
ICCAD ’96
1063-6757/96 $5.00 1996 IEEE

INTEGRATED FAULT DIAGNOSIS TARGETING REDUCED SIMULATION

Vamsi Boppana

Coordinated Science Laboratory
University of Illinois

Urbana, IL 61801
vamsi@crhc.uiuc.edu

W. Kent Fuchs

School of Electrical and Computer Engineering
Purdue University

West Lafayette, IN 47907-1285
kfuchs@ecn.purdue.edu

Abstract

Integrated fault diagnosis techniques attempt to overcome
the limitations associated with static (pre-computed infor-
mation usage) and dynamic (run-time analysis) techniques
by using a limited amount of pre-computed information and
coupling this with simulation at diagnosis time, for rapid
fault diagnosis. A significant problem with previous in-
tegrated techniques is that the pre-computed information
is not targeted specifically toward reducing the run-time
costs. In this paper, we present a new approach to in-
tegrated fault diagnosis, by specifically creating the pre-
computed information to provide later savings in the sim-
ulation costs at diagnosis time. Experimental results on
the ISCAS 85 and ISCAS 89 circuits illustrate the savings
achieved by this technique.

1 Introduction
Fault diagnosis techniques can be broadly classified into

three groups. The first group, called static fault diagnosis,
uses pre-computed information in the form of fault dictio-
naries for matching with the faulty responses produced by
defective circuits [1]. In contrast, dynamic techniques di-
agnose the faulty behavior of the circuit while the test set is
applied [1]. Integrated diagnosis techniques focus on using
small amounts of pre-computed information and coupling
this with efficient dynamic algorithms to perform fault loca-
tion [2–4]. Integrated techniques aim to overcome the size
limitations of static fault diagnosis and the run-time lim-
itations of dynamic techniques by providing flexibility in
choosing the amount of pre-computed information, which,
in turn, has an effect on the performance at diagnosis time.
Integrated techniques typically store primary output infor-
mation as part of the pre-computed information, although
recent research has extended this to include internal node
information [4].

This research was supported in part by the Semiconductor Research
Corporation (SRC) under grant 95-DP-109, by the Office of Naval Re-
search (ONR) under grant N00014-95-1-1049, and by an equipment grant
from Hewlett-Packard.

A significant problem associated with previous inte-
grated fault diagnosis solutions is that pre-computed infor-
mation is decided without considering its full impact on the
run-time simulation costs. In contrast, in this paper, we
choose the pre-computed information specifically targeting
a reduction in the fault simulation costs to be incurred at di-
agnosis time. In our strategy, we model the fault simulation
costs in terms of computations associated with each (fault,
vector) pair. We provide a technique that makes it possible
to perform these computations independent of each other,
thus providing an opportunity to evaluate the utility of a
computation independent of other computations. We also
identify computations that are not essential for the diagno-
sis process. This information is stored and used at diagnosis
time to avoid unnecessary computations.

2 Computations in Diagnosis
Let the circuit under diagnosis possess t test vectors and

f modeled faults.
1 (Set of Computations CS) The set of computations in-
volved in the diagnostic process can be expressed as
CS = fC(i; j); 8 i 2 (1; : : : ; f); 8j 2 (1; : : : ; t)g,
where the computation C(i; j); 8 i 2 (1; : : : ; f); 8j 2
(1; : : : ; t) represents the simulation required to obtain the
modeled fault response due to fault i at vector j.

2.1 Independence of Computations
In order to be able to decide on the utility of each compu-

tation for the diagnosis process, it is necessary for the com-
putations described to be independent of each other. This,
however, is not true in general for sequential circuits. The
simulation of a vector in a sequential circuit, without the
simulation of all the vectors preceding it, is not a meaning-
ful computation. This problem does not arise for combi-
national circuits, because there is no state information as-
sociated with these circuits. Hence, it is possible to ob-
tain the response due to each modeled fault at any vector
by the simulation of that vector alone. For combinational
circuits, the computationsC(i; j); 8 i 2 (1; : : : ; f); 8j 2
(1; : : : ; t) are independent of each other. For sequential cir-
cuits, a solution to the problem is provided by the following
result.

