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Abstract

Test design of analog circuits based on statistical meth-
ods for decision making is a topic of growing interest.
The major problem of such statistical approaches with re-
spect to industrial applicability concerns the confidence
with which the determined test criteria can be applied in
production testing. This mainly refers to the considera-
tion of measurement noise, to the selected measurements,
as well as to the required training and validation samples.
These crucial topics are addressed in this paper. On ex-
ploiting experience from the statistical design of analog
circuits and from pattern recognition methods, efficient so-
lutions to these problems are provided. A very robust test
design is achieved by systematically considering measure-
ment noise, by selecting most significant measurements,
and by using most meaningful samples. Moreover, para-
metric as well as catastrophic faults are covered on appli-
cation of digital testing methods.

1 Introduction
With growing complexity and shrinking device dimen-

sions, circuit performances are becoming increasingly sen-
sitive to inherent fabrication deviations. Consequently,
parametric faults are becoming more and more important.
This leads to two different strategies in the test design for
analog circuits.

On the one hand, it is postulated that the effects of
parametric faults are completely eliminated by statistical
design for manufacturability [1]. Thus, only catastrophic
faults need to be considered in testing [2].

On the other hand, it is claimed that for many designs it
is neither desirable nor feasible to eliminate all parametric
faults by statistical design [3]. In this situation, one is faced
with the problem of designing tests for parametric faults.

In [3], it is stated that increasing the performance of
the test procedure is often more economical than avoiding
parametric yield loss. So, the need for efficient test meth-
ods with respect to parametric faults arises. The detection
of parametric faults is regarded as a much more difficult
task than the detection of catastrophic faults [4].

Commonly, parametric testing of analog circuits is done
by verifying all circuit specifications. This is called speci-
fication testing [4] or functional testing [5]. Here, a major
concern is the minimization of production testing time. In
[4], an optimal ordering of functional tests is determined.
In [5], an approach called ‘Predictive Subset Testing’ is
presented: a subset of functional tests is determined that
is sufficient for testing the circuit. These approaches are
efficient in reducing testing time, when at least a subset of
specified performances can be measured.

In general, specification testing suffers from two major
drawbacks: First, the testing environment usually differs
from the operational environment. The specifications of
a circuit refer to the operational environment, e.g. a given
load. In specification testing, the operational environment
needs to be reproduced on the test equipment. This is dif-
ficult, if e.g. the input characteristics of the test equipment
differs from the specified load. Thus, specification test-
ing generally requires specialized and expensive test equip-
ment. Second, one of the main design goals is to make
the specified performances insensitive and robust to fluc-
tuations of the manufacturing process [6]. This is disad-
vantageous in testing, as measurement errors can mask the
effects of parametric faults. So, in order to cut the high
costs of analog testing, it seems reasonable to search for
alternatives to specification testing.

In this situation, statistical methods for decision mak-
ing are often applied to derive test criteria for the detec-
tion of parametric faults based on preferred measurements
[7, 8, 9]. In order to obtain an applicable test design, the
performance of the determined test criteria has to be in-
vestigated, not only for the nominal case but also in the
presence of measurement noise. Moreover, as actually
contracted specifications need to be guaranteed to the cus-
tomer, a test design based on a fault model strongly corre-
lated to specification–based test procedures [2] needs to be
performed. But if test criteria are designed to correlate to
given specifications, the robustness of the test design be-
comes an especially crucial point.

This paper presents a new and very efficient approach



to the design of robust test criteria for analog testing. In-
evitable measurement errors are systematically considered
in the test design stage and their effect on the quality of
the test criteria is investigated. Based on the concept of
feature selection [10], a novel and very efficient heuristic
for problem–specific measurement selection is developed.
On application of this heuristic, the trade off between the
number of required measurements, i.e. test cost, and test
quality can be interactively controlled. The less measure-
ments are considered, the higher is the estimation accuracy,
i.e. the robustness, in the design of statistical decision cri-
teria. Moreover, a novel sampling strategy is presented for
the generation of training and validation data sets that pro-
vides especially meaningful information for the design of
the statistical decision criteria. This sampling strategy is
both very efficient and directly physically interpretable in
terms of process drift. By this means, the resulting test
design can be shown to be very robust with respect to mea-
surement errors. On solving a fault covering problem for
catastrophic faults, a very high number of detected catas-
trophic faults is achieved at low additional test cost. On in-
tegrating the proposed approach into the test design stage,
specification testing could possibly be avoided and test cost
could be significantly reduced.

2 Starting point and basic relationships
In this section, the basic relationships for the design of

test criteria will be introduced. The presented approach is
based on a parametric fault model that builds up a relation
between the specified performancesp of the circuit, the
statistical parametersx that represent fluctuations of the
manufacturing process, and thenm measurementsm of
the circuit [7, 11]. In each of these three domains, a region
of fault free circuits is defined as the respective acceptance
region of fault free circuits. These regions are denoted by
Ap, Ax, andAm, respectively. In specification testing, a
circuit is accepted if all specifications are satisfied, i.e. the
measured performancesp are located insideAp. By de-
manding that the measurements fully characterize the state
of the circuit with respect to parametric faults, modeled
by the statistical parameters, specification testing is trans-
formed into the space of measurementsm. A circuit is
fault free if and only if the measurementsm are located
insideAm. This results in the following relationship for a
fault free circuit:p 2 Ap , m 2 Am. In the presented
approach the test design is performed based on the accep-
tance regionAm in the space of measurements. Therefore,
the differences between the operational environment and
the testing environment are inherently considered by the
proposed fault modeling. The problem arising is that, in
contrast toAp, the regionAm is unknown. So, an approx-
imation of this acceptance region needs to be determined.

