
ISLPED 1996 Monterey CA USA
0-7803-3571-8/96/$5.00 1996

Concurrency-Oriented Optimization for

Low-Power Asynchronous Systems

Luis A. Planay Steven M. Nowickz

Department of Computer Science
Columbia University
New York, NY 10027

Abstract|
We introduce new architectural optimizations for low-

power asynchronous systems, such as Tangram-based sys-
tems of van Berkel et al. Our goal is to reduce power con-
sumption by improving system concurrency. We introduce
two new sequencer designs, with greater concurrency than
existing ones, that provide the opportunity for substantial
power savings through voltage scaling. To safely accom-
modate this added concurrency, new latch designs are pre-
sented, for both dual-rail and single-rail implementations.

1 Introduction
Interest in low-power and asynchronous systems has grown
considerably in recent years. The constant increase in the
use of battery-operated portable devices like cellular phones,
notebook computers, and even implantable pacemakers, has
made low power consumption a high priority. Power issues
are also becoming critical for non-portable systems.
A wide range of techniques is used to reduce circuit power

consumption. These techniques approach low-power oper-
ation at di�erent levels of synthesis, including IC technol-
ogy optimization, low-power circuit design, architecture or
structural optimizations, algorithm level optimization and
system-wide low power techniques [3, 7]. Chandrakasan
et al. [3] show that concurrency is a key to architecture-
driven optimizations for low-power operation. The increased
throughput obtained through concurrent operation allows
the reduction of the power supply voltage, i.e., voltage scal-
ing [3, 7, 13].
The focus of this paper is on asynchronous designs for low

power. In principle, asynchronous systems have the poten-
tial for low power operation for two reasons. First, these
systems have no global clock; in contrast, clock distribu-
tion is a major source of power consumption in synchronous
design. Second, asynchronous circuits have an inherent au-
tomatic power-down operation: modules are activated only
when their operations are needed. Low-power design is a
major focus of recent asynchronous design, including a low-
power infrared communications chip [5], an asynchronous
implementation of the ARMmicroprocessor [4], and an asyn-
chronous error corrector for a DCC player [13].
A number of asynchronous design methods have been in-

troduced recently. Several methods approach circuit de-
sign as a programming activity. For example, van Berkel
et al. [13, 14], have developed a method to automat-
ically design low-power asynchronous circuits from high-

ySupported by a grant from CONICIT, Venezuela.
zSupported by an NSF CAREER Award MIP-9501880 and by an

Alfred P. Sloan Research Fellowship.

level Tangram programs. The programs are compiled, us-
ing syntax-directed translation, into handshake circuits, an
intermediate-level representation of a circuit as a network of
communicating processes. Every process is mapped to a cir-
cuit element in a self-timed library of modules. Such systems
are macromodular, since they are constructed by combining
modules into a working system. Macromodular circuits are
robust and usually have few timing assumptions.
The goal of this paper is to present architectural-level op-

timizations for low-power asynchronous macromodular sys-
tems, such as those of van Berkel [13, 14]. In these systems,
sequencing control and its interaction with the datapath are
critical. Our goal is to increase the level of concurrency in
the sequencing of data processing actions. This increased
concurrency must be achieved without increasing the switch-
ing activity required for the computation (otherwise power
consumption could increase).
In particular, we present the following new contributions.

First, we introduce two new designs for asynchronous se-
quencers. Each design increases the concurrency of the dat-
apath operations in the entire system. Second, we show that
existing asynchronous datapaths will not operate correctly
at this level of concurrency. We therefore modify the data-
path to insure correct operation. Speci�cally, we introduce
new designs for asynchronous latches and multiplexers that
handle concurrent operation safely in (a) \dual-rail" datap-
aths, and (b) \single-rail" datapaths (described below).
For dual-rail datapaths, our new components allow

roughly twice the throughput of existing sequential designs.
In this case, after voltage scaling, energy is reduced to
less than one-half. For single-rail datapaths, two di�erent
schemes are referenced. Our new components result in twice
the throughput of the �rst scheme, and roughly the same
performance as the second one. However, our simpler ap-
proach has advantages over the latter in (i) ease of design
and (ii) glitch avoidance in the datapath.
Organization of the paper. The paper is organized as fol-
lows. Section 2 reviews background on power consumption
and asynchronous circuits. In section 3, existing sequencers
are examined, and two new concurrent sequencer designs are
introduced. Section 4 introduces new latch and multiplexer
designs, for dual-rail datapaths, to handle the increased con-
currency. Similar modi�cations for single-rail datapaths are
introduced in section 5. Section 6 presents results of analysis
and SPICE runs, and Section 7 presents conclusions.

