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Abstract

In this paper, we present a new statistical technique
for estimation of average power dissipation in digital
circuits. Present statistical techniques estimate the av-
erage power based on the assumption that the power
distribution can be characterized by a preassumed func-
tion. Large error can incur when the assumption is not
met. To overcome this problem, we propose a non-
parametric technique in which no distribution function
needs to be assumed. A set of distribution-independent
upper and lower bounds of the average power are de-
veloped using the properties derived from the order
statistics. A stopping criterion is designed based on
the bounds for a desired percentage error with a speci-
�ed con�dence level. Since it does not resort to assum-
ing any particular distribution function, the technique
can be applied to all the circuits irrespective of their
power distributions. Comparison is made against the
present statistical technique based on the central limit
theorem. Experimental results show that the proposed
technique is much more accurate and robust, yet the
e�ciency characteristic of statistical techniques is still
preserved.

I. Introduction

For state-of-the-art VLSI technology, power analy-
sis and power optimization have become crucial design
concerns and have received much attention from DA
community. The importance of accurate power analy-
sis is twofold. First, since the battery life of portable
equipment and several reliability problems are directly
related to power dissipation, accurate power analysis is
essential. Second, the quality of the synthesized circuit
optimized for low power strongly depends on the ac-
curacy of cost function (power) evaluation. For these
reasons, power estimation has become the focus of re-
search e�orts in recent years.

Among the approaches proposed in the past to tackle
the power estimation problem, statistical technique is
an attractive choice because of its accuracy, e�ciency
and simplicity. For the average power consumption of
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the whole circuit, it usually requires only a few hun-
dred input vectors to generate an accurate estimate.
Since the only information needed to draw a statisti-
cal conclusion is the consumed power, to implement a
statistical technique, a variable delay circuit simulator
can be modi�ed easily to monitor the power and all the
signal correlations are implicitly taken into considera-
tion.

Various statistical approaches have been proposed
to address the whole circuit average power [1] and in-
dividual node activity estimation problem [2][3]. This
paper only discusses the �rst problem. In [1], the aver-
age power of a circuit with m gate output nodes over
a time interval (�T=2;+T=2] is modeled as a random
variable P T and is expresses as:

PT =
V 2
DD

2

mX
i=1

Ci

ni(T )

T
; (1)

where Ci is the load capacitance at node i, random vari-
able ni is the number of transitions occurred at node
i, and VDD is the power supply voltage. The average
power of the circuit can be expressed as the expected
value of P T . By assuming that PT is normally dis-
tributed over any T , for a con�dence level 1 � �, the
sample average �T and sample standard deviation sT
of N di�erent P T samples obey the following relation:

jPT � �T j <
t�=2sTp

N
; (2)

where t�=2 is obtained from the t distribution with (N�
1) degrees of freedom. By dividing both sides of (2) by
�T , the absolute error relative to �T is bounded. For a
desired percentage error �, the simulation is continued
until the following criterion is satis�ed:

t�=2sT

�T
p
N

< �: (3)

The major assumption made in deriving (3) is that
P T over any T is normally distributed. It was assumed
[1] that for most of the circuits, the distribution of P T

is at least approximately normal. However, it has been
observed that the assumption is not valid for several
benchmark circuits. Since the causes for the nonnormal
distribution of P T are not clearly understood, this as-
sumption will inevitably discourage the use of statisti-
cal technique as a reliable average power estimator. To
overcome this problem, in this paper we propose a new
statistical approach for average power estimation. We
call this technique nonparametric, because conclusion



can be drawn for a statistical property (mean) without
assuming any particular distribution function or pa-
rameter. With use of this technique, the average power
dissipation can be estimated with high accuracy and ro-
bustness by only analyzing the power sample data with
distribution-independent statistics. Owing to this fea-
ture, the proposed technique can be applied to circuits
with arbitrary power distributions.

