
ICCAD ’96
1063-6757/96 $5.00  1996 IEEE

Polarized Observability Don’t Cares

Harm Arts, Michel Berkelaar and C.A.J. van Eijk
Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Abstract
A new method is presented to compute the exact

observability don’t cares (ODC) for multilevel combina-
tional circuits. A new mathematical concept, called polar-
ization, is introduced. Polarization captures the essence of
ODC calculation on the otherwise difficult points of recon-
vergence. It makes it possible to derive the ODC of a node
from the ODCs of its fanouts with a very simple formula.
Experimental results for the 39 largest MCNC benchmark
examples show that the method is able to compute the
ODC set (expressed as a Boolean network) for all but 1
circuit in at most a few seconds.

1. Introduction
Computation of observability don’t cares (ODC) plays

a central role in the synthesis of Boolean networks.
Together with the external don’t cares (EDC) and the satis-
fiability don’t cares (SDC) they represent the freedom one
has to optimize the network. Especially the computation of
the ODC has been topic of research because of its com-
plexity.

Several papers have been published on the subject of
ODC calculation. In [1], Bartlett et al. propose to calculate
the ODCs by flattening the network. This is, however,
impractical for most circuits, because of the size needed
for the representation. In [7], Muroga et al. propose
exhaustive simulations, which is very time consuming. To
reduce computational complexity it was proposed to calcu-
late the ODC of a node from the ODCs of its direct fanouts
in [4] by Brayton et al. However, computing the ODC in
this way is not straightforward in the presence of reconver-
gent fanouts. To solve this problem, [4] proposes using the
chain rule, originally introduced by Chiang et al. in [5].
As it turns out, the use of this rule results in very complex
calculations very quickly, so [4] proposes using approxi-
mations for large circuits. In [6], Damiani et al. present a
method which is computationally less complex, but still
approximations are needed for the larger circuits. In [8],
Savoj et al. use an observability relation to calculate the
ODCs. Although the method does not need to calculate the
ODC separately for each primary output, the operations
per node are much more complex. The paper itself does
not present any results, but the authors themselves com-
ment [9]: ‘‘We implemented the algorithm of the ICCAD

paper but the algorithm was not practical for large circuits.
We concluded that ODCs could be usually computed for
circuits that were collapsible in two lev els.’’

In this paper we present a method which also derives
the ODC of a node from the ODCs of its direct fanouts and
also does not need to calculate the ODC for each primary
output separately, but the operations per node are very
simple: only an "and" over the ODCs of the fanouts, and a
cofactor operation are needed. This is obtained by intro-
ducing the concept of "polarization". For each node the
Polarized Observability Don’t Care (PODC) is calculated.
The polarization exactly models the reconvergence in a
network such that cofactoring the PODC will "expand"
and/or "shrink" the PODC such that the resulting ODC
will be correct.

We feel the main contribution of this paper is the sim-
ple mathematical formulation of the construction of the
ODC network with the use of the PODCs without the
explicit use of "xor" or "xnor" operations. Another contri-
bution is the large results table. All above mentioned pre-
viously published papers are either completely theoretical
or show very few results, which leaves no room for com-
parison of different methods. Our result section shows that
the complete ODC network can be derived with our
method even for large circuits, and allows future papers to
compare their results to ours.

Another advantage of this method is that it makes the
use of EDCs very simple. The PODCs calculated at the
input of a network can be handed over as EDCs to a feed-
ing network directly, representing the complete EDC.
These PODCs also directly imply the Boolean relations for
the equivalence classes [3, 6].

In this paper we express the ODCs as a Boolean net-
work. This network can be used directly by the synthesis
system [2]. Alternatively, the ODCs could be expressed in
other representations suitable for Boolean reasoning, such
as BDDs, but this approach has not been tested in this
paper.

The method is implemented and tested on the entire set
of MCNC combinational multilevel benchmarks.

2. Definitions and notation
ODCs are commonly calculated using a Boolean net-

work, see [1], to model a combinational circuit. In a

Boolean network each node is associated with a Boolean
expression (eg. a SOC) in terms of its fanin nodes (or fanin
edges). We will however use a network of factored forms.
In such a network each node is associated with a simple
"and" or "or" expression, and inverters are modeled on the
edges. This poses no limitation since any Boolean expres-
sion itself is also a factored form. The advantage of using a
network of factored forms is that there is no implicit
reconvergence, which is clearly of great importance when
calculating ODCs.

