
ICCAD ’96
1063-6757/96 $5.00  1996 IEEE

Metamorphosis: State Assignment by Retiming and Re-encoding

Balakrishnan Iyer Maciej Ciesielski
Department of Electrical & Computer Engineering

University of Massachusetts at Amherst
Amherst, MA 01003.

ABSTRACT
This paper presents Metamorphosis1 – a novel technique for op-
timal state assignment targeting multi-level logic implementations.
We present an elegant matrix formulation and a graph partitioning
based synthesis technique which permits both bit-constrained and
unconstrained encoding of a symbolic finite state machine (FSM)
represented initially with a one-hot code. Optimal state encoding is
achieved by controlled retiming/re-encoding and resynthesis of the
symbolic FSM. The synthesis is guided directly by the cost function
(optimization criterion) rather than speculative estimates of the en-
coding heuristics on the final design cost. The technique is illustrated
through performance driven synthesis of FSM and extensions to han-
dle other cost metrics is outlined.

1 Introduction and Overview
In this paper we consider state-based designs and concentrate on

state encoding (or assignment) of finite state machines (FSM). State
assignment is at the heart of the sequential synthesis problems, and
despite large effort devoted to this problem no satisfactory solutions
have been provided. The difficulty can be summarized with the
following quote from the recent book by DeMicheli [1]: “When
considering state assignment for multi-level logic implementations,
the quality of the results is still often unpredictable, because of the
inability of current algorithms to forecast precisely the effects of the
choice of the codes on the area and performance”. With the exception
of two-level circuits implemented as PLAs[2, 3], the state assignment
algorithms are based on a prediction of the heuristically selected
encoding on the subsequent logic optimization.

Metamorphosis, on the other hand, utilizes a convenient matrix
formulation which facilitates an efficient measurement of the opti-
mization criterion for a given encoding. The symbolic FSM rep-
resented initially by an one-hot code is transformed into an opti-
mally encoded FSM by controlled reencoding/retiming followed by
resynthesis[4, 5]. Bit-constrained and unconstrained encoding prob-
lems are formulated as graph partitioning problems for which efficient
algorithms exist[6, 7].

In this paper, we apply the formulation and techniques to per-
formance driven synthesis of FSM and suggest techniques to solve
it efficiently. The results of the proposed technique can be directly
benchmarked against the one-hot circuit, which is believed to give
minimum delay implementations. Any improvement with respect to
this reference point will therefore justify the computed state code.

2 Retiming vs Reencoding
Retiming is a recognized optimization technique for cycle-time

minimization of synchronous sequential circuits [8, 9]. It is based
on modifying the sequential structure of a circuit by relocating the
state registers across its logic gates. Since retiming affects the next
state functionality of the circuit, in effect altering its binary state
encoding, it can be viewed as reencoding of its states. It is thus
interesting to examine if a circuit with a given state encoding can be
transformed into an equivalent circuit with another encoding by means
of retiming. This question has been already raised in the literature
and the following theorem, due to Malik et. al. [5], provides a partial
answer to this problem: Given a machine implementation M1 with
a given STG, and a state assignment S1 , it is always possible to
derive a machine M2 with the same STG, and a state assignment S2
by applying only a series of resynthesis and retiming operations on
M1.

1Webster defines Metamorphosis as “change of physical structure, form or
substance”.

The proof of this theorem can be outlined as follows: The combi-
national component N1 of machine M1 is appended with an identity
logic block I = C � C�1, where C is a mapping between the states
of M1 and M2 , and C�1 is an inverse mapping. The state regis-
ters R1 , representing encoding S1 , are then retimed backward across
C�1 , leading to a circuit M2 with encoding S2 and register set R2,
as shown in Fig. 1.