2 Overview
2.1 Power Consumption in CMOS Circuits
There are three major sources of power consumption in
CMOS circuits. Switching energy is associated with tran-
sitions on gate outputs. Short-circuit energy consumption is
caused by simultaneous conduction of pull-up and pull-down
stacks, allowing current ow directly from the power supply
to ground. Finally, leakage energy occurs in standby mode,
and is determined by technology factors. In most CMOS
circuits, switching power dominates the other two.
Two factors a�ect switching power consumption: (i) the

amount of switching activity that takes place, i.e., the num-
ber of transitions; and (ii) the energy consumed per tran-
sition, which is a function of the capacitance that is being
(dis)charged and the supply voltage. Power consumption
can be reduced by reducing the capacitance, the number
of transitions, or the supply voltage. Since power depends
quadratically on the supply voltage, supply voltage scaling
is an especially attractive scheme for power reduction [3].
Unfortunately, voltage scaling has the undesirable e�ect of
reducing the speed of the circuit. Our goal is therefore to
increase the concurrency, and hence the throughput, of a
system. Such throughput improvement compensates for the
performance penalty which results from supply voltage re-
duction. If the increase in performance is achieved without
increasing the switching activity required for the computa-
tion, a substantial reduction in power is possible after volt-
age scaling, with no net loss in performance.

2.2 Asynchronous Circuit Operation

In this paper, we focus our attention to asynchronous macro-
modular systems. This type of asynchronous circuits are de-
signed as a network of prede�ned data and control modules
[2]. Instead of a global clock signal, communication channels
between modules are used to synchronize their operation and
data interchange. These channels can be implemented using
di�erent protocols and di�erent codes can be used to repre-
sent and transmit data. Two protocols are most common:
dual-rail and single-rail.
� Dual-rail Data Processing. In dual-rail datapaths,
data is encoded using a dual-rail code [14, 6], a delay-
insensitive code that requires two wires for every data bit.
Codes 01 and 10 represent `1' and `0' data values, respec-
tively; code 00 represents the idle state; and 11 is an invalid
code. This encoding e�ectively combines data and control
in the same wires: the idle state indicates invalid data, and
01 and 10 indicate valid data and the data value itself. Fig-
ure 1(a) shows schematically how a typical data processing
action, Z = F (X;Y), is implemented using handshake cir-
cuits. X, Y , and Z are variables that hold data, and F is
usually a block of combinational logic that implements the
desired function.
A controller, frequently a sequencer, uses handshake sig-

nals Cr and Ca to communicate with this datapath section,
using a 4-phase handshake protocol (see below). Function
F is implemented using hazard-free combinational logic that
operates on dual-rail input data and generates dual-rail out-
puts. Hazard-free operation is required because any glitch
in the data wires can be interpreted as a valid data signal
and produce erroneous operation.

DUAL−RAIL DATA
CONTROL SIGNALS

X

Y

F

Cr

Rr

Rr

LATCH

LATCH

ZWr

Wa

Ca
LATCH

FUNCTION
 BLOCK

X

Y
MATCHED
 DELAY

SINGLE−RAIL DATA
CONTROL SIGNALBUNDLED DATA

DF

Z

MATCHED
 DELAY

DZ

F

Cr Ca

Wr

LATCH

LATCH

LATCH

(a) Dual-rail operation (b) Single-rail operation

Figure 1: Schematic Datapaths for Z = F (X;Y).

� Single-railData Processing. Single-rail encoding [11, 2,
9] can be used to overcome the large area and power penalty
associated with the use of dual-rail data. This code uses one
wire for every data bit and one additional wire, called the
data-valid signal, for control. The collection of all data bits
and the data-valid signal is called a data bundle.

The correct operation of single-rail circuits relies on a lo-
cal timing assumption: all data wires must be valid and
stable at the inputs of a module before the data-valid signal
is asserted. This timing assumption is called a bundling con-
straint. To comply with this constraint, delays are inserted
in the data-valid wires. In CMOS implementations, delays
depend heavily on the �nal routing and placement of mod-
ules, so safety margins are required for correct operation.
Figure 1(b) shows a schematic handshake circuit for a

single-rail implementation of Z = F (X;Y). Unlike dual-rail
logic, F need not be hazard-free: a synchronous combina-
tional logic block may be used. The delays in the control
signals are designed to match worst case delays. DF must
equal the worst case delay in F , and DZ must match Z.