The rest of the paper is organized as follows. In Sec-
tion II we show how to express the power consumption
of a circuit as a random variable so that statistical tech-
niques can be applied. In Section III, �rst we use the
properties derived from the distribution-independent
order statistics to construct a con�dence band of the
cumulative distribution function (cdf). Next, we show
how to develop upper and lower bounds of the average
power using the concept of con�dence band. Based on
the distribution-independent bounds, we design a stop-
ping criterion to terminate the random simulationwhen
the bounds satisfy the user-speci�ed accuracy and con-
�dence level. We implemented the proposed technique
and tested it on a set of benchmark circuits. The re-
sults are reported in Section IV with discussions and
comparisons with those obtained from the approach in
[1], followed by the concluding remarks in Section V.

II. Problem Formulation

Consider a digital circuit with n primary inputs. An
input pattern of the circuit is a vector composed of 0's
and 1's to assign a value to each primary input. Input
pattern can be treated as a random variable V and
generated by an input generation machine which can
take into account spatial and/or temporal correlations
among the primary inputs, such as those suggested in
[4] and [5].

In static CMOS circuits, a gate dissipates power only
when the gate output switches due to logic state transi-
tion at primary inputs. Here the power due to leakage
currents is ignored. Without loss of generality, we as-
sume that the logic state of primary inputs switch at
the same time or remain unchanged. The power dis-
sipation of the circuit with m gate output nodes is a
function of the two consecutive input vectors V 1 and
V 2 and can be expressed as:

P =
V 2
DD

2T

mX
i=1

Cini(V 1;V 2); (4)

where the symbols have the same meanings as those in
(1) except T . In (1), T is a time interval with arbitrary
length; in (4) T is set such that during one unit of T
any primary input can only switch once. If the circuit is
embedded in a synchronous environment, T is the clock
cycle time. Since P is a function of ni, i = 1; � � � ;m, it
is also a random variable and possesses a distribution
function. It should be noted that since the number of
transitions at each gate output can only take nonnega-
tive integers, ni has a discrete distribution. According
to (4), so does P . For practical circuits, the sample
space of V 1 and V 2 is usually large enough so that
the di�erence between two adjacent observable values
of P is small. Therefore, we can assume that P has a
continuous distribution function [6].
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Figure 1: Construction of sample cdf Fn(p).

III. Estimation of Average Power

A. Order Statistics

For a given circuit, let F (p) be the cdf ofP . Suppose
that the random variables P 1; : : : ;Pn form a random
sample of F (p), where P 1 < P 2 < : : : < P n, and
let p1; : : : ; pn denote the observed values of P 1 : : : ;Pn.
A sample cdf Fn(p) is constructed from the values
p1; : : : ; pn such that for any p (0 < p <1) the value of
Fn(p) represents the proportion of observed values in
the sample which is less than or equal to p, as depicted
in Fig. 1. Fn(p) can be regarded as the cdf of a dis-
crete distribution which assigns probability 1=n to each
of the n values p1; : : : ; pn. For the i th order statistic
P i, we de�ne a random variable Zi = F (P i). It is
noteworthy that the distribution of Zi is independent
of that of P i. The pdf gi(z) of Zi is [7]

gi(z) =
n!

(i� 1)!(n� i)!
zi�1(1� z)n�i: (5)

After some algebraic manipulation, we can express
the cdf Gi(z) of Zi recursively:

Gi(z) = Gi�1(z)�
n!

(i� 1)!(n� i + 1)!
(1�z)n�i+1zi�1:

(6)
Using (6), for Zi we can �nd its 1 � � con�dence

interval [zmin
i ; zmax

i ] simply by solving the equations
Gi(z) = �=2 and Gi(z) = 1 � �=2. Let P j , P j+1 be
the j th and j+1 th smallest values in a sample of size
n and [zmin

j ; zmax
j ] [zmin

j+1 ; z
max
j+1 ] be the corresponding

1 � � con�dence interval of Zj = F (P j) and Zj+1 =

F (P j+1), respectively. For random variable P̂ j, P j <

P̂ j < P j+1, the following relation always holds because
F is a non-decreasing function:

F (P j) � F (P̂ j) � F (P j+1); (7)

Since Pr(F (P j) � zmin
j ) = 1��=2 and Pr(F (P j+1) �

zmax
j+1 ) = 1��=2, the following 1�� con�dence interval

is always valid for P̂ j :

Pr(zmin
j � F (P̂ j) � zmax

j+1 ) � 1� �: (8)
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Figure 2: The empirical cdf and 99% con�dence band
of F (p) of circuit C880 when sample size is 672.

