved in our pipeline by stopping
the instruction fetching and decoding for each loop
execution. Since power consumption is reduced by
virtually skipping the instruction fetching and decoding
stages, we call it a stage-skip pipeline (SS pipeline).

The SS pipeline has three types of operations as shown
in Fig. 2. One of these operations is dynamically selected
depending on the current execution state of the processor, as
follows.

i) Outside a Loop

‘When the processor is executing instructions outside
a loop, the pipeline operates exactly like a
conventional pipeline. The instructions are fetched,
decoded, and sent to the execution units. The DIB is
inactive.

ii) st Iteration of a Loop

When the processor executes the first iteration of a
loop, the decoded signals for each instruction of the
loop are directly provided to the execution units, and
at the same time, also written into the DIB. Thus,
the decoded signals for the entire loop are stored in
the buffer in sequence.

Instruction Flow
—> -

Outside a Loog] 15t [ 2nd3d|@ @ @ @vn | ¢

Iterations of a Loop -

Active

Inactive

Outside a Loop  1st Iteration 2nd-to-Last Iterations

of a Loop of a Loop
Fig. 2. Operation of SS pipeline.

iii) 2nd-to-Last Iterations of a Loop
When the processor is executing the 2nd-to-last
iterations of a loop, the DIB provides the decoded -
signals to the execution units in the same sequence
as for the first iteration. Since fetching and decoding
are not required, power is saved in the SS pipeline.
The pipeline is controlled by a program controller
(denoted as Program Cntr. in Fig. 1.(b)), which knows the
current execution state as follows. Suppose that the current
execution state is Qutside a Loop, where the program
controller increments the instruction addresses one by one.
When the processor executes a specific instruction evoking

- loop execution, the program controller begins to point

repeatedly at the addresses for the group of instructions
specified in the loop-evoking instruction. When this

- occurs, the program controller detects that the execution

state has changed to Ist Iteration of a Loop. The number
of times for the loop to be iterated is specified in the loop-
evoking instruction, and is copied to an iteration count
register. Every time the loop is iterated, this register is
decremented. The program controller detects that the
execution state has changed to 2nd-to-Last Iterations when
the register is decremented for the first time. When the
value of the register reaches zero, the program controller
detects the end of loop execution and once again begins to
increment the instruction addresses one by one. The
program controller detects that the execution state has
returned to Quiside a Loop when this occurs.

IV. Application Examples
To demonstrate the power saving capability of the SS
pipeline, the power that would be saved by using an SS
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Fig. 4. Block diagram of DIB.

pipeline was analyzed for two processors, one of which is a
digital signal processor (DSP) and the other is a RISC
processor. First, we will briefly describe these two
processors. Then, we will consider the design issues of a
DIB for the processors and analyze the behavior of various
signal processing programs. Finally, we will present the
results of our power analysis for the processors into which
an SS pipeline is incorporated.

A. Outline of the Processors

One of the processors that we analyzed is a 24-bit-
instruction DSP that we experimentally designed
previously. It has an instruction set applicable to a wide
range of signal processing applications [6], [7], although
its data length was shortened to 16 bits for use as a speech
CODEC LSI. A block diagram of the DSP chip is shown
in Fig. 3.

The other is a MIPS R3000-like RISC core that was
experimentally implemented to perform a power analysis
on it [8]. This chip includes integer datapath (register file,
ALU, and shifter), next-PC module, controller, I-cache
(2kB), and D-cache (2kB).
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Fig. 5. Circuit diagram of DIB.
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Fig. 6. Energy needed to provide decoded signals.

B. DIB implementation

We studied the design of a DIB, and estimated the area
needed for the buffer and the power consumed by the buffer
itself. The estimated results are described below.

A block diagram of the DIB for use in the DSP is shown
in Fig. 4. To reduce the area needed for the DIB, we use an
SRAM structure. The number of columns in the memory
cell array (92) corresponds to the number of pins for the
decoded signals in the DSP. The number of rows in the
memory cell array (64) corresponds to the maximum
number of instructions whose decoded signals can be stored
in the buffer. The memory cell is composed of six MOS
transistors. The area of the DIB is estimated to be about
0.7 mm?2, assuming 0.5um CMOS technology with a
triple-metal process. Note that this corresponds to only
0.8% of the whole chip.
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Table 1. Loop size in application programs.