3 Control of Computation
A basic control operation in macromodular systems is the
sequencing of computations or data processing actions. Such
sequences can be very long. For example, Bailey [1] reports
that the longest sequence in the asynchronous error decoder
circuit for a DCC player [13] consists of 48 actions.

O
O
O
O

IDLE PHASE

ACKNOWLEDGE PHASE
PROCESSING PHASE

Sr
Sa
r1
a1
r2
a2
r3

r4
a4

a3

P1 P2 R2 P3 R3 P4R1 R4

COMPUTATION

Sa

r1

r2
a1

a2

a3

a4

r4

Sr
r3

S
E
Q
U
E
N
C
E
R

P1

P2

P3

P4

(a) (b) RETURN−TO−ZERO PHASE
4
3
2

1

Figure 2: Sequencer Circuit and Timing Diagram.

Figure 2(a) shows a sequencer module controlling the op-
eration of four processes (P1, P2, P3, P4). The sequencer
communicates with process Pi using a request (ri) and ac-
knowledge signal (ai). Figure 2(b) shows how the sequencer
communicates with each process using a basic 4-phase hand-
shake protocol [6]. The protocol phases are:
� Processing phase (�1): the sequencer asserts ri to re-
quest processing to take place.

� Acknowledge phase (�2): Pi asserts ai to signal the com-
pletion of the computation.

� Return-to-zero phase (�3): the sequencer de-asserts ri
to request Pi to clear its acknowledge signal.

� Idle phase (�4): Pi de-asserts ai to signal that it is idle
and the sequencer can start the next process.

In this basic sequential protocol, the processing and return-
to-zero phases of computations are sequenced: P1; R1; P2;
R2; etc. Useful computation takes place only during the
processing phase (�1). The rest of the phases, �2, �3, and
�4, represent dead time from the point of view of compu-
tation. �2 and �4 correspond to sequencer latency and �3
corresponds to the return-to-zero phase of the process.
Figure 2(b) shows schematically how processing (Pi) and

return-to-zero (Ri) phases alternate in a sequential protocol,
resulting in a long dead time between computations. The
behavior of this sequencer is described by the expression:

�(sr "; r1 "; a1 "; r1 #; a1 #; : : : ; rN "; aN "; rN #; aN #; sa "; sr #; sa #)

Optimization techniques for such sequencers typically fo-
cus only on reducing the latency of phases �2 and �4. Our
goal is to provide signi�cant reductions in dead time by in-
troducing concurrent operation. The sequencer can start
process Pi as soon as Pi�1 has �nished processing. In this
way, every processing phase Pi is overlappedwith the return-
to-zero phase Ri�1 of the previous process.

3.1 Previous Sequencers
We now describe existing sequencers that implement sequen-
tial and concurrent protocols and indicate their limitations.

3.1.1 Sequential Approaches
� Tangram Sequencer. In Tangram, 2-way sequencing
is implemented using the SEQ operator, as shown in Fig-
ure 3(a) [14]. The sequencer is activated on its passive port,
or channel, S (a passive port is indicated by a small white
circle). The sequencer then communicates on active ports
P1 and P2 to activate the �rst and second processes, respec-
tively (an active port is indicated by a small black circle).

;

;

;; R

Q

S

S−ELEMENT

P1

P2

P1

P2

P3

P4

S

(a) (b) (c)

Sr

Sa

r1

a1

r2

a2

S

Figure 3: Tangram Sequencing Elements.

Channels are implemented using request and acknowledge
wires (Sr and Sa for channel S, and ri and ai for channel
Pi.) A complete 4-phase handshaking occurs on port P1,
followed by a complete 4-phase handshaking on port P2:

�(sr "; r1 "; a1 "; r1 #; a1 #; r2 "; a2 "; sa "; sr #; r2 #; a2 #; sa #)