(8) means that the con�dence of F (P̂ j) between
zmin
j and zmax

j+1 is at least 1 � �. Given the observed
values of the order statistics p1; : : : ; pn, let p0 = 0
and pn+1 = 1. For arbitrary p, 0 < p < 1, we
can always �nd some index j, j = 0; : : : ; n, such that
pj < p < pj+1. From (8), for random variable P̂ j;

pj < P̂ j < pj+1, the 1�� con�dence interval of F (P̂ j)
is [zmin

j ; zmax
j+1 ]. Therefore, a stairwise 1� � con�dence

band of the unknown cdf F (p) can be constructed by
connecting the endpoints of every individual con�dence
interval, and can be expressed as:

Pr(BL(p) � F (p) � BU (p)) � 1� �; (9)

where BL(p) = zmin
i , BU (p) = zmax

i+1 , pi < p < pi+1,
i = 1; : : : ; n. Fig. 2 illustrates the empirical cdf Fn(t) as
well as BL(p) and BU (p) of a benchmark circuit C880
when n is 672.

B. Bounds of Average Power and Stopping Criterion

The 1 � � con�dence band (9) is distribution-
independent and is the key result for �nding the bounds
of the average power and designing the stopping crite-
rion to terminate the random simulation. To begin
with, recall that the average power �p of a circuit is
the mean of P :

�p = E[P ] =

Z 1

0

pf(p)dp; (10)

where f(p) = dF (p)=dp. Let u = F (p), by substituting
f(p)dp by du and p by F�1(u), the integration in (10)
can be performed on the domain of variable u as

�p =

Z 1

0

F�1(u)du: (11)

By referring to Fig. 3, we can see that �p is just
the area between F�1(u) and u axis and it is bounded
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Figure 3: Lower and upper bound of average power.

from above by the area between B�1L (u) and u, and
from below by the area between B�1U (u) and u, respec-
tively. However, care must be taken here since both
BL(p) and BU (p) are non-decreasing stairwise func-
tions whose inverse functions do not exist. To make
this statement mathematically correct, we argue that
we can connect any two adjacent points zmax

i and zmax
i+1

by some smooth function B̂Ui(p) whose inverse function
does exist, as shown in Fig. 3. To keep the bounds as
tight as possible, we can make B̂Ui(p) arbitrarily close
to BU (p) and still let its inverse function exist. Sup-
pose k is the parameter controlling the convexity of
B̂Ui(p), then BU (p) is the limiting function of B̂Ui(p)
as k approaches in�nity:

lim
k!1

B̂Ui(p; k) = BU (p): (12)

Following the similar procedure, we can make another
invertible function B̂L(p) to approximate BL(p). Note
that since the con�dence band encompassed by BU (p)
and BL(p) are still embraced by B̂U (p) and B̂L(p),
there is no loss in con�dence level by making this ap-
proximation.

Since B̂U (p) and B̂L(p) are invertible, we can now
bound �p by:

Z 1

0

B̂�1U (u)du � �p �
Z 1

0

B̂�1L (u)du; (13)

Let �pL =
R 1
0
B̂�1U (u)du, �pU =

R 1
0
B̂�1L (u)du, and ��p

be the sample mean of a sample of size n, (13) can be
recast as

�pL � ��p
��p

� �p � ��p
��p

� �pU � ��p
��p

: (14)

As the simulation proceeds, more power data are
collected and used to construct the sample cdf Fn(p).
By solving Gi(z) = �=2 and Gi(z) = 1 � �=2 for



Circuit No. No. No.