Size
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FIR Filter '
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Fig. 7. Loop-size distribution for the case of executing

VSELP.

To reduce the power consumed, we used the following

power reduction techniques for its read circuits (Fig. 5) [9].

i) To reduce cell current, the word line (WL) is
driven by a short pulse.
ii) To reduce power dissipation in ‘the sense
amplifiers, latch-type sense amplifiers (SA) are used.
iii) To prevent power dissipation which the latch-
type sense amplifiers would cause by driving the bit
lines, the bit lines are isolated from the sense
amplifiers by the switches (YSW) when the sense
amplifiers are activated.

We estimated the power needed for both a conventional
pipeline and the SS pipeline to provide decoded signals in
the case of the DSP (Fig. 6). Here, SPICE simulation was
used to estimate the power consumed in the instruction
memory (fetching) and DIB, and the power consumed by
the instruction decoder was estimated using power analysis
data reported in [10]. OQutside a loop, the required power is
the same for both. For the 1st iteration of a loop, there is

(c)2D8‘x8DCT

(b) LPC coefficient
copmutation

Fig. 8. Execution cycles within and outside loops.

an overhead of about 10% for the SS pipeline to write to
the DIB. However, in the 2nd-to-last iterations of a loop,
where instruction fetching and decoding are inactive and
only the DIB is activated, the required power is reduced to
as little as 12% of that of the conventional pipeline. This
is because the DIB uses an extremely small-capacity RAM
(only 64words x 92bits), so it uses much less power than
is used for fetching and decoding.

In the case of the R3000-like RISC core, the DIB takes
up only about 2% of the die area. The power of the DIB is
estimated to be about 11% of the power consumed in the
controller and I-cache together. This estimation was done
based on the information regarding the schematic, chip size,
and power analysis of the RISC core, which are reported in
(8l

C. Program Analysis
Since the SS pipeline saves power by using a small-
capacity DIB to replace the instruction fetching and
decoding during loop execution, the following two points
are essential from the viewpoint of program characteristics.
i) For most (preferably all) cases, the number of
instructions in a loop (here, it is called loop size)
should be small enough for the entire loop to be
stored in the DIB.
i) Most execution cycles should be loop executions.
We verified these points by extensively analyzing signal
processing programs coded for the DSP. The analysis
results are described below.
Table 1 shows the loop sizes in various signal
processing programs. Fig. 7 shows the loop-size
distribution when executing vector sum excited linear
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prediction (VSELP) speech CODEC. The largest loop size
among the programs that we analyzed was 53 words, which
appeared in the 2D 8x8 discrete cosine transform (DCT).
The loops in any of these signal processing programs are
thus smail enough to fit in a 64-word DIB.

Fig. 8 shows the execution cycles within and outside
loops when executing VSELP, linear prediction coding
(LPC) coefficient computation, and 2D 8x8 DCT. In any
of these cases, more than 80% of the execution cycles were
used for loop iterations, especially for the 2nd-to-last
iterations that are the key to power saving in the SS
pipeline.
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(a) ROM DIB (b) Hybrid DIB

Fig. 11. Block diagram of the ROM and hybrid DIB.

D. Power Analysis '

Based on these studies, we estimated the power that
would be saved by incorporating the SS pipeline into the
DSP or RISC processor.

Fig. 9 compares the power consumption for the DSP
with the SS pipeline and that for a conventional pipeline
for executing VSELP and 2D 8x8 DCT (Our analysis
process is described in the Appendix). The results are
dramatic. The power for the SS pipeline is reduced to
between 60% and 66% of that for a conventional pipeline.
The power of the instruction memory and instruction
decoder in the SS pipeline is greatly reduced since they are
stopped during the many cycles used for loop execution.
The power overhead for the DIB is so small that it is
almost negligible.

Fig. 10 shows the power saving of the R3000-like
RISC core with the SS pipeline for executing VSELP and
LPC coefficient computation. The results are quite similar
to those of the DSP. The power for the SS pipeline is
reduced to between 60% and 68% of that for a conventional

pipeline.