An implementation of the SEQ operator is shown shown
in Figure 3(b). This circuit is speed-independent, i.e., it op-
erates correctly assuming arbitrary, �nite, gate delays. An
n-way sequencer consists of SEQ operators connected in a
tree structure, as shown in Figure 3(c). There are two prob-
lems with the Tangram sequencer: (i) it has a long initial
latency (the time it takes the start signal to reach the �rst
process), and (ii) it has a long �2 latency, equivalent to sev-
eral gate delays.
� Martin Sequencers. In [6], Martin presents two n-way
sequencers. The Tangram n-way sequencer corresponds ex-
actly to a Q-element-basedMartin sequencer and it has sim-
ilar performance problems. A D-element based sequencer
provides no overall performance improvement.
�Counter/Decoder Sequencer. In [1], Bailey introduced
a centralized sequencer, based in a counter/decoder architec-
ture. The counter centralizes the state of the sequencer, and
the decoder distributes the signals to the processes. The cir-
cuit is speed-independent and it is currently used in several
designs. The implementation has improved initial and �2
latencies compared to the Tangram tree sequencer. Minor
problems are that the circuit is not modular and is designed
to work with an even number of processes.
� Bailey Chain Sequencer. Bailey [1] also introduced
a distributed sequencer built as a linear chain of n mod-
ules, each controlling a process. The modules assume
fundamental-mode operation. In fundamental mode, no new
inputs can arrive until the component has stabilized from
a previous input change. The long latencies present in the
Tangram circuit do not occur in this design, resulting in a
more e�cient sequencer.

3.1.2 Concurrent Approaches
A concurrent sequencer was introduced by Unger [12]. How-
ever, it pays a large penalty in latency, area and energy.
� Unger Tree Sequencer. Unger [12] presents a 2-step
module that implements a concurrent 2-way sequencer. The
2-step assumes fundamental-mode operation and relies on
reasonable timing assumptions. An n-way sequencer can be
built as a balanced tree of 2-step modules [12]. There are

several problems with this implementation: (i) the sequencer
has a long initial latency, (ii) the inter-process latency (�4)
is di�erent for every pair of processes and can be several
gate delays, depending on how far up and down the tree
the signals have to propagate, and (iii) the area and power
consumption of this structure are signi�cantly worse than
the previous designs (see Section 6).

3.2 New Concurrent Sequencers

We now introduce 2 new concurrent sequencers. Both de-
signs have good latency, area and power characteristics.

3.2.1 Burst-Mode Concurrent Sequencer

Our �rst sequencer tightly controls the overlap between a
processing phase Pi and the previous return-to-zero phase
Ri�1. The key point is that this sequencer waits until both
concurrently operating phases, Ri�1 and Pi, complete before
starting the next two overlapped phases, Ri and Pi+1, as
shown in Figure 4.

P1 R1P1

P2

P3

P4

P2 R2

P3 R3

P4 R4

PROCESSING

DEAD TIME

Figure 4: Burst-Mode Sequencer Operation.

We synthesized the circuit using an existing burst-mode
tool, UCLOCK [8], with extensions to incorporate output
feedback. The result is a modular design, well suited for
distributed control. Our sequencer has N modules organized
into 4 types as shown in Figure 5(a): module M1 controls
process P1, M2 controls P2, MI modules control P3 to PN�1,
and MN controls PN .

r1

r2

a1

a2

a3

a4

r4

Sr

Sa

r3 ai−2
ai−1

ai

a1

Sr r1

a1
a2 r2

Sr

an−2
an−1

(a) (b)

P1

P2

P3

P4

M1

M2

MN

M1

M2

MN

2 < I < N

r n

r iM I

M I

Figure 5: Burst-Mode Sequencer.

The sequencer operates as follows. A request on Sr ac-
tivates module M1 which starts a 4-phase handshake with
process P1 by r1 ". P1 then responds with a1 "; modules
M1 and M2 both receive this signal. BM1 will respond with
r1 # while, concurrently, M2 will start a 4-phase handshak-
ing with with P2 by r2 ". As a result, the reset phase of
the �rst process (R1) overlaps the next computation (P2).
The sequencer then waits for the completion of both phases
to proceed: once a1 # and a2 " have both arrived, M2 con-
tinues the handshaking with P2 concurrently with starting
a 4-phase handshake with P3. As a result, R2 overlaps P3.
The same behavior continues until the end of the sequence.
Note that in module MI, shown in Figure 5(b), the critical

path from completion of Pi�1's active phase (ai�1 ") to the
start of Pi's active phase (ri ") is only 1 gate delay, allowing

fast activation of the next process1 . The other modules,
M2-M4, have similar latency.

3.2.2 Optimized Concurrent Sequencer
Our second sequencer allows greater concurrency, by using
a more relaxed synchronization requirement.
In our burst-mode sequencer, a long return-to-zero phase,

like R1 in Figure 4(a), may unnecessarily delay the start of
the next processing phase (P3). In this case, P2 completed
early and it is the only requirement to start P3. By starting
P3 as soon as P2 is �nished, independently of the status of
R1, a faster sequence of processing phases is allowed.

r1

r2

a1

a2

a3

a4

r4

Sr

Sa

r3

T1

a1

Sr r1

T1

Sr rN
aN−1

TN

ai−1
riai

(a) (b)

P1

P2

P3

P4
TN

T I

T I
T I

1 < I < N

Figure 6: Optimized Sequencer.

