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Abstract the filter must be modular in the the number of taps so that it
This paper describes a family of high-speed Finite Impulscan be reused under varying system demands and the tap
Response (FIR) digital filters that have been scaled acrocount can be selected late during the concurrent system
three generations of CMOS processes. The processes inclidesign process.
commercial varieties as well as experimental bulk and lovThe Direct Form Il filter architecture (Fig. 1) allows us to
power Silicon-On-Insulator (SOI) technologies. Wafer testdulfill the above requirements while achieving a total latency
demonstrate the speed and power advantages of the expwof only 2 clock cycles. The 6b multipliers use Booth encod-
mental SOI technology when applied to a 24k-device digitaing to reduce the number of partial products from 6 to 3,
signal processing (DSP) function, by direct comparison wittwhile exploiting the semi-static nature of the programmable
the same filter manufactured in conventional (bulk) CMOScoefficients to remove the encoding delay from the critical
The filters presented here have 8 taps and operate on 6b dpath. Carry-save addition is used in all the taps. Multiplica-
with 6b programmable coefficients and deliver 12b fixedtion and addition is merged and has a latency of 1 cycle. The
point output values, but the layout design is modular so th2nd cycle of the total latency is the final adder stage that
the number of taps and bits can be changed easily. The filteadds the carry and sum vectors from tap 0. This vector-
operate with maximal speeds of 250-600MHz depending omerge adder matches the tap mult/add cycle speed at mini-
the fabrication technology, and are suitable for the equalizemal cost by utilizing a ripple-carry approach with even/odd
tion task in Partial Response magnetic recording channels.carry optimization and careful tuning of the carry path cir-
cuits (Fig. 2).
Introduction Special consideration has been given to manufacturing test-
The high speed and low power consumption properties c@bility: The latches in the filter are static scanmux type
submicron SOI circuits have been demonstrated for fundatches (Fig. 3) connected for complete controllability and
tions such as frequency dividers[1], dual modulus prescaleobservability of all memory elements. The latches use a
and programmable Phase-Locked Loops[2], as well as 4-treverse-propagate (slave towards master) local clock splitter
A/D conversion based on a ladder-less design with comparto produce the two phases of the clock, which has the benefi-
tors that have individually adjusted threshold voltages[3]cial effect of canceling out most of the setup-time increase
These examples represent low-to-medium levels of integricaused by the delay of the scanmux located at the master
tion, with device counts such as 8(dividers), 370(ADC) andatch input. Other details of the circuit and logic design can
2400(PLL). Experiments at higher levels of integration havéde found in [6]. The filter layouts contain no substrate con-
been reported for SRAM memory designs[4]. In this papeitacts. The resulting speed penalty is incurred for the sake of
we report on the impact of SOI technology on a relativelyavoiding noise injection from the digital ground rail into the
complex (24000 device) signal processing function and consubstrate of a mixed-signal chip.
pare the results with those obtained in bulk technologie
using the same design. Test chips and test setup
The demands of PRML hard disk read channels[5] have criThe test chips for the FIR filters use different 1/O circuits and
ated a substantial market for high speed and low energy Fllpad arrangements for the cmos4s and the cmos5x/experi-
type equalizers[6][7]. The 60% yearly increases in recordinmental versions. The cmos5x design is shown in Fig. 4. The
density drive up the channel clock speed at a rapid pace afilter data and clock inputs are driven by Schmitt-trigger
provide an economical advantage to FIR designs that céaeceivers; several of them in parallel in the case of the clock
scale across multiple generations of CMOS processes. Vdriver. The data outputs use high speed pseudo-differential
describe the design and measured performance of suchoutput drivers where the “negative” output of all the drivers
family of FIR filters. The filters have been fabricated inare tied together and brought to a common return-ground pad
IBM’s cmos4s[8], cmos5x[9] and experimental Bulk/SOI (Fig. 5). A bias current is selected off-chip to adjust the cur-

technologies. rent levels in the differential pairs. A typical bias value is
4mA for 200mV swing into a 50o0hm load. The coefficient
FIR design register and the scan path are driven by and observed

Because the equalizer of a recording channel is part of gathrough conventional single-ended receivers and drivers.
and timing control loops, it is crucial that the latency of theThe I/O circuits and the filter core are divided into 5 separate
filter is as low as possible. Also, because the filter respongpower domains so that one can accurately measure the filter
requirement is a function of the radial head position at thpower consumption as well as adjust the core and 1/O volt-
disk, the filter must have programmable coefficients. Finallyages independently if necessary. Measurements are based on
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wafer probing using a 500hm controlled impedance probtors alluded to earlier: (1) a 7/5 factor increase in gate capac-
card and a 620MHz pattern generator, as shown in Fig. itance per unit area, combined with (2) using the same mask
Fig. 7 is a sampling oscilloscope snapshot of an SOl filteas the cmos5x wafers (no shrink). With the proper shrink in

operating at 564MHz with a 2.5V supply voltage. place, the power consumption for the SOI will be lower for
the same Vdd and f(clk), but again even more significant
Experimental Bulk and SOI technology gains can be obtained via the lower Vdd required to obtain a

The cmos4s and cmos5x technologies are commercial prgiven speed for the SOI circuits.

cesses described in more detail in [8][9]. The experiment:

CMOS technology is of the quarter-micron class, and haConclusion

been applied to both regular bulk and SOI wafers. Fig. We have described a family of custom layout 12b CMOS

shows a cross section of the SOI technology. Table 1 shovdigital filters that are portable across three generations of

the key technology parameters. The experimental wafeiprocess technology. Clock rates above 600MHz have been

were made with the same mask set as the cmos5x wafeobserved for 8-tap SOI versions of the filters. The energy

hence the same drawn gate length of 0.5um are listed fconsumption for SOI filters was less than 1/2 that of plain

both. CMOS filters with the same drawn gate-length when both

Because of the thinner gate oxide of the experimental prcoperate with their optimal Vdd and at the same speed. The

cess, t(ox)=~5nm, the gate capacitance for same-size transdominant effects for low-power operation of SOI relative to

tors is higher than in the cmos5x technology. With the maskbulk CMOS were the ability to lower the Vdd for the same

being the same, the total capacitance switched during opeiclock rate and the reduction in source/drain junction capaci-

tion of the chip is higher by a factor of roughly 7/5 in thetance.

case of the experimental bulk wafers, or 40%. On the othe
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Technology
Parameter
cmos4s CcmMos5x experim

L(drawn) 0.80 um 0.50 um 0.50 Unll
L(effective) 0.45 um 0.25um| ~0.25 urln
T(ox) 12 nm 7 nm ~5nm
Metal layers 3 3 3

Table 1: Technology Parameters.
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Fig. 7: SOl filter operating at 564 MHz.
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Fig. 11: Ring versus Filter speed correlation.
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