C
-1

R1

N1 C

R1

N1 R
2 C

-1
N1 C

N2

c)b)a)

Figure 1: Reencoding by retiming and resynthesis: a) machine M1,
b) M1 after resynthesis c) retiming leading toM2

The resulting transformation of machine M1 into M2 can be
represented symbolically as follows:

qM1 = fN1;R1g = f[N1jCjC
�1

];R1g = (1)

f[C
�1
jN1jC];R2g = fN2;R2g =M2:

Due to one-to-one correspondence between the present-state and the
next-state variables of the machine, this transformation can be viewed
as a transformation of the combinational logic blockN of the machine.
We can then concentrate on restructuring the combinational logic only,
without any concern for the registers:

N1 = [N1jCjC
�1

]! [C
�1
jN1jC] = N2: (2)

The cost of N can be easily related to that of M : for example, the
delay ofN determines the minimum clock-cycle ofM , etc. While the
two machines,M1; M2 , are equivalent in terms of their synchronous
behaviors, the corresponding combinational blocks, N1; N2, will,
in general, have different functionality, design characteristics, and
cost (area, delay, power, etc.). The goal is to find the transformation
logic C that will make the reencoded circuit optimum according to
some cost function; the above theorem seems to provide a means to
do that. However, the retiming approach outlined above is limited
to circuits with the same state transition graph and typically with
the same encoding length. The reason is that both C and C�1

must exist, i.e., both must be Boolean functions. This condition is
trivially satisfied when C is an injective (one-to-one) mapping, and
in particular when the encoding length of the initial circuit is equal
to the code length of the retimed circuit. Unfortunately, for arbitrary
reencoding, functionC (or C�1) may not be injective, in which case
C�1 (C) is not a function but a relation; as a result, the reencoding
defined by this mapping cannot be implemented 2 . This limitation is
a direct consequence of the requirement that the STG’s of the original
and the retimed circuit be identical.

The ultimate goal of sequential synthesis is to find an encoding
(and hence a logic block C) that optimizes the retimed/re-encoded

2It has been shown in a recent work [4] that under certain conditions blocks
C or C�1 need not be functions for the retiming to exist. These conditions
involve cases of state minimization and state splitting, where logic blocks C
or C�1 uniquely define internal logic functions, called retimable functions,
across which the retiming of the networkN can be performed.

circuit for a given cost function. The effective exploration of the
encoding search space (to find the optimal FSM encoding) mandates
more general reencoding techniques that can handle transformations
involving circuits with different (but equivalent) state transition graphs
(STG’s), and different code lengths. To this end we propose a new
retiming/re-encoding method that transforms a circuit with a given
encoding into a circuit with an arbitrary encoding and code length,
and an equivalent, but not necessarily identical, state transition graph.
This leads to the new encoding scheme described in Section 6.

3 Re-encoding by retiming of one-hot circuit
The proposed transformation of the given FSM into a re-encoded

FSM will be achieved in two steps. For ease of exposition, we assume
that we have been given the “desired” encoding matrixE. The meth-
ods for computing the “desired” encoding matrix which optimizes the
design cost is discussed in Section 6. First the circuit is transformed
into a network with one-hot code (where each state is assigned exactly
one bit with value 1, other bits being 0). This is done by applying
the identity transformation I = H � H�1, where H represents the
mapping between the initial state code and the one-hot code, and then
by retiming the circuit across H . This can be represented as the fol-
lowing transformation of the original combinational network N into
one-hot network NH :

N = [N jHjH
�1
]! [H

�1
jN jH] = NH; (3)

Then, the resulting circuit is reencoded to yield a circuit with the
desired code E:

NH = [NHjCH jC
�1

H]! [C
�1

H jNH jCH] = NE : (4)

Here, CH is the mapping between the one-hot encoding and the
desired state code. It can be shown that bothH and CH are injective
mappings, so that H�1 and C�1

H are well defined for an arbitrary
reencoding. Since the transformation into one-hot coded circuit is
straightforward (functionH is well defined), we concentrate here on
the transformation of a one-hot circuit into a circuit with the desired
encoding.

4 Motivating Example
We will illustrate the re-encoding process by means of a simple

example. Let the cost function to be minimized be circuit delay. For
simplicity, we assume a unit delay model.