Our new sequencer design is shown in Figure 6(a). Al-
though similiar to the burst-mode sequencer, three improve-
ments are clear: (i) a wire replaces the AND gate that gen-
erates Sa; (ii) each module has one fewer input (ai�2), re-
sulting in a reduced fan-out of the processes' acknowledge
signals; and (iii) the module implementation, shown in Fig-
ure 6(b), is more e�cient in terms of area and power. 2

4 Dual-rail Datapaths
We now examine the interaction of concurrent sequencers
with the actual datapath, and point out problems that can
arise. We then present modi�ed latch and multiplexer de-
signs that allow safe overlapped operation in the datapath.

W0

W1

Wa

Rr

Rr R0

Rr

R1q1

q0

q0R1 R0

WRITE
SECTION

STORAGE
SECTION

READ
SECTION

Figure 7: Dual-rail Latch.

A dual-rail variable is usually implemented by a latch with
separate read and write ports [14] (see Figure 7). The latch
is opaque when inactive. W0 and W1 correspond to the dual-
rail write data, and Wa is the write acknowledge signal. Rr

is the read request, and R0 and R1 are the dual-rail data
outputs. Concurrent read and write operations to this latch
are not allowed! If this occurs, the latch may malfunction,
as indicated below.
4.1 Data Hazards during Overlapped Operation
When concurrent sequencers are used, a new process is
started as soon as the computation phase of the previous
one is complete. Unsafe overlapped operation of the datap-
ath is caused by concurrent processing and return-to-zero

1In a CMOS VLSI implementation, an AND/OR gate is imple-
mented using an AOI-gate and inverter, resulting in 2 gate delays.

2Our sequencers have modest fundamental-mode requirements; we
have also developed a more robust \speed-independent" version of this
sequencer [10], for use if these timing requirements cannot be met.

phases accessing the same latch. Of four possible forms
of interaction, three are free of data hazards. (i) Read af-
ter Read (RAR): data does not change and remains stable.
(ii) Read after Write (RAW): The new computation reads
data that has already been written to the latch and is sta-
ble. (iii)Write after Write (WAW): the read port of the latch
is opaque so the new data can be written without causing
problems.
The only hazardous interaction is: (iv) Write after Read

(WAR) hazard: The new computation may write new data
while the read port is still transparent. In this case, a read is
�rst initiated (e.g. Rr "; R0 " or R1 "). Before it is completed
(Rr #; R0 # or R1 #), a write is initiated (e.g. W0 " or W1 ").
A classical example where this hazard arises is in a dual-

rail shift-register (SR). In the framework of Figure 1(a), the
shift register is a special case: function block F is deleted, as
is latch Y . Latch X is the single source, feeding destination
latch Z. This structure is replicated: another latch Q, in
turn, is a source (to the left), feeding destination latch X,
and so on. In an n-stage shift register, the R0 (R1) output
of each stage is connected to the W0 (W1) input of the next
stage. A read request to one stage therefore produces a
write to the adjacent stage (see [14] for details). A sequencer
controls the 1-bit shift operation. The sequencer generates
a read request (Rr) to each stage in turn, and receives the
adjacent write acknowledge (Wa). If a concurrent sequencer
is used, a WAR hazard will occur in every latch.
4.2 Hazard-free Overlapped Operation
Two di�erent approaches can be used to eliminate WAR
data hazards: (i) hardware solution { stall the write opera-
tion until the read is completed, and (ii) complier solution
{ avoid overlapped accesses to the same register.
Hardware Solution. Interlock circuitry is used to stall the
write operation until the read port of the latch is opaque.
The addition of the AND gates, shown in Figure 8(a), makes
Rr an enable signal for the write data. Rr remains low
while the read port is transparent, disabling write opera-
tions. Note that, in practice, the interlock circuitry should
have minimal impact on performance: using a concurrent
sequencer, Rr # will typically arrive before the write request
(W0 " or W1 ") from the next stage, and no stall will occur.

(b)

W0

W1

Wa

(a)

Rr

Rr R0

Rr

R1
q0R1 R0

q0

q1

STORAGE SECTION

Rr

Rr

W0 W1

q0 q1

NOR2NOR1Rr
NOR1

NOR2

Rr

STORAGE SECTION

Figure 8: Modi�ed Latches for Overlapped Operation.