A network of factored forms can be specified by an
acyclic graph G = (N ,C) (see figure 1). Each node
ni , i ∈N represents either a primary input or a basic
Boolean operation, i.e. an "and" or an "or" operation.
There is a directed edgecij , ij ∈C for each connection
from nodeni to noden j . Each connection can have an
inverter property. The primary input (resp. output) nodes in
N are identified by the set of indicesI (resp.O). A pri-
mary input (resp. output) does not have any incoming
(resp. outgoing) edges.

Definition 2.1:
OP : N \ I → {" + ", " ∗ "}
INV :C → {0, 1}

OP(i) returns the operation represented by nodeni .
INV(ij) returns 1 if connectioncij has an inverter property.

Variablevi denotes the value at the output of nodeni .
Since we want to be able to distinguish between the value
at the output of a node and the value which is at the input
of a connected node, we also introduce variables for all
connections:vij denotes the value at inputcij of noden j .
The lettersp andq will be used to denote either an index
or an index-pair, so variablevp can denote either a node or
a connection variable.

The Boolean function of a node or a connection can be
derived using the following rules:

f j =




j
∑vij

j
∏vij

if OP(j) = " + "

if OP(j) = " ∗ "
fij =





vi

vi

if INV(ij) = 0

if INV(ij) = 1

Definition 2.2:
The fanin of a node: FI(j) = {ij | ij ∈C}
The fanin of a connection:FI(ij) = {i }
The fanout of a node: FO(i) = {ij | ij ∈C}
The fanout of a connection:FO(ij) = { j }
The transitive fanin: TFI(p) =

q ∈FI(p)
∪ TFI(q) ∪ FI(p)

The transitive fanout:TFO(p) =
q ∈FO(p)

∪ TFO(q) ∪ FO(p)

We say that functionfp dependson every variable which is
in its transitive fanin.

Definition 2.3: Cofactoring:f|vp
= f(vp = 1)

f|vp
= f(vp = 0)

+ ni

∗ n jcij

Figure 1. Nodes and connections

3. Observability Don’t Care
The Observability Don’t Care (ODC) of variablevp at

nodenk is a Boolean function which gives the conditions
for which the actual value of variablevp can not be
observed at nodenk .

Definition 3.1: The ODC of variablevp at nodenk :
ODCk

p = fk |vp
⋅ fk |vp

Where ⋅ is the exclusive-nor operator.
The ODC of a variable at all primary outputs is a

Boolean function which gives the conditions for which the
actual value of the variable can not be observed at any pri-
mary output.

Definition 3.2: The ODC of variablevp at all primary out-
puts:ODCp =

k ∈O
∏ ODCk

p

Creating the ODC, using these definitions, as a network of
factored forms is relatively simple, but the resulting net-
work turns out to be very complex. As a result the calcula-
tion of the ODC in this way, by expressing it in sum-of-
cubes or BDDs, in terms of primary inputs or local vari-
ables, is known to be very expensive [1].

Deriving the ODC of a node from the ODCs of its
direct fanouts to reduce the complexity, has been topic of
research before. The ODC of a variablevij can be derived
easily from the ODC of variablev j and the local ODC at
nodeni : ODCk

ij = ODCk
j + ODCi

ij (3.1)
However, deriving the ODC of a variablevi from the
ODCs of its fanout variablesvij is much more difficult if
the degree of the fanout is more than one. Use of the chain
rule[5] has been proposed by [1], but it becomes already
very expensive for nodes with only two fanouts.
Suppose:FO(i) = {ij0, ij1} then:
ODCk

i = ODCk
ij0 ⋅ ODCk

ij1 ⋅ ODCk
ij1|vij0

⋅ ODCk
ij1|vij0

(3.2)
In [6] a new method was presented which needs substan-
tially less exclusive-or operations and no higher order
derivatives.
Suppose:FO(i) = {ij0, ij1, . . . ,ijn} then:

ODCk
i =

n

m=0
⋅ ODCk

ijm |vij0
,...,vijm−1

,vijm+1
,...,vijn (3.3)