Consider the state machine (with outputs removed for simplicity)
and its one-hot implementation, shown in Fig. 2. The circuit can be

NH

b)

3OR2

1

3
1

2
AND

3
1

2 NOR
3

1

2
AND

3OR2

1

3OR2

1

3
1

2
AND

3
1

2 NOR
3

1

2
AND

3OR2

1

i1
i2

i1
i2

i1
i2

i1
i2

s0

s1

s2

s3

s’0

s’1

s’2

s’3

a)

S0

S1

S2

S3

i
1

+ i
2

i
1

i
2

i
1

i
2

i
1

+ i
2

Figure 2: Machine with one-hot encoding: a) STG, b) one-hot net-
work NH

trivially obtained from the state transition table by replacing symbolic
states Si with one-hot code: S0 = 1000; S1 = 0100; S2 =

0010; S3 = 0001, (or by re-encoding with I = H � H�1) and
deriving the next-state functions: s0o = (i1 + i2) � S0 + S3 , s01 =
�i1 � �i2 � S0 , etc. (See Fig. 2(b).)

N’
1

c)

3AND
2

1

3AND
1

2

3AND
2

1

3

1

2
AND

3OR
2

1

3

1

2
AND

3OR
2

1

3
1

2
NOR

r1

r2

i1

i2

r’1

r’2

N"
1

d)

3AND
1

2

3AND
2

1

3OR
2

1

3
1

2
NOR

r1

r2

i1

i2

r’1

r’2

3AND
2

1

a)

NH

3OR
2

1

3

1

2
AND

3
1

2
NOR

3

1

2
AND

3OR
2

1

3OR
2

1

3

1

2
AND

3
1

2
NOR

3

1

2
AND

3OR
2

1

i1

i2

i1

i2

i1

i2

i1

i2

s0

s1

s2

s3

s’0

s’1

s’2

s’3

3OR
2

1

3OR
2

1

X
s0

s1

s2

s3

-1CHCH

3AND
2

1

3AND
2

1

3AND
1

2

3

1

2
AND

r1

r2

b)

NH
-1CH CH

3OR
2

1

3

1

2
AND

3
1

2
NOR

3

1

2
AND

3OR
2

1

3OR
2

1

3

1

2
AND

3
1

2
NOR

3

1

2
AND

3OR
2

1

i1

i2

i1

i2

i1

i2

i1

i2

s’0

s’1

s’2

s’3

3OR
2

1

3OR
2

1

X

r1

r2

s0

s1

s2

s3

3AND
2

1

3AND
2

1

3AND
1

2

3

1

2
AND

r1

r2

Figure 3: Reencoding of one-hot circuit: a) appending NH with
I = CHC

�1

H ; b) circuit after retiming across CH ; c) circuit after
simplification; d) final optimized circuit

Assume that we want to re-encode the states so that S0 =

00; S1 = 10; S2 = 01; S3 = 11. Such an encoding can be rep-
resented by a binary encoding matrix E, whose rows represent the
state codes, and columns correspond to state bits. MatrixE uniquely
defines logic CH and its inverse:

E =

2
4

0 0

1 0

0 1

1 1

3
5) CH =

s0s1s2s3 r1r2
1 0 0 0 0 0
0 1 0 0 1 0
0 0 1 0 0 1
0 0 0 1 1 1

C
�1

H =

r1r2 s0s1s2s3
0 0 1 0 0 0
1 0 0 1 0 0
0 1 0 0 1 0
1 1 0 0 0 1

Fig. 3 shows a step-by-step reencoding transformation of the
circuit. Fig. 3(a) shows the one-hot network NH appended with an
identity logic, I = CHC

�1

H , and Fig. 3(b) the circuit after retiming
across logic block CH . Notice that this retiming transforms state
space S, encoded with bits fs0; s1; s2; s3g, into a new spaceR, with
bits fr1; r2g. Circuit in Fig. 3(c) is obtained after deleting the gates
without any fanouts (e.g. s00; s1, etc.). Finally, logic simplification
and remapping yields the circuit in Fig. 3(d). The final circuit has
half the number of gates (5 gates) and smaller delay (2 gate delays)
than the initial one-hot coded circuit (10 gates, 3 gate delays). This
example illustrates that there exists a potential for improvement over
the one-hot encoding both in terms of delay (performance) and area.