Name Inputs Outputs Gates

C432 7 36 200

C499 41 32 439

C880 60 26 337

C1355 41 32 439
C1908 25 33 437

C2670 233 140 727

C3540 50 22 944
C5315 178 123 1200

C7552 207 108 1794

dalu 75 16 712
apex6 135 99 687

x3 135 99 646

vda 17 39 606
k2 45 43 1015

frg2 143 139 784

pair 173 137 1268
t481 16 1 586

rot 135 107 644

i8 133 81 910
i9 88 63 369

i10 257 224 2110

Table 1: Statistics of ISCAS85 and MCNC91 bench-
mark circuits.

i = 1; : : : ; n, we can see that the calculated 1�� con�-
dence band B̂L(p) and B̂U (p) will become increasingly
closer towards the the real cdf F (p). As a result, the
calculated bounds of average power ��pL and ��pU will
approach ��p. For a desired percentage error � and con-
�dence level 1 � � speci�ed up-front by the user, the
power simulation can be stopped when the following
criterion is satis�ed:

max

�
��p � �pL

��p
;
�pU � ��p

��p

�
� �: (15)

The �rst sample size n to satisfy (15) is de�ned as the
convergent sample size. By (15), we can bound j�p �
��pj=��p to the speci�ed percentage error and guarantee
the obtained sample mean ��p is close enough to �p.
Since the derivation of (15) only employs the properties
of the order statistics and requires no assumption on
the distribution of P , the stopping criterion is thus
distribution-independent and can be applied to any type
of circuits.

IV. Experimental Results and Discussion

The proposed average power estimation technique
has been implemented as a distribution-independent
power estimator (DIPE) and applied to a set of bench-
mark circuits to estimate the average power dissipation.
The statistics of the test circuits are tabulated in Ta-
ble 1. Table 2 shows the simulation results for the set of
benchmark circuits. The circuits are assumed to oper-
ate at a clock frequency of 20MHz with 5V power sup-
ply. For each circuit, every primary input is assumed to
be independent of one another and has a signal prob-
ability 0.5. The applied input patterns can thus be

Circuit SIM LB UB ��p Sample

Name (mW) (mW) (mW) (mW) Size

C432 1.646 1.577 1.732 1.650 1248

C499 5.845 5.561 6.102 5.846 288

C880 2.907 2.777 3.055 2.911 672

C1355 5.843 5.550 6.036 5.841 288
C1908 5.357 5.100 5.629 5.366 576

C2670 7.331 6.981 7.654 7.334 384

C3540 15.275 14.531 16.009 15.278 672
C5315 21.357 20.313 22.149 21.317 320

C7552 33.309 31.727 34.919 33.362 672

dalu 4.737 4.514 4.976 4.740 1056
apex6 3.906 3.712 4.095 3.905 704

x3 4.251 4.047 4.442 4.254 448

vda 1.893 1.807 1.990 1.896 1248
k2 2.867 2.733 3.016 2.873 832

frg2 4.221 4.005 4.416 4.207 768

pair 9.465 9.018 9.469 9.469 320
t481 1.878 1.788 1.970 1.877 1216

rot 3.845 3.647 4.007 3.837 320

i8 6.704 6.391 7.037 6.702 1664
i9 5.857 5.584 6.157 5.866 1472

i10 22.313 21.257 23.371 22.340 544

Table 2: Power estimation results using DIPE.

generated via a random number generator. The maxi-
mum error allowed was speci�ed as 5% with 0.99 con-
�dence. In Table 2, SIM is the average power obtained
by calculating the sample mean of a power sample of
size 1 million, and represents the best estimate we can
get. LB(UB) is the lower(upper) bound of the aver-
age power, and ��p is the sample average power. LB,
UB, and ��p are all obtained using the convergent sam-
ple size listed in the last column. For all the circuits,
the technique produced very accurate estimate of the
average power. Another distinguished property of the
technique is that it is dimensionally-independent [1],
i.e., the convergent sample size for a speci�ed accuracy
is independent of the circuit size. Thus, this technique
is useful for average power estimation of very large cir-
cuits.