This formula still results in such a complex ODC that in
practice (less complex) approximations of the ODC must
be used.
[8] introduced a method which does not need the "and"
operation over all outputs (see definition 3.2).
Suppose:FO(i) = {ij0, ij1, . . . ,ijn}
let: ODCi =

j ∈O \{i }
∑ v j ⊕ gj for all i ∈O , and let:

θ m
i = (v jm ⋅ θ m−1

i)ODCjm |v jm+1
,...,v jn

+ θ m−1
i ODCm |v jm+1

,...,v jn

with: θ 0
i = 1 then:ODCi = θ n

i |vi
⋅ θ n

i |vi
(3.4)

Where gi represents the global function of outputvi in
terms of the primary inputs.
Although [8] does not need the "and" operator over all pri-
mary outputs, the operations needed per fanout are more
complex.

The method presented in this paper makes it possible
to calculate the ODC without the use of any (explicit)
exclusive-(n)or operations and also without the "and" oper-
ation over all outputs. The resulting network of factored
forms is substantially less complex.

4. Polarized Observability Don’t Care
To calculate the ODC in a new and more efficient way

we will introduce a new operator called:polarization.
First we clarify the difference between a variable and a lit-
eral. With every node and connection we associated a vari-
ablev . Literalsv andv are the algebraic representations
of the variable resp. the complemented variable.

Analogous to the complement operator, we now intro-
duce the polarization operator, just as a notation, without
yet specifying the semantical meaning.

Definition 4.1: The polarization operator applied to vari-

ablev , introduces the literal̃v such that̃̃v = v .

So now variablev implies 4 literals:v , v , ṽ , andṽ .

Definition 4.2: The polarized Boolean functioñfp is asso-
ciated with literalṽ p and is defined as:

f̃ j =




j
∑ ṽ ij

j
∏ ṽ ij

if OP(j) = " + "

if OP(j) = " ∗ "
f̃ij =





ṽ i

ṽ i

if INV(ij) = 0

if INV(ij) = 1

Polarization in Boolean networks can be labeled as an
edge property. So an edge can have complementing and/or
polarizing properties. The polarization operator can be
shifted trough a node in almost the same way as the com-
plement operator: For complementing the DeMorgan rule
applies, however for polarization the operation on the node

does not toggle. If for example:f = g + h̃, then f = g ∗ h̃,
but f̃ = g̃ + h.

We extend the definition of cofactoring to polarized
Boolean functions.

Definition 4.3: f|vp
= f(vp = 1,ṽ p = 0)

f|vp
= f(vp = 0,ṽ p = 1)

So if we want to calculatef|vp
, any variablevp which is on

a path fromf to vp with an even number of polarizations,
has to be substituted with constant 1, and any variablevp

which is on a path with an odd number of polarizations
with constant 0

The following property follows from this definition:

f|vi
= (f̃|vi)̃, while: f|vi

= (f|vi).

f1 PODC1

+

PODC2

+

PODC2,3

∗
PODC3

+

PODC9

+
v1

∗
v2

+
v3

PODC11
PODC12

v4 v5

v6 v7

v8 v9 v10

v11v12

PODC4 PODC5

PODC6 PODC7

PODC8 PODC10

Figure 2. PODC construction for a sample network

Definition 4.4: #fi removes all polarization from theTFI(i)

Polarization is used to mark factors in a network, such that
they will cofactor to the opposite value as would be the
case normally. For example,
if we have:f = g + h̃, with g andh not polarized,
then: f|a = g|a + h̃|a = g(a=1) + h̃(ã=0)
and: #(f|a) = #(g(a = 1) + h̃(ã = 0))

= g(a = 1) + h(a = 0) = g|a + h|a
Now we will define the Polarized Observability Don’t

Care (PODC). It is defined recursively, so it can be con-
structed for all nodes by traversing the network from the
outputs to the inputs in topological order. It will be proven
that if the PODC is cofactored and the polarization is
removed, it will be equal to the ODC. First we define the
PODC of a primary output (in the case that there are no
external don’t-cares specified).

Definition 4.5: PODCi = 0 for all i ∈O

The PODC of a connectioncij can be derived from the
PODC of noden j using the following definition.