5 State Assignment by One-Hot Re-encoding
5.1 Matrix Formulation

Our formulation is based on the following matrix representation,
similar to that used in classical circuit theory. The initial one-hot
circuitNH is represented by a square transmission matrixAH , which
describes its present-state to next-state behavior. The columns of the
matrix are associated with symbolic next states and its rows with
present states, Si . An entry AH(i; j) is determined by an implicant
of the next-state function associated with the state transitionSi ! Sj .
Such an implicant has the form fIk Si j Sjg, where Ik is the primary
input (predicateof the transition), representedas a Boolean expression
in terms of the binary input variables; Si and Sj are the present and
the next state, respectively. With this representation, an expression
for next-state Sj can be computed as a logical sum (OR) of the entries
in column j of AH . For one-hot encoding this defines the next-
state function for s0j . In our example, s00 = (i1 + i2) � S0 + S3 ,
s01 = �i1 � �i2 � S0, etc., and

AH =

2
4

(i1 + i2) �i1 � �i2 0 0

0 0 1 0

0 0 (i1 + i2) �i1 � �i2
1 0 0 0

3
5 (5)

Similarly, we can represent logic blocks CH and C�1

H in matrix
notation. It turns out that they are both trivially associated with the
encoding matrix E. To link logic CH with matrix E, notice that
an OR gate in CH corresponds to a column of the encoding matrix;
furthermore, the inputs to the OR gate are determined by the "1"
entries in the corresponding column of E. In our example, the first
column of E induces equation r01 = s01 + s03, and the second column
r02 = s02 + s03 (compare it to the circuit in Fig. 3(c)).

By the same token, an AND gate in C�1

H corresponds to a row
of the encoding matrix E, which contains the binary encoding of
the corresponding state. The 0 and 1 entries of a row determine the
polarity of the inputs to the gate. The inputs to the AND gates can
be viewed as the minterms of the present state vector r. C�1

H can be
expressed as a row permutation matrixEx . It is a square binary matrix
whose columns correspond to the states, and rows to the minterms
of the state bits (in the case of incompletely specified encoding with
don’t cares, the minterms can be replaced by cubes so that some of the
AND gates may have fewer inputs). Ex(i; j) = 1, if the binary code
of Sj corresponds to mintermmi, and it is 0 otherwise. For example,
S0 = 00 = �r1 �r2 implies that the matrix has 1 in column 1 (for S0)
and row 1 (for �r1 �r2), etc. The effect of the row permutation matrix
Ex is to order the minterms by increasing order of their indices. In
our example this leads to the following result:

ExAHE =2
64

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

3
75

2
64

(i1 + i2) �i1 � �i2 0 0
0 0 1 0
0 0 (i1 + i2) �i1 � �i2

1 0 0 0

3
75

2
64

0 0
1 0
0 1
1 1

3
75

=

2
64

�i1 � �i2 0
�i1 � �i2 �i1 � �i2 + (i1 + i2)

0 1
0 0

3
75 = AE

This representation is particularly valuable, since each entryAE(i; j)
of the resulting matrix contains a logic expression (in SOP form)
relating the next state variable r0j to minterm mi(r) of the state
vector r. From this, a logic path ri ! r0j can be also constructed
in order to compute/estimate the delay in the circuit. The next-state
expression for r0j can be obtained as a logical sum of the entries in
column j of the matrix multiplied by the corresponding minterm. For

example, AE(2; 1) = �i1 � �i2 means that r02;1 = �i1 � �i2 �m2(r) =
�i1 � �i2 � �r1 � �r2. Subsequently, the expression for r01 can be obtained as
the sum �i1 � �i2 �m1(r)+ �i1 � �i2 �m2(r) = �i1 � �i2 �r1 �r2+ �i1 � �i2 �r1 �r2;
compare this equation to the circuit in Fig. 3(c). This expression can
be further simplified to r01 = �i1 � �i2 � �r1 = (i1 + i2) � �r1 , see Fig.
3(d). For the purpose of delay minimization each expression in the
matrix can be independently simplified or used directly to estimate
the cost (delay) of the encoding.