If the data being written to the latch is equal to the data
already stored in it, the write operation is not stalled and is
acknowledged immediately, regardless of the state of the read
port. This is a safe optimization: No changes are caused
in the latch and no glitches are generated or propagated.
Two versions of our modi�ed latches are shown in Figure 8.
Figures 8(a) and 8(b) highlight the gate-level and transistor-
level changes, respectively. The latter solution requires only
2 added transistors.
Compiler Solution. At the algorithm level, a compiler can
easily identify a WAR hazard between two consecutive com-
putations. Therefore, the compiler can insert an unrelated
operation between them, to eliminate the hazard. In a case
in which such reordering is not possible, the compiler either
inserts a special, null operation or falls back on the use of
the modi�ed latch. This technique requires the use of our

tightly-coupled burst-mode sequencer, which allows WAR
interactions between two consecutive computations only.

4.3 Overlapped Multiplexers
The operation of the datapath often requires multiple mod-
ules to write to the same latch. Since latches only have one
write port, the di�erent write requests must be multiplexed
to this port. An existing handshake multiplexer [14], shown
in Figure 9(a), requires mutually-exclusive requests on its two
channels. A new multiplexer design, shown in Figure 9(b),
allows overlapped requests. In this design, an overlapped
request is stalled at the AND gate until the �rst operation
is completed.

C

C

aa

ar

br

ba

Ca

Cr

(a) (b)

C

C

aa

ar
br

ba

Ca

Cr

Figure 9: Multiplexers: Original and Modi�ed.

5 Single-rail Datapaths
Dual-rail datapaths are very robust but pay a large penalty
in terms of area and power dissipation. We now examine
single-rail datapaths as an alternative implementation.
Figure 10(a) shows the latches used to implement the vari-

ables which appear in Figure 1(b) (see [9]). Complementary
signals en and ne are generated by the latch control circuit,
shown in Figure 10(b). Each latch is normally opaque, and
stored data is always readable at its output. A write request
(Wr ") makes the latch transparent for writing; the subse-
quent Wr # makes the latch opaque, latching the result.

5.1 Previous Approaches
Two recent schemes have been proposed for single-rail dat-
apath operation by Peeters and van Berkel [9].
Conservative Scheme. The conservative scheme uses

a sequential controller, such as Bailey chain sequencer, with
the single-rail latch (Figure 10(a)). Performance is poor,
since the sequencer does not allow overlapped operation.

(b)Wr

en

ne

Wr

en

ne

Cr DESTINATION
 LATCH

Wr

en

ne

Ca SOURCE
 LATCH

(c)

(d)

ne

en

en

ne
q

(a)

d

Figure 10: Single-rail Latch and Control Circuits.

In this scheme, the result of the computation is valid at
the end of the processing phase (�1). Once processing is
complete, the latches becomes transparent (see Figure 1(b)).
The key point, in this scheme, is that the result remains
stable throughout the return-to-zero phase (�3), allowing the
destination latch to remain open with valid and stable data.
A positive aspect of this scheme is that the latch is trans-

parent only when data is valid and stable, so no undesired
glitches are propagated to the rest of the circuit. The draw-
back of this scheme is that, even though the result of the
computation is ready at the end of the processing phase, the

stage still must go through the return-to-zero phase before
the next computation can begin.
Fast Scheme. A fast scheme that achieves a desirable

high density of computation by a novel distribution of the
computation throughout the phases of the handshake pro-
tocol. While the fast scheme can be twice as fast, it has
potential problems in terms of datapath power dissipation
and ease of realization.
In this scheme, delays are designed to match only half

the value of the worst-case delay in the functional blocks.
As in the previous scheme, Cr propagates through DF and
becomes the data-valid signal for the output data from F .
The di�erence is that, at the time this signal is asserted, only
half of the computation time has elapsed, and data is not
ready! The signal arrives as a write request to Z, making
it transparent. The latch acknowledge signal goes to the
controller as an indication of a completed processing phase
even though computation is still going on. Cr # starts the
return-to-zero phase and propagates through the matched
delay. At this point the result of the computation is available
and stable in the data wires that feed the latch. When the
control signal reaches Z, the latch is closed.
The advantage of this scheme is that it reduces to a half

the length of the processing and return-to-zero phases of the
handshake, obtaining roughly twice the density of computa-
tion of the conservative scheme. However, the scheme has
two key drawbacks: (i) the matching of delays to half the
value of the delay in the functional blocks is not straight-
forward, and, more signi�cantly, (ii) the destination latch is
made transparent when data unstable. In fact, the outputs
of the combinational circuit F can glitch many times during
this period and these glitches will be propagated to every
processing stage connected to the latch. This results in un-
predictable power consumption that can be large, especially
if the latch is connected to deep combinational circuits.