Definition 4.6:

PODCij =









PODCj + f j

PODCj + f̃ j

˜PODCj + f̃ j

˜PODCj + f j

if OP(j) = " + " andINV(ij) = 0

if OP(j) = " ∗ " andINV(ij) = 0

if OP(j) = " + " andINV(ij) = 1

if OP(j) = " ∗ " andINV(ij) = 1

The PODC of a nodeni can be derived from the PODC of
its fanout connectionscij using the following definition.

Definition 4.7: PODCi =
ij ∈FO(i)

∏ PODCij

If we cofactor the PODC and remove polarization we get

the ODC.

Theorem 4.1:ODCp = #(PODCp |vp)
So using definitions 4.6 and 4.7 and theorem 4.1 we can
create the ODC of any node or connection in the network.
Figure 2 shows how the PODC is constructed for a sample
network. Note that in the method described in [6], see
equation 3.3, exclusive-nor operations are needed at multi-
ple fanout nodes, here we need simple and-operations.

In order to prove theorem 4.1 we first define a property
which holds for every cutset through the network. This
cutset can contain node as well as connection variables.

Definition 4.8: A cutsetC is defined as a set of indices
and index-pairs such that on every path from any pri-
mary output to any primary input there is exactly one
node or connection which appears inC .

Definition 4.9:

PODCC =
q ∈C
∏ ((fq + f̃q + PODCq)(f̃q + fq + ˜PODCq))

Any cutset divides the network into two parts. We will
refer to all indices and index-pairs which are inC or in
their transitive fanin asIP(C).

We will use thePODCC to prove theorem 4.1. First we
will prove that thePODCC is invariant for any cutsetC .
And from this property we will prove theorem 4.1.

Lemma 4.1:PODCC =
i ∈O
∏ (fi + f̃i)(f̃i + fi)

Proof: By definition 4.5, ifC = O , the lemma holds. Now
we will use induction to prove that thePODCC does
not change if the cutset is moved tow ards the primary
inputs.

Step 1: Move cutset over a node (see figure 3).
Suppose lemma 4.1 holds for a given cutset . Now con-
sider another cutsetC ′ = FI(j) ∪C \{ j }. The cutsetC ′
does not yet cross any possible inverters on connection
cij .

Step 1a:OP(j) = " + "
According to definition 4.6:PODCij = PODCj + f j .
So:PODCC ′ =

ij ∈FI(j)

∏ ((fij + f̃ij + PODCij)(f̃ij + fij + ˜PODCij))
q ∈C ′ \ FI(j)

∏ (. . .) =

ij ∈FI(j)

∏ ((f j + f̃ij + PODCj)(f̃ j + fij + ˜PODCj))
q ∈C \ { j }

∏ (. . .) =

(f j + f̃ j + PODCj)(f̃ j + f j + ˜PODCj)
q ∈C \ { j }

∏ (. . .) = PODCC

Step 1b:OP(j) = " ∗ "

According to definition 4.6:PODCij = PODCj + f̃ j .
So:PODCC ′ =

ij ∈FI(j)

∏ ((fij + f̃ij + PODCij)(f̃ij + fij + ˜PODCij))
q ∈C ′ \ FI(j)

∏ (. . .) =

ij ∈FI(j)

∏ ((fij + f̃ j + PODCj)(f̃ij + f j + ˜PODCj))
q ∈C \ { j }

∏ (. . .) =

(f j + f̃ j + PODCj)(f̃ j + f j + ˜PODCj)
q ∈C \ { j }

∏ (. . .) = PODCC

n j
C
C ′

Figure 3. Move cutset over a node

C
C ′

Figure 4. Move cutset over an inv erter

ni

C
C ′

Figure 5. Move cutset over a fanout connection

Step 2: Move cutset over an inv erter (see figure 4).
Let ij0 be inC , andij1 in C ′.
According to definition 4.6:PODCij1 = ˜PODCij0.