In summary, the reencoding of one-hot circuit can be cast as the
following optimization problem:
Given a one-hot circuit represented by matrix AH , find

minE cost(ExAHE) (6)

over all legal encodings E, possibly subject to some constraints on
E.
In this formulation, cost(AE), depends on the metric chosen
for the optimization. For delay optimization, cost(AE) = max
fdelay(AE (i; j)g; it can be similarly defined for other cost func-
tions. This formulation can be readily extended to handle primary
outputs, which has not been shown here for the sake of simplicity.

5.2 Cost Function: Delay Estimation
Given an arbitrary Boolean expression in SOP form and the signal

arrival times at the inputs, the delay will be computed by decompos-
ing the expression into basic 2-input (N)AND and (N)OR gates such
that the resulting expression tree has minimum depth. This is accom-
plished by: 1) generating an AND gate for each product term and the
OR gate to sum the product terms; 2) inverting each AND gate into
a NOR gate on inverted inputs; and 3) decomposing each OR (NOR)
gate into a tree of 2-input OR gates; this step is done in a fashion
similar to the construction of the Huffman coding tree, taking signal
arrival times into account [10]. 4) finally, the 2-input NOR gates with
inverted inputs are inverted to 2-input NAND’s. During the construc-
tion of a tree with 2-input gates, the correct value of the longest path
delay will be maintained by performing the decomposition in topolog-
ical order starting from the input. Such a decomposition provides an
upper bound on the mapped delay of the circuit; technology mapping
onto a more realistic library of gates can only improve the delay due
to the much larger variety of gates available in a typical library.

While exact value of the final delay may differ from our estimate, it
is the relative delay and its monotonicity that is important at this stage
of technology independent synthesis. The tradeoff between accuracy
of estimation and computation cost involved in delay estimation needs
to be considered.

Other delay estimation methods similar to those used in the
speedup algorithm of MIS[11], the quick factorization used in SIS[12]
and those based on Lawler’s clustering technique [13] can also be
used. Delay estimates need to be computed as efficiently as possible,
because it is a part of the extractable expression evaluation.

6 Constructive Methods to Encoding
The matrix representation facilitates the quick evaluation of the

cost of a given encoding. The following heuristics can be employed to
arrive at the optimal encoding matrixE: 1) Column-based encoding:
column by column, i.e., bit by bit encoding. Generating column j
of E corresponds to placing an OR gate at output r0j . For a given
column, the position of 1 entries determines to which outputs ofNH

the OR gate is connected; the selection of these entries must lead
to a maximum simplification of the resulting logic. 2) Row-based
encoding: row by row, or state-by-state, encoding. Generating a row
i of the encoding matrix corresponds to choosing the minterm of the
encoding vector feeding the ith AND gate at the input to NH ; or,
equivalently, to assigning the polarity to the inputs of the gate. 3)
Mixed column/row encoding, where the placement of the OR gates is
interleaved with the polarity assignment of the AND gates.

Boolean simplification is beneficial both in terms of reducing
the area of implementation and enhancing performance. Boolean
simplification is exploited during re-encoding in one of the following
two ways:

1. The placement of an OR gate at an output r0j may result in the
simplification of the boolean expressions in the fanin of the OR
gate. For example, in Fig. 3(b), the OR gate feeding r02 results
in the following simplification s2 � ((i1 + i2) + �i1 � �i2) = s2.