5.2 Overlapped Single-rail Operation
Our solution is to use one of our concurrent sequencerswith
the conservative datapath protocol, where the matched delay
matches the full computation block. This results in essen-
tially the same performance as the fast scheme but without
the drawbacks: the latch is transparent when data is stable,
eliminating glitch propagation, and the delays are matched
to the worst-case value of the associated functional block.
This approach is a valid solution, except for one problem:

in the interaction with the latches. As before, overlapped
operation introduces the possibility of hazards if operations
interact with the same latch. An analysis of the operation
of the single-rail datapath (equivalent to the analysis of the
dual-rail datapath in the previous section) reveals that three
type of interaction are safe (RAR, RAW, and WAW) and
only WAR interactions are unsafe and require modi�cations.

5.3 Modi�cations for Safe Operation
The WAR hazard arises because the destination latch Z re-
mains transparent throughout the return-to-zero phase while
the overlapped processing phase can write to a source latch
(X or Y). Latch Z already stored the information and is
only waiting for Cr # to propagate through the matched de-
lays as a close signal. Figure 10(b) shows the existing latch
enable circuit. Two di�erent solutions can be used:
Early close scheme. We can fast-forward Cr # to the des-
tination latch so it closes early in the return-to-zero phase
instead of at the end. Figure 10(c) shows this simple modi-
�cation to the latch enable circuit. The latch will not open
early so no glitch propagation will occur. This scheme uses
some reasonable timing assumptions for correct operation.
Interlock scheme. A more robust approach is to stall the
writing of the source latch until Z is opaque again. In this
case, the destination latch acknowledge signal is used as an

0

0.001

0.002

0.003

0.004

0.005

0 5e-09 1e-08 1.5e-08 2e-08 2.5e-08 3e-08 3.5e-08 4e-08 4.5e-08 5e-08

P
O

W
E

R
 (

W
)

TIME (S)

(a) Bailey Chain Sequencer +
Tangram Latches

0

0.001

0.002

0.003

0.004

0.005

0 5e-09 1e-08 1.5e-08 2e-08 2.5e-08 3e-08 3.5e-08 4e-08 4.5e-08 5e-08

P
O

W
E

R
 (

W
)

TIME (S)

(b) Our Optimized Concurrent Sequencer +
Modified Latches

(BEFORE VOLTAGE SCALING)

0

0.001

0.002

0.003

0.004

0.005

0 5e-09 1e-08 1.5e-08 2e-08 2.5e-08 3e-08 3.5e-08 4e-08 4.5e-08 5e-08

P
O

W
E

R
 (

W
)

TIME (S)

(c) Our Optimized Concurrent Sequencer +
Modified Latches

(AFTER VOLTAGE SCALING)

Figure 11: Simulated Power Consumption for 8-bit Dual-Rail Shift-Registers.

enable to the source latch write request. Figure 10(d) shows
this modi�cation. Stalling the write operation reduces the
performance improvement but guarantees correct operation,
independently of the delays in the circuit.

6 Results
We have simulated results using SPICE, targeted to dual-
rail implementations. In particular, we simulated several
versions of an an 8-stage dual-rail ripple shift-register. Fig-
ure 11(a) shows the simulated power consumption of a shift
register using a 5 volt power supply; the datapath uses Bai-
ley's chain sequencer and van Berkel's Tangram latches. Fig-
ure 11(b) shows power consumption of the design using our
optimized concurrent sequencer and modi�ed latches at 5
volts. Our design obtains an 85% improvement in through-
put with roughly equivalent total energy consumption. Fig-
ure 11(c) shows that the power supply of our new design can
be dropped to 3.3 volts, still retaining over 8% of through-
put improvement, with energy consumption reduced to less
than a half (42%) of the original design of Figure 11(c).

AREA POWER TIMING INIT.
SEQUENCER # transistor # transition MODEL ISSUES

TANGRAM 18N-18 10N-10 SI SELF
CNT/DCODE 15N-6 7N-2 SI EXT.
BAILEY CHAIN 12N+4 8N-2 FM EXT.
UNGER TREE 36N-36 16N-16 FM SELF

BURST-MODE 14N-6 8N-4 FM EXT.
OPTIMIZED 10N+2 6N FM EXT.

TABLE 1: STATIC CHARACTERISTICS OF N-WAY SEQUENCERS.