Although the convergent sample size is not a func-
tion of circuit size, it shows certain correlation with the
standard deviation � of P . If we plot the mean conver-
gent sample size over 1000 simulation runs with � nor-
malized by the mean � ofP , as shown in Fig. 4, it grows
linearly as �=� increases for all the test circuits. The
reason for this observation is that every power value in
the sample is weighted di�erently when calculating the
bounds of the average power. For simpli�cation, we
assume that B̂fU;Lg(p) are close enough to BfU;Lg(p)
so that the bounds can be obtained by calculating the
areas between B�1fU;Lg(u) and the u axis:

��pL =
n�1X
i=2

pi�1(BU (i) � BU (i � 1));

��pU =
n�1X
i=1

pi(BL(i + 1)� BL(i)): (16)
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Figure 4: Correlation between average convergent sam-
ple size and normalized standard deviation.

Since (BU (i)�BU (i�1)) and (BL(i+1)�BL(i)) vary
along with i, the bounds can be viewed as the nonlin-
early weighted sum of the sample data, while the sam-
ple mean ��p is obtained by summing the sample data
weighted by the same coe�cient 1=n. The variation of
weighting coe�cients as a function of order i is plotted
in Fig. 5 when sample size is 128. It can be clearly
seen that the smaller power values are more heavily
weighted in estimating ��pL than ��pU , while the larger
power values are more heavily weighted in estimating
��pU than ��pL. The sample data ordered in between
have approximately equal weighting coe�cients. Be-
cause sample data are unequally weighted, when eval-
uating the sample mean and the bounds, the standard
deviation plays an important role in deciding the sam-
ple size for the bounds to converge. To understand
this, suppose that at some point of the simulation, the
current sample size is s and q new sample data are
collected from the simulation which are smaller than
the current sample mean. Let wu, wav, wl denote the
weighting coe�cients of BU (p), Fn(p), and BL(p), re-
spectively. Since wu < wav < wl, compared to the old
bounds, the new upper bound will be closer to the new
sample mean while the new lower bound will be farther
from the new samplemean. The situation when the col-
lected power data are larger than the current sample
mean can be discussed similarly. On the other hand, if
the newly added data are close to the current sample
mean, they will be approximately equally weighted in
estimating all three values, and push the data of ex-
treme values away from the middle of the empirical cdf
to let them be more lightly weighted. Consequently,
both new bounds are closer to the new sample mean.

Based on the above observations, we can understand
why the convergent sample size is proportional to the
normalized standard deviation �=� of P . If �=� is
large, relatively the sample data tend to spread over a
wider value range so that it is more di�cult for ��pL
and ��pU to converge. If �=� is small, the sample data
tend to focus on a limited value band and convergence
will be faster.
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Figure 5: Weighting coe�cients for the calculation of
sample average power and the power bounds. Sample
size n is 128.

For comparison, we implemented the power estima-
tion technique McPower [1] which is based on the cen-
tral limit theorem and applied it to the same set of
test circuits. The accuracy speci�cation is the same
as Table 2. In our implementation, an average power
sample is obtained by taking the mean of a sample of
size 32, instead of 50 as used in [1]. The di�erence in
sample size, however, should not interfere the compar-
ison because 1) it is explicitly assumed in [1] that the
sample mean is normally distributed for any sample
size; and 2) a rule-of-thumb sample size for the sample
mean obtained from any distribution to be at least ap-
proximately normal is about 30 [8]; hence 32 is used as
an appropriate sample size. By using the same accu-
racy speci�cation, we compared the performance of the
two techniques. The comparison results collected from
1000 simulation runs are listed in Table 3. In this table,
Min, Max, and Avg represent the minimum,maximum,
and average sample size used during the 1000 simu-
lation runs, respectively; Err shows the percentage of
the runs violating the accuracy speci�cation. Since the
con�dence level is speci�ed as 0.99, for 1000 runs the
error percentage is at most 1% if the assumption that
the sample mean is normally distributed is valid. As
shown in Table 3, the error percentage of McPower is
more than 1% for 9 of 21 test circuits, implying that the
assumption is not generally valid. On the contrary, for
all the simulation runs conducted for all the benchmark
circuits, no error is detected from the the results gener-
ated by DIPE. It should be noted that the estimation
results reported here are based on the assumption that
the primary input signals are spatially and the input
patterns are temporally uncorrelated. If such correla-
tions exist, which usually happens to practical circuits,
it is possible that the power distribution will further de-
viate from normal. In such cases, the estimation error
percentage of McPower is expected to be even higher.