2. The assignment of the minterms feeding the AND gates at the
input to NH may result in the simplification of the nodes at the
fanout of the AND gate. For example, in Fig. 3(c), simplification
of the AND gates feeding the r01 occurs as follows �i1 � �i2 � (�r1 �
�r2 + �r1 � r2) = �i1 � �i2 � �r1 .

It has been our observation that, in general, the reduction in delay
resulting from the placement of the OR gates is usually much larger
than that obtained with the polarity assignment of inputs to the AND
gates at the input to NH . Based on this observation, we adopt a
column based encoding scheme. However, if at any step there are
two or more column encodings with the same “cost”, we break the tie
by choosing the assignment that will result in maximal simplification
due to the polarity of the literals at the AND gate input.

Observe that the column based encoding involves the bipartition-
ing of the column into two groups – those with an entry of “1” and the
others with an entry of “0”. The outputs of NH corresponding to a
“1” entry form the fanin of the OR gate corresponding to the column.
Encoding of a column also fixes the polarity of the corresponding
re-encoded variable that drives the AND gates at the input of NH .

6.1 Graph Partitioning Formulation
The performance driven encoding problem can be formulated as

a graph partition problem. The graph is constructed as follows: each
node in the graph corresponds to a symbolic state in the one-hot
FSM. The nodes in the graph are connected by edges whose weights
correspond to reduction in delay by having the nodes in the same
partition. Thus, the weight of edge between nodes u and v is given
by :

wu;v = max(�(u); �(v))� �(u+ v) (7)

where, �(u) and �(v) denote the delay when u and v are in different
partitions and �(u + v) denotes the delay when u and v are in the
same partition. Construction of a column of the encoding matrix is
equivalent to bipartitioning its elements into 0’s and 1’s so as to min-
imize the delay of the longest path of the corresponding expression.
While constructing the subsequent columns, the partitions induced
by the construction of the previous columns are further bipartitioned.
This process can be continued till all the columns of the encoding
matrix have been constructed. The encoding of a column progres-
sively constrains the encoding of the subsequent columns to ensure
that the final codes are distinct. At the end of the encoding process,
we should have distinct codes for each of the N states in the given
symbolic one-hot FSM.

We use two different techniques for the solution of the bit-
constrained (user specifies the maximum number of bits that can
be used for encoding) and the unconstrained versions of the problem.

Unconstrained Encoding Problem The absence of constraints on
the number of encoding bits, translates to an unconstrained graph
partitioning problem. This problem can be solved efficiently by (n�
1) applications of the max-flow/min-cut algorithm[6], where n is the
number of symbolic states. This approach is also a good testbed for
comparison with the one-hot encoding (which practically has no limit
on the number of bits used for encoding).

Bit Constrained Encoding A user defined constraint on the number
of encoding bits translates into a constraint on the sizes of the partitions
of the graph. This problem can be solved efficiently by using the
Kernighan & Lin [7] algorithm or its variants.

6.2 Other Metrics
In this section we outline extensions of the technique to handle

other cost metrics.
Sequential Testability Notice that our formulation can readily ac-

commodate additional user-defined constraints, such as input encod-
ing constraints [2], or constraints leading to removal/avoidance of
sequential false paths; the latter one can be used for both performance
and testability improvement as demonstrated in our recent work [14].

These constraints are specified as dichotomies and taken into account
in the form of partial column encoding of E.

Area Area can be measured by the number of literals required in
the implementation. For this case, the edge capacity in the graph
formulation is given by

wu;v = nlit(u) + nlit(v)� nlit(u+ v) (8)

where, nlit() is a cost function indicating the number of literals
required to implement the given boolean expression. The savings in
the number of literals may accrue from one of the following three ways
(a) Simplification of the expressions due to placement of OR gates, (b)
Simplification of the expressions due to the polarity assignment of the
inputs of the AND gates, (c) Extraction of common sub-expressions
(cubes and/or kernels) from the nodes in the network.