Table 1 lists relevant analytical results for the di�erent
sequencers. The information is given as a function of N ,
the number of processing stages being sequenced. The total
number of transistors and gate-output transitions are used as
�rst order approximations to area and power consumption.
The results show that the new designs are very competitive
in both dimensions. Table 2 shows expected performance
of each sequencer controlling N identical processes. G is
roughly the delay associated with a CMOS complex gate or
an inverter, P represents the length of a processing phase,
and R is the length of the return-to-zero phase. Again, the
table shows that the new designs are very competitive. The
substantial improvement in the computation time is due to
the concurrent operation of the new sequencers, which elim-
inates the (N � 1)R term.

INITIAL Pi!Pi+1 COMPUTATION

LATENCY DEAD TIME TIME
SEQUENCER Sr "; r1 " ai "; ri+1 " Sr "; Sa "

TANGRAM (2N-2)G 5G + R (6N-8)G+NP+(N-1)R
CNT/DCODE 2G 4G + R (4N-4)G+NP+(N-1)R
BAILEY CHAIN 2G 3G + R (3N-2)G+NP+(N-1)R

UNGER TREE 2(logN)G [4logN-2]G [

logNP
2logN�i(4i � 2)]G

MAX + 4(logN)G + NP

BURST-MODE 2G 2G (2N+1)G+NP
OPTIMIZED 2G 2G 2NG+NP

TABLE 2: DYNAMIC BEHAVIOR OF N-WAY SEQUENCERS.

7 Conclusions
This paper has focused on concurrency optimizations, tar-
geted to low-power asynchronous systems. We introduced
two new sequencer designs, with greater concurrency than
existing designs. New latch and multipliexer designs, that
safely accommodate the added concurrency, were presented
for both dual-rail and single-rail implementations. In the
dual-rail case, results showed improved throughput, provid-
ing the opportunity for substantial power savings through
voltage scaling. We also indicated attractive features of our
single-rail approach over existing approaches.
References
[1] A. Bailey and M. Josephs. Sequencer circuits for VLSI programming.

In Asynchronous Design Methodologies, pages 82{90, 1995.

[2] E. Brunvand. Translating Concurrent Communicating Programs into

Asynchronous Circuits. PhD thesis, CMU, 1991.

[3] A.P. Chandrakasan, S. Sheng, and R.W. Brodersen. Low-power CMOS

digital design. IEEE J. of Solid-State Circuits, 27(4):473{484, 1992.

[4] S. Furber. Computing without clocks: Micropipelining the ARM pro-

cessor. In G. Birtwistle and A. Davis, editors, Asynchronous Digital

Circuit Design, pages 211{262. Springer-Verlag, 1995.

[5] A. Marshall, B. Coates, and P. Siegel. Designing an asynchronous

communications chip. IEEE Design & Test of Computers, 11(2):8{21,

1994.

[6] A.J. Martin. Programming in VLSI: From communicating processes

to delay-insensitive circuits. In C.A.R. Hoare, editor, Developments

in Concurrency and Communication, UT Year of Programming Series,

pages 1{64, 1990.

[7] L.S. Nielsen and J. Spars�. Low-power operation using self-timed and

adaptive scaling of the supply voltage. In International Workshop on
Low Power, Napa, California, 1994.

[8] S.M. Nowick and B. Coates. UCLOCK: Automated design of high-

performance asychronous state machines. In ICCD, pages 434{441,

October 1994.

[9] A. Peeters and K. van Berkel. Single-rail handshake circuits. In Asyn-
chronous Design Methodologies, pages 53{62, May 1995.

[10] L.A. Plana and S.M. Nowick. Concurrency-oriented optimization for

low-power asynchronous systems. Technical Report CUCS-017-96,

Columbia University, April 1996.

[11] I.E. Sutherland. Micropipelines. CACM, 32(6):720{738, June 1989.

[12] S.H. Unger. A building block approach to unclocked systems. In

HICSS, pages 339{348, January 1993.

[13] K. van Berkel, R. Burgess, J. Kessels, A. Peeters, M. Roncken, and

F. Schalij. Asynchronous circuits for low power: A DCC error correc-
tor. IEEE Design & Test of Computers, 11(2):22{32, 1994.

[14] K. van Berkel and M. Rem. VLSI programming of asynchronous cir-
cuits for low power. In G. Birtwistle and A. Davis, editors, Asyn-

chronous Digital Circuit Design, pages 152{210. Springer-Verlag, 1995.

	CD-ROM Home Page
	ISLPED Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