Since:(fij1 + f̃ij1 + PODCij1)(f̃ij1 + fij1 + ˜PODCij1)
= (f̃ij0 + fij0 + ˜PODCij0)(fij0 + f̃ij0 + PODCij0),

PODCC ′ = PODCC .
Step 3: Move cutset over a fanout connection (see figure

5). Suppose lemma 4.1 holds for a given cutsetC .
Now consider another cutset:C ′ = {i } ∪C \FO(i).
According to definition 4.7:PODCi =

ij ∈FO(i)

∏PODCij ,

the following is true:PODCC ′ =
(fi + f̃i +

ij ∈FO(i)

∏ PODCij)(f̃i + fi +
ij ∈FO(i)

∏ ˜PODCij)
q ∈C ′\{i }

∏ (. . .) =

ij ∈FO(i)

∏ ((fi + f̃i + PODCij)(f̃i + fi + ˜PODCij))
q ∈C ′\{i }

∏ (. . .) =

ij ∈FO(i)

∏ ((fij + f̃ij + PODCij)(f̃ij + fij + ˜PODCij))
q ∈C ′\{i }

∏ (. . .) =

PODCC

Using these steps we can obtain any cutset through the net-
work.

Proof of theorem 4.1:According to lemma 4.1 we know
that thePODCC remains constant for any cutset.
For the initial cutset (through all primary outputs) we

have: #(PODCC vp
) = #(

i ∈O
∏ (fi + f̃i)(f̃i + fi)vp

)
=

i ∈O
∏ fi vp

⋅ fi vp
= ODCp

For any cutset through variablevp we know that all
otherfq in the cutset do not depend on variablevp :
#(PODCC vp

) =

#(
q ∈C
∏ ((fq + f̃q + PODCq)(f̃q + fq + ˜PODCq))vp

) =

#(PODCpvp
)

So:ODCp = #(PODCpvp
)

From this proof it can be derived that it is also possible
to perform the cofactoring operations (to variable vi)
already in definitions 4.6 and 4.7, and change theorem 4.1
into: ODCp = #PODCp

Since the PODCs on a cutset contain all the informa-
tion needed to derive the ODC of any node in the input
part of the cutset, it is obvious that the PODCs of all pri-
mary inputs of a given circuit can be handed over as
(polarized) EDC to a feeding network. This then repre-
sents the complete ODC of the external circuit, and from it
the boolean relation for the equivalence classes [6] can be
derived directly:
EQVv r

p ,...,v r
q

= #PODCC(ṽ p = v r
p , . . . ,ṽq = v r

q).

5. Examples
In the following examples we will show how the dif-

ferent methods (Traditional, Damiani and Polarized), com-
pute the ODC. With "traditional" we refer to the method
based on the definition of the ODC (definitions 3.1 and
3.2). In all methods only constant propagation is used to
obtain the final results. Example 3 also shows Savojs
method.
Example 1(see figure 6).
Traditional:ODC9 = f0(v9 = 0) ⋅ f0(v9 = 1) =

(v3 + v6) ⋅ (v3 + v7 + v8 + v6).
Damiani:ODC9 = ODC94v95

⋅ ODC95v94
=

(v2 + v3 + v7)v95
⋅ (v1 + v6 + v8)v94

=
(v6 + v8 + v3 + v7) ⋅ (v3 + v6 + v8).

Polarized:ODC9 = #((PODC94. PODC95)v9
) =

(((v0 + v1 + ṽ4)(v0 + v2 + ṽ5))v9
) =

(v3 + v6 + v7)(v3 + v6 + v8).
Example 2(see figure 7).
Traditional:ODC9 = f0(v9 = 0) ⋅ f0(v9 = 1) =

(v3 + v6 + v8) ⋅ (v3 + v7 + v6).
Damiani:ODC9 = ODC94v95

⋅ ODC95v94
=

(v2 + v3 + v7)v95
⋅ (v1 + v6 + v8)v94

=
(v6 + v3 + v7) ⋅ (v3 + v6 + v8).

Polarized:ODC9 = #((PODC94. PODC95)v9
) =

#(((v0 + v1 + ṽ4) ˜(v0 + ṽ2 + v5))v9
) =

(v3 + v6 + v8 + v7)(v3 + v6 + v7 + v8).
Example 3, from [6] (see figure 8).
Traditional:ODC6 =

i =1,2
∏ fi v6

⋅ fi v6
=

((v5.v7) ⋅ 1)((v5 + v7) ⋅ 1) = (v5.v7)(v5 + v7).
Damiani:ODC6 =

i =1,2
∏ ODCi

63v64
⋅ ODCi

64v63
=

((v4+v5)v64
⋅ (v3+v7)v63

)((v4+v5)v64
⋅ (v3+v7)v63

)
= (v5 ⋅ (v5 + v7))(1 ⋅ (v5 + v7)) =
(v5 ⋅ (v5 + v7))(v5 + v7).