Power Dissipation The minimization of power dissipated in se-
quential circuits is particularly hard for two reasons; power depends
on the area of implementation and switching activity in the circuit,
and both of these depend on the encoding. Tsui et. al[15] presented a
power consumption model that takes into account the capacitive load-
ing and the switching activity. In their paper the savings in power by
extracting a common cube is measured by the number of literals saved
weighted by the switching activity of the state bits. The formulation
proposed in this paper is easily amenable to such measurement.

7 Conclusions
In this paper, we have presented Metamorphosis – a new state

encoding technique targeting multi-level logic implementations. The
proposed encoding technique is guided directly by the optimization
criterion rather than speculative estimates of the encoding heuristics
on the final implementation. We have also presented an elegant ma-
trix formulation and solution techniques based on graph partitioning
heuristics.

References
[1] G. De Micheli, Synthesis and Optimization of Digital Circuits, McGraw-

Hill, Inc., 1994.
[2] S. Yang and M.J. Ciesielski, “Optimum and suboptimum algorithms for

input encoding and its relationship to logic minimization”, IEEE Trans.
on CAD, vol. 1, pp. 4–12, Jan. 1991.

[3] G. De Micheli, “Symbolic Design of Combinational and Sequential
Logic Circuits Implemented by Two-Level Logic Macros”, IEEE Trans.
on CAD, vol. CAD-5, pp. 597–616, Oct. 1986.

[4] M. Ciesielski, “Functional retiming: A new approach to sequential syn-
thesis and optimization”, Technical Report TR-CSE-96-02, Department
of Electrical & Computer Engineering, University of Massachusetts,
Amherst., 1996.

[5] S. Malik, E. Sentovich, R. Brayton, and A. Sangiovanni-Vincentelli,
“Retiming and resynthesis: Optimizing sequential networks with com-
binational techniques”, IEEE Trans. on CAD, vol. 10, pp. 74–84, Jan.
1991.

[6] C.K. Cheng and T.C. Hu, “Maximum Concurrent Flows and Minimum
Cuts”, Algorithmica, vol. 8, pp. 233–249, 1992.

[7] B.W. Kernighan and S. Lin, “An Efficient Heuristic Procedure for
Partitioning Graphs”, in The Bell Sys. Tech. J., pp. 291–307, Feb. 1970.

[8] C. Leiserson, F. Rose, and J. Saxe, “Optimizing synchronous circuitry
by retiming”, in Third Caltech Conference on VLSI, pp. 87–116, 1983.

[9] G. De Micheli, “Synchronous logic synthesis: Algorithmsfor cycle-time
optimization”, IEEE Trans. on CAD, vol. 10, pp. 63–73, Jan. 1991.

[10] T-S Kim, “CAD Tools for Wave-Pipelined Circuit Design”, in Ph.D.
Thesis, Dept. of ECE, University of Massachusetts at Amherst, MA
01003., Sep. 1995.

[11] K.J. Singh, A. Wang, R.K. Brayton, and A. Sangiovanni-Vincentelli,
“Timing optimization of combinational logic”, in ICCAD, pp. 282–285,
1988.

[12] E. Sentovich et al., “Sis: A system for sequential circuit synthesis”,
Technical Report UCB/ERL M92/41, ERL, Dept. of EECS, Univ. of
California, Berkeley., 1992.

[13] H.J. Touati, H. Savoj, and R.K. Brayton, “Delay optimization of combi-
national logic circuits through clustering and partial collapsing”, in Intl.
Workshop on Logic Synthesis, 1991.

[14] Z. Hasan and M. Ciesielski, “Elimination of multi-cycle false paths by
state encoding”, in Proc. of European Design and Test Conference, pp.
155–159, 1995.

[15] C-Y. Tsui, M. Pedram, C-A. Chen, and A.M. Despain, “Low Power State
Assignment Targeting Two- and Multi-level Logic Implementations”, in
ICCAD, pp. 82–87, Nov. 1994.

	CDROM Home Page
	1996 Home Page
	ICCAD 96
	Front Matter
	Table of Contents
	Session Index
	Author Index