2 (State Storage Point) A point (i; j), 8 i 2 (1; : : : ; f);

8j 2 (1; : : : ; t) is called a state storage point if the
state of the faulty circuit i after application of the vectors
1; : : : ; (j � 1) is stored.

Result 1 A computation C(i; j); 8 i 2 (1; : : : ; f); 8j 2
(1; : : : ; t) on a sequential circuit is independent of any
other computations if the point (i; j) is a state storage point.

2.2 Unnecessary Computations
Unnecessary computations are best illustrated by the

help of diagnostic experiment trees [1, 5–7]. The following
definitions are from the work by Boppana and Fuchs [7].
3 (General Diagnostic Experiment Tree T (V;E)) A

general diagnostic experiment tree consists of a set of
vertices V (T) and a set of directed edges E(T), i.e., each
edge e is of the form (u; v); u; v 2 V (T) with the direction
of the edge being from u to v. Each vertex v 2 V (T)

of the tree is associated with a set of faults F (v) that is a
subset of the list of all modeled faults F , and each edge
e 2 E(T) is associated with a list of outputs O(e) that is
a subset of all the primary outputs of the circuit.

4 (Level of a node L(v)) For each node v 2 V (T) of the
tree, the level L(v) is defined as the length of the path be-
tween r(T) and v.

5 (Vector-based Diagnostic Experiment Tree TV (V;E))
A diagnostic experiment tree in which each level represents
the application of a test vector and each edge e 2 E(TV)

is associated with a list of outputsO(e) that is the set of all
the primary outputs of the circuit is called a vector-based
diagnostic experiment tree.

As an example, consider the tree of Figure 1 with ten faults,
four test vectors and two primary outputs.

Sequential circuits are handled by allowing don’t cares
(X 0s) as special symbols of the alphabet along with the
standard 0 and 1. Also, potential detection pointers are used
to keep track of the potential distinguishability relations [6].

2.2.1 Unnecessary Computations of Type 1

The following identifies sets of computations that produce
the same results. Such an identification results in the fact
that it is sufficient to perform only one of each set of com-
putations at diagnosis time.
Result 2 If the faults from the set F = (fi1 ; fi2 ; : : : fij)

are all at the same node of a diagnostic treeTV (V;E), situ-
ated at level l, then the responses produced by the following
sets of computations are identical.
� C(i1; 1) = C(i2; 1) = : : : = C(ij ; 1)

� C(i1; 2) = C(i2; 2) = : : : = C(ij ; 2)

...
� C(i1; l) = C(i2; l) = : : : = C(ij ; l)

As an example, consider the faults (1; 2; 3; 4) at level
3 of the diagnostic experiment tree shown in Figure 1. In
this example, computations C(1; 1); C(2; 1); C(3; 1) and
C(4; 1) all produce the same response 00.

2.2.2 Unnecessary Computations of Type 2

We now note yet another set of computations that fails to
provide additional diagnostic capability. We first state the
following result for combinational circuits.

Result 3 If there are two nodes in the diagnostic tree such
that the sets of faults associated with them are the same (say
F = (fi1 ; fi2 ; : : : fij)), but they are at two distinct levels
l and m, such that l < m, then it is easy to see that the
following computations do not distinguish any more pairs
of faults from F .
� C(i1; l + 1); C(i2; l + 1); : : : ; C(ij ; l+ 1)

� C(i1; l + 2); C(i2; l + 2); : : : ; C(ij ; l+ 2)

...
� C(i1;m); C(i2;m); : : : ; C(ij ;m)

As an example, consider the nodes (5; 6) at level 1 and
level 4. Then, our result implies that the computations
C(5; 2); C(5; 3) and C(5; 4) do not distinguish any addi-
tional faults.

The corresponding result for sequential circuits is ob-
tained by imposing the additional restriction that the fault
class at the level l should be free of any potential distin-
guished pointers. It is to be noted that this restriction is far
more stringent than the minimal restriction that just states
that the set of faults should not even be potentially distin-
guished between levels l and m. But we choose to use this
simple restriction, because it is easy to implement and our
experimental results demonstrate that it provides significant
savings.

The main motivation for identifying these computations
comes from the fact that diagnostic experiment trees typi-
cally have a very large number of such unnecessary com-
putations. By pre-computing information that enables the
easy identification of such unnecessary computations, we
need to perform only a small number of computations at
run-time to achieve the required diagnosis result.