Savoj (see equation 3.4): Given:ODC3 = v4g2 + v4g1

andODC4 = v3g2 + v3g1

v1 +v2

+v0

v3 v6

+

∗ ∗v4 v5

v7 v8
v9

v94 v95

Figure 6. Network for example 1.

v1 +v2

+v0

v3 v6

+

∗ ∗v4 v5

v7 v8
v9

v94 v95

Figure 7. Network for example 2.

v1 +v2∗

+ +v3 v4

v5 v7
v6

v63 v64

Figure 8. Network for example 3.

θ 1
6 = v3 + ODC3v4

= v3 + g2

θ 2
6 = (v4 ⋅ θ 1

6)ODC4 + θ 1
6ODC4

ODC6 = θ 2
6v6

⋅ θ 2
6v6

.
Polarized:ODC6 = #((PODC63. PODC64)v6

) =
#(((ṽ1.v2 + v3)(ṽ1.v2 + v4))v6

) = v5.v7.

6. Results and conclusions
The described method has been implemented to gener-

ate the ODCs of all multiple fanout nodes in a network.
The resulting ODCs are created as a network of factored
forms, with no optimizations except for constant propaga-
tion during cofactoring. The algorithm was tested on the
complete MCNC and ISCAS benchmark set for multilevel
combinational networks. The results in table 1 are from the
circuits which contain initially more than 200 edges in the
network of factored forms and are obtained on a HP
9000/755/99 (appr. 120 MIPS) with 256 MB of memory.
The table also gives the result for creation of the ODCs
using definitions 3.1 and 3.2.

From the table we can see that the PODC method
results in a ODC circuit with fewer edges (= literals) in 26
out of 39 examples. The traditional method wins 12 times,
and both methods fail (run out of memory) for the multi-
plier circuit C6288. Run times are within seconds for all

examples.
The failure of C6288 is probably the result of the very

high degree of reconvergence of the multiplier structure.
The reason that the PODC method in some examples
results in a larger ODC circuit lies in the fact that these
examples contain nodes with very large fanout and with
reconvergent paths which contain almost all local nodes.

We feel confident that the results of the PODC method
could be further improved with the addition of some
Boolean simplification during the building phase of the
network. Some initial experiments with optimization after
the building phase show a gain of at least a factor 2. The
traditional method cannot be improved that easily in this
way, as it expresses the ODC basically in copies of the
original network, cofactored once, with an "xor" at the pri-
mary output. The original network should be considered
optimized already.

We do not present comparisons with other methods
because most papers do not present results on ODC size at
all, except for [6] which presents an average number of lit-
erals needed to represent the ODC sets, but it is not clear
which ODCs were computed (all nodes, only multiple
fanout nodes or inputs nodes). It should however be clear
that the presented method is computationally simpler than
[6] since the algorithm traverses the network in the same
way, but operations at each step are simpler.

Table 2 shows the size of the PODC network itself for
some of the largest results in table 1. It can be shown that
the size of this network is linear in the size of the original
network. This is a useful property since the PODC net-
work can be used to provide the don’t care information for
a feeding network as individual ODCs or as a single
boolean relation.

References
[1] K .A. BARTLETT, R. BRAYTON, G. HACHTEL, R. JACOBY, C.

MORRISON, R. RUDELL, A. SANGIOVANNI- VINCENTELLI, AND

A. WANG, ‘‘Multilevel logic minimization using implicit
don’t cares’’, IEEE Transactions on Computer-Aided
Design, vol. 7, no. 6, pp. 723-740 (June 1988).

[2] R.A. BERGAMASCHI, D. BRAND, L. STOK, M. BERKELAAR,
AND S. PRAKASH, ‘‘Efficient Use of Large Don’t Cares in
High-Level and Logic Synthesis’’ inProceedings of the
IEEE International Conference on Computer Aided Design,
pp. 272-278. (Nov. 1995).

[3] R.K. BRAYTON AND F. SOMENZI, ‘‘An Exact Minimizer for
Boolean Relations’’ inProceedings of the IEEE Interna-
tional Conference on Computer Aided Design, pp. 316-319
(Nov. 1989).