V. Variants of the DIB

In the case of embedded applications where the DSP
processor has to run a small set of applications, cost is a
very big constraints and so it is important to keep code size
small so that memory (RAM/ROM) requirements are kept
down. A variant of the DIB approach can be used to reduce
code size as well as power. The numbers in Fig. 8 and
inspection of the code indicate that the same code structure
is repeated very often. In such cases, it would be possible
to isolate these code structures and install decoded versions
in an on-chip ROM which can be treated as a library to be
used at run time by the application program. ROMs are
approximately four times denser than SRAMs and so for
the same area overhead larger storage can be used. This
approach also presents the opportunity to further reduce the
power consumption by reducing traffic to off-chip
memories. Finally, a hybrid structure which includes a
ROM and SRAM in the DIB can also be used to benefit
from both code size reduction and power reduction. Fig. 11
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Table 2. Consumed energy and active cycle rate

of each module of the DSP.
Active Cycle Rate, Ni
Module, i Energy, Ei VSELP 2D 8x8 DCT
(pl/cycle) conv. 1 50 conv.] 95 |
Data Op. Modules .
ALU 300 5025% <l | 48.32% —wam—
Maultiplier 349 39.88% -l | 25.96% —etll—
Barrel Shifter 668 8.82% ~w— | 0.00% -l
Data Register
Data Op. Losd/Stwore
double double 664 27.05% =wt— 1 0.00% -~etll—
double  single 538 5.17% ~— 1 185% ——
double nonc 412 3.42% M | 556% ~B—
single  double 434 3.11% <t | 0.00% <o
single  single 308 3.67% = | 25.96% --g—
single  hone 182 22.51% ~t— | 3337% ~l—
none double 252 10.52% = | 3.71% ~-g—
none  single 126 8.85% —— | 2596% ——
Control Modules
Data Addr. Cntr. 445 56.711% -t | 58.63% -atll—
Program Cntr. 192 1100.00% %= 1100.00% -—
Instr. Decoder 634  110000% 20.36% ]100.00% 14.02%
Bus Arbiter 70  1100.00% -wll— |100.00% -euf—
Clock Puise Generater 208 100.00% sl [100.00% -~eale
Data Memory
RAM (Read) 320 76.39% —wtll— | 39.63% --—
RAM (Writc) 540 12.85% ~w— | 2225% ——
__ROM 716 e o L .
| Instr. Memory 9% _ [100.00% 20.36% |100.00% 14.02%
DIB
Read 196 0.00% 79.64% | 0.00% 85.98%
Write 163 000% 3.81%] 0.00% 12.28%
Peripherals (2] 0.00% —at— | 0.00% ——

shows the block diagrams for these cases.

These variants would require careful assembly code
generation and can benefit from compiler optimization
techniques that can generate reusable segments of code for
such a library-based approach. Several small loops may be
consolidated whenever possible to reduce overheads as long
as this can be done without register spilling.

VI. Conclusion

We have proposed a stage-skip pipeline (SS pipeline) to
reduce the power consumption of multimedia processors.
The SS pipeline saves power by stopping instruction
fetching and decoding during loop execution and using a
small-capacity RAM that we call decoded instruction buffer
(DIB) to take over for them. This greatly reduces the power
used by processors handling multimedia applications
because the overwhelming majority of execution cycles in
signal processing programs are used for loop execution.
Our case study showed that power consumption is reduced
about 40% when an SS pipeline is incorporated into a
digital signal processor or RISC processor. The increase in
silicon area due to the DIB is estimated to be about 0.7
mm?2, assuming that triple-metal 0.5um CMOS
technology is used.

Appendix
The overall consumed energy was assumed to be given
by (2).
Erowl = ; E;xN; ?)

where Erg, is the overall consumed energy, E; is the
energy consumed per cycle in module i, and N; is the
number of active cycles for module i. The E; for each
modaule is listed in Table 2, where the-energy values for the
on-chip memories and DIB were éxtracted using SPICE and
those for the rest of the modules were extracted using a
gate-level power analysis tool [10). The operating voltage
is 3.3 V. The N; for each module is also listed in Table 2
for the execution of VSELP and 2D 8x8 DCT using the
DSP with a conventional pipeline and one with an SS
pipeline. The N; for the conventional pipeline can be
obtained by simply counting the number of times each
instruction is used because the activated modules for each
cycle can be specified from the instruction being executed
in that cycle. The N; for the SS pipeline can be obtained
by converting the results based on the loop execution
statistics shown in Fig. 8.
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