3 The Integrated Diagnosis Algorithm
3.1 Pre-computed Information

The primary focus here is on developing a compact stor-
age structure that can be pre-computed and repeatedly used
at diagnosis time. We now show that the storage of the class
structure belonging to a few levels can be used to effectively
control the simulation costs associated with diagnosis. The
storage of class structure information marks a significant
departure from the storage schemes used in previous static
and integrated techniques.

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

00
01

10

00 01 00 00

00 00 00 00 01

00 00 01 00 00 00

Outputs

Faults

0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 1

0 0 0 0 1 0 1 0 0 1

1 0 0 0 1 0 1 0 0 1

1 0 0 0 1 0 1 1 0 1

1 0 1 0 1 0 1 1 0 1

0 1 2 3 4 5 6 7 8 9

Figure 1: A Vector-based Diagnostic Experiment Tree and the Encoding of the Class Structure

We first claim that a string of f bits is sufficient to repre-
sent the class structure at any particular level. Let the faults
be ordered such that they appear in the same order at the last
level of the vector-based diagnostic experiment tree while
traversing from left to right. We now present the encoding
and decoding algorithms (see Figure 2) for determining the
bit-code and class structure corresponding to a level of the
tree.

Encoding Algorithm
// Let us start from the first fault of the first class
while (more faults to be handled)
if (next fault in a different class or no next fault)

place a 1 as the code entry at this fault location
else

place a 0 as the code entry at this fault location
end
Decoding Algorithm
// Let the pointer point to the first element of the code
while (pointer not reached the end of code)
if (pointer points to a 0)

current fault is still in the same class
else // pointer points to a 1

current fault is the last element of this class;
start new class after this

end // while

Figure 2: The algorithms for encoding and decoding the
class structure of a particular level

As an example of these algorithms, consider the tree of
Figure 1, for which the codes corresponding to each level

of the tree are listed alongside that level. In particular, for
example, the code for level 2 is obtained to be 1000101001.

Our pre-computed storage structure is different for com-
binational and sequential circuits. For combinational cir-
cuits, it consists of storing the bit-code corresponding to the
class structure at desired levels. For sequential circuits, at
each level where the class structure is stored, we store an-
other f -bit sequence that is used to indicate if there is any
potential distinguished pointer associated with each class at
that level (For Type 2 savings). Further, if there is a neces-
sity to simulate a fault at a level, then the state correspond-
ing to the fault is also stored. The amount of storage can be
controlled by the careful selection of the levels at which the
class structure is stored. Typically, it is beneficial to store
the class structure more frequently during the first few lev-
els of the diagnostic tree and less frequently thereafter.

3.2 The Diagnosis Algorithm
The integrated diagnosis algorithm presented in Figure

3 shows the two places in which the computations identi-
fied to be diagnostically unnecessary have been eliminated.
This results in significant savings in the simulation costs.
It is interesting to note that the algorithm degenerates into
the conventional simulation-based dynamic diagnosis algo-
rithm (with fault dropping) when there is no storage asso-
ciated with any level.

4 Experimental Results
In this section, experimental results on ISCAS 85 and

ISCAS 89 benchmark circuits are provided to demonstrate
the effectiveness of our integrated diagnosis algorithm. For
the purpose of experiments performed here, the number

// F is the set of all faults in the circuit
// Initially, the class C is the same as F
// Routine is class exactly the same(C) checks
// the next stored level to see if there is any split in C;
// For sequential circuits, it also ensures that there are no
// potentially distinguished pointers associated with C
// Routine computeF () computes the set of
// consistent faults and drops inconsistent faults
// A class is consistent if its faults are consistent
repeat
for each consistent class C at this stored level

if (is class exactly the same(C))
// no need to simulate anything; Unnecessary (Type 2)
else
for each child class K of C at next stored level
choose one fault from K
load state if needed, simulate till next stored level
Use the same simulation results for each fault inK
// By simulating one element,
// eliminated Unnecessary (Type 1)