[4] R.K. BRAYTON, G.D. HACHTEL, AND A.L. SANGIO-

VANNI- VINCENTELLI, ‘‘Multilevel Logic Synthesis’’ in Pro-
ceedings of the IEEE, vol. 78, pp. 264-300 (Feb. 1990).

[5] A.C.L. CHIANG, I.S. REED, AND A.V. BANES, ‘‘Path Sensiti-
zation, Partial Difference, and Automated Fault Diagno-
sis’’, IEEE Transactions on Computers, pp. 189-195 (Feb.
1972).

TABLE 1. CPU time (s), number of nodes and edges for
the ODC as a network of factored forms.

traditional ODC polarized ODC
time #nodes #edges time #nodes #edgesexample

symml 0.0 1310 3288 0.0 2400 5597
C1355 8.2 303054 712480 4.2 162762351448
C1908 4.7 149142 418547 2.3 84521215576
C2670 2.7 67885 158063 0.5 2305351230
C3540 12.1 353533 840320 6.9 174626397345
C432 0.9 43589 105815 0.2 872321113
C499 3.8 167382 405576 1.5 78250173608
C5315 6.3 196425 483553 2.5 78093179940
C6288 Out of memory Out of Memory
C7552 10.2 206913 531813 7.9 189782445038
C880 0.6 22836 50629 0.4 2045144806
alu2 0.4 20238 48875 0.5 23528 55595
alu4 1.7 83370 195707 1.4 68726160628
apex6 0.6 11502 26014 0.2 1074723779
apex7 0.1 6516 14651 0.1 38928805
b9 0.0 1260 2706 0.0 853 1737
c8 0.0 1025 2217 0.0 1356 2831
cht 0.0 1033 2035 0.0 1334 2476
comp 0.1 4079 8791 0.1 3069 6533
count 0.1 4082 8892 0.1 4696 9828
des 8.3 130271 581992 3.9 127812377508
example2 0.2 6827 15912 0.1 35108069
f51m 0.0 568 1259 0.0 1191 2582
frg1 0.0 969 2402 0.0 1450 3327
frg2 1.4 22044 54217 0.5 1955547208
k2 2.6 16373 241702 1.8 8387166013
lal 0.0 1136 2652 0.0 1197 2668
my_adder 0.3 21079 42332 0.1 874518094
pair 3.4 100285 211518 2.2 90887189074
rot 1.0 34785 84759 0.4 1515335339
sct 0.0 663 1647 0.0 688 1638
term1 0.1 4161 9756 0.1 6177 13681
too_large 0.2 5808 32091 0.2 8883 33885
ttt2 0.0 2008 4661 0.1 2581 5737
unreg 0.0 806 1598 0.0 790 1534
vda 0.5 8606 77468 0.4 343447587
x1 0.1 2952 8472 0.1 3028 7950
x3 0.5 8996 20361 0.2 9903 21750
x4 0.2 7657 17977 0.1 699016057

TABLE 2. Number of nodes and edges for the original
and the PODC network.

original PODC
example #nodes #edges #nodes #edges
C6288 2400 4720 6175 13183
C7552 2355 4776 5039 11968
des 3127 8287 6436 19627
k2 327 2989 790 6361

[6] M. DAMIANI AND G. DE MICHELI, ‘‘Observability Don’t
Care Sets and Boolean Relations’’ inDigest of Technical
Papers of the IEEE International Conference on Computer-
Aided Design, pp. 502-505 (1990).

[7] S. MUROGA, Y. KAMBAYASHI , H.C. LAI, AND J.N. CULLINEY ,
‘‘The Transduction Method - Design of Logic Networks
Based on Permissible Functions’’, IEEE Transactions on
Computers, vol. 38, no. 10, pp. 1404-1424 (October 1989).

[8] H. SAV OJ AND R.K. BRAYTON, ‘‘Observability Relations and
Observability Don’t Cares’’ inProceedings of the IEEE
International Conference on Computer Aided Design, pp.
518-521. (Nov. 1991).

[9] H. SAV OJ, Private communication (April 1996).

	CDROM Home Page
	1996 Home Page
	ICCAD 96
	Front Matter
	Table of Contents
	Session Index
	Author Index