The robustness and accuracy of DIPE come from re-
quiring larger sample size for the average power bounds
to satisfy the accuracy speci�cation and to stop the



Circuit McPower DIPE

Name Min Max Avg Err Min Max Avg Err

C432 64 768 376 1.3 992 1696 1386 0.0
C499 64 320 168 0.0 256 352 311 0.0
C880 64 512 265 0.8 480 960 628 0.0

C1355 64 352 170 0.0 256 352 311 0.0
C1908 64 384 202 0.2 480 704 580 0.0
C2670 64 448 195 0.0 352 448 386 0.0
C3540 64 608 304 0.5 608 800 698 0.0
C5315 64 320 175 0.1 288 352 320 0.0
C7552 64 768 380 1.7 608 704 662 0.0
dalu 64 832 367 2.6 800 1120 1008 0.0
apex6 64 736 366 1.4 672 800 725 0.0
x3 64 512 230 0.5 416 512 453 0.0

vda 64 928 464 2.6 1120 1664 1395 0.0
k2 64 704 354 2.4 704 1056 893 0.0
frg2 64 736 319 0.9 576 896 725 0.0
pair 64 320 170 0.3 288 352 317 0.0
t481 64 864 455 2.2 1056 1472 1284 0.0
rot 64 352 167 0.0 256 384 323 0.0
i8 64 928 654 1.4 1344 1728 1571 0.0

i9 64 928 604 2.3 1312 1632 1487 0.0
i10 64 480 247 0.9 480 608 537 0.0

Table 3: Performance comparison of DIPE and
McPower from the statistics of 1000 simulation runs.

simulation. It is a natural consequence of distribution-
independent statistical approach, since it implicitly
takes into account all possible variations of distribu-
tion functions and cannot take advantage of properties
belonging to any particular one of them. As a result,
if the sample mean power does have a normal distri-
bution, the estimation technique based on the proper-
ties of normal distribution will produce correct estimate
with a smaller sample size. On the other hand, if the
sample mean power is not normally distributed, such
technique would not be able to achieve the desired ac-
curacy and con�dence. When applied to practical cir-
cuits, nevertheless, DIPE seems to be more favorable
because the power distribution of a circuit is usually
not available at the time of average power estimation.
Consequently it will be hard to justify the validity of
any assumption on the functional form of power distri-
bution. Since our approach is distribution-independent
and can still produce an accurate power estimate with
comparably low computational cost, it is suitable to be
used as a reliable power estimator.

It should be noted, though, that according to the
central limit theorem, no matter what the distribution
of P is, as the sample size approaches in�nity, the lim-
iting distribution of the sample mean is normal. In
such case, (3) can be used for average power estima-
tion. However, the issue about how to decide a \large
enough" sample size so that (3) can be used still re-
mains unsolved. It is also expected that such sample
size will be circuit dependent. For example, from Ta-
ble 3, for circuits like C499 and C1355, a sample size
of 32 is large enough for the central limit theorem to
hold, while it is not the case for circuits dalu and vda.
As there is no way to decide the sample size before-
hand, our approach provides an appealing alternative
that user does not have to have any knowledge about
the circuit to obtain the correct average power esti-
mate.

V. Conclusion

We have proposed a novel statistical technique for
estimation of average power dissipation of digital cir-
cuits. By using the properties derived from the order
statistics, we can construct a 1 � � con�dence band
of the unknown cdf F (p). An upper and lower bound
of the average power can be obtained from the con-
�dence band and used to design a stopping criterion
to terminate the simulation. Since it is distribution-
independent, the technique can be applied to any type
of circuits. Experimental results show that it is much
more robust than other statistical techniques and yet
the computational cost is still very low.
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