// At this stage all the necessary responses have been obtained
computeF ()
move to next stored level

until no more vectors left

Figure 3: The integrated diagnosis algorithm

of storage levels has been set to the number of vectors.
The integrated algorithm is compared to the conventional,
simulation-based dynamic diagnosis algorithm using fault
dropping. Modeled faults (stuck-ats) were chosen at ran-
dom and the output responses produced by the circuit un-
der the influence of these faults were presented as the de-
fective unit responses to both of the diagnosis algorithms.
We present the simulation costs for both of the algorithms
in terms of the number of computations required. These
results are shown in Table 1. The table presents the aver-
age number of simulations required for the two algorithms.
Specifically, the columns in the table represent, for each
benchmark circuit, the number of test vectors, the number
of faults, the average number of units of computation re-
quired for the dynamic diagnosis algorithm per fault, the
average number of units of computation required for the in-
tegrated diagnosis algorithm per fault, and a percentage ra-
tio of the computations performed by the integrated algo-
rithm with respect to the dynamic algorithm. Hence, we see
that a substantially large number of computations have been
eliminated from the diagnosis process.

5 Conclusions
We have presented a new approach to integrated fault di-

agnosis by identifying the pre-computed information so as
to reduce the fault simulation costs associated with diagno-
sis time. The diagnosis algorithm uses the pre-computed

Table 1: Savings in Fault Simulation Costs

Circuit No. No. Cost Cost Int./
Vecs Faults Dyn. Int. Dyn.%

c432 55 560 4769.5 134.8 2.8
c880 75 942 8050.7 238.3 3.0

c1355 88 1574 7545.5 153.4 2.0
c1908 280 1876 26807.5 159.9 0.6
c2670 236 2595 30677.8 438.6 1.4
c3540 350 3425 82897.8 492.7 0.6
c5315 264 5350 69203.9 1038.2 1.5
c6288 46 7744 12912.5 188.8 1.5
c7552 450 7550 48282.7 740.1 1.5

s298 259 308 7789.4 2361.2 30.3
s344 108 342 3858.2 800.9 20.8
s526 192 555 38554.6 1929.5 5.0
s641 211 467 6936.5 903.9 13.0
s820 968 850 88279.9 3494.1 4.0
s832 967 870 92682.3 3563.3 3.8

s1238 478 1355 76471.4 834.8 1.1
s1423 88 1515 38753.9 746.1 1.9
s1488 1192 1486 44512.0 3811.5 8.6
s1494 1285 1506 121448.7 4679.6 3.9
s5378 900 4603 244739.7 6651.9 2.7

s35932 383 39094 757886.0 6848.0 0.9

information to avoid unnecessary computations during di-
agnosis. Our experiments on benchmark circuits have
shown that significant savings can be achieved in the fault
simulation costs by the use of this technique.

References
[1] M. Abramovici, M. A. Breur, and A. D. Friedman, Digi-

tal Systems Testing and Testable Design, Computer Science
Press, New York, 1990.

[2] P. Ryan, S. Rawat, and W. K. Fuchs, “Two-stage fault loca-
tion,” in Proceedings of the International Test Conference,
October 1991, pp. 963–968.

[3] P. G. Ryan, “Compressed and dynamic fault dictionaries for
fault isolation,” in CRHC Technical Report UILU-ENG-94-
2234, September 1994.

[4] V. Boppana, I. Hartanto, and W. K. Fuchs, “Fault diagno-
sis using state information,” in Proceedings of Fault Tolerant
Computing Symposium, June 1996, pp. 96–103.

[5] Z. Kohavi, Switching and Finite Automata Theory, McGraw-
Hill Book Company, New York, 1978.

[6] S. Venkataraman, I. Hartanto, W. K. Fuchs, E. M. Rudnick,
S. Chakravarty, and J. H. Patel, “Rapid diagnostic fault sim-
ulation of stuck-at faults in sequential circuits using compact
lists,” in Proceedings of the Design Automation Conference,
June 1995, pp. 133–138.

[7] V. Boppana, I. Hartanto, and W. K. Fuchs, “Full fault dictio-
nary storage based on labeled tree encoding,” in Proceedings
of VLSI Test Symposium, April 1996, pp. 174–179.

	CDROM Home Page
	1996 Home Page
	ICCAD 96
	Front Matter
	Table of Contents
	Session Index
	Author Index