Each given specification induces a hyperplane into the
space of measurements which separates the measurement
space into a region where the specification is satisfied and
a region where the specification is violated [7, 12, 13]. In
order to approximate the acceptance regionAm, the fol-
lowing proceeding is performed. Based on discrimination
analysis a test criterion of the form [7, 9, 14]

t (m) = �0 + �Tm � 0 (1)

is computed for each given specification. Thus, linear
approximations of the separating hyperplanes are deter-
mined. The parameters�0 and� 2 Rnm of these test cri-
teria are computed from a training data set [15, 16, 17]. If
equation (1) is satisfied the circuit is regarded as fault free
with respect to the respective specification. Finally, a cir-
cuit is accepted if all individual test criteria (1) for all given
specifications are satisfied.

3 Consideration of measurement noise
In order to provide a really applicable test design, the

effects of measurement errors have to be carefully inves-
tigated and the confidence has to be studied with which
the determined statistical test criteria can be applied in the
presence of measurement noise [18, 19].

3.1 Scaling
It is assumed that the measurement errors are normally

distributed with zero mean. This is true for a normal testing
situation without systematic errors. The statistical distribu-
tion of the measurementcm corresponding to an expected
valuem is given bycm � N

�
m;�bm�. The contour lines

of this probabilitydensity function are hyperellipsoidswith
centerm [15]. The shape of these hyperellipsoids is deter-
mined by the covariance matrix�bm.

In order to obtain robust results with respect to mea-
surement noise from discrimination analysis, a scaling of
the measurementsm has to be performed such that, in the
space of scaled measurements, these contour lines become
hyperspheres. This is because discrimination analysis can
be interpreted as an optimization process that maximizes
the distances of the measurements to the separating hyper-
plane [16]. The evaluation of distances is performed in the
l2–norm. So, on application of the proposed scaling, the
norm, which is used to calculate distances in discrimina-
tion analysis, reflects the effects of measurement noise.

The matrix that is needed to perform this scaling is de-
termined on application of the Cholesky decomposition of
�
�1bm [20]. If measurement errors are correlated, the scaled

measurements cannot be interpreted in terms of physical
measurements any more. Nevertheless, after discrimina-
tion analysis is performed, physically interpretable and ro-
bust test criteria are obtained in the space of unscaled mea-
surements.
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Figure 1: Comparison of the proposed scaling to the un-
scaled situation.

Figure 1 illustrates the advantage of the proposed scal-
ing (a) compared to the unscaled situation (b). The test
criteria that result from discrimination analysis with the re-
spective scaling are illustrated by the solid lines. The el-
lipses around the two sample elements represent contour
lines of the probability density function considering mea-
surement errors. Measurements located in the shaded re-
gions in Figure 1(b) are classified to the population that
is less likely with respect to measurement errors. These
shaded regions disappear if and only if the proposed scal-
ing is applied.

3.2 Robustness of test criteria

Here the effects of measurement errors on the test cri-
teria will be investigated for specification testing as well
as for the presented approach. It will be shown that the
specified performances are not very well suited for testing.
The statistical parametersx are assumed to be multivariate
normal:x � N (x0;�x).

Specification Testing:The specified performancep is
assumed to be a linear function ofx

p (x) = p0 + eT (x � x0) : (2)

The vectore is the sensitivity vector ofp with respect to
x. The statistical distribution ofp due to fluctuations of
the manufacturing process [15] is then given by:p (x) �

N
�
p0; �

2
p;x = eT�xe

�
. With respect to the measure-

ment error�p, a multivariate normal distributionwith zero
mean is assumed:�p � N

�
0; �2p;m

�
. In order to have a ro-

bust test criterion in specification testing, the variation�2p;x
of the distribution of the performancep due to fluctuations
of the manufacturing process needs to be much bigger than
the variation�2p;m of the measurement error:�2p;x � �2p;m.

�2p;x decreases with a small sensitivity vectore. But,
to design a circuit such that its performances have minimal
sensitivity with respect to fluctuations of the manufacturing
process is a common design goal [6].Design objectives
are in contrast to the robustness of specification testing.
Thus, the specified performances are not very well suited
for testing.

New Method: We assume that the measurementsm

depend linearly on the statistical parametersx. The dis-
crimination functiont (x) of test criterion (1) is then given
by:

t (x) = �0 + �
T
m (x) = t0 +

�
�
T
A

�
(x � x0) (3)

with t0 = �0 + �
T
m (x0) ;

Here, A is the sensitivity matrix of the measurements
andAT� is the sensitivity vector oft (x) with respect to
x. The statistical distribution oft due to fluctuations of
the manufacturing process [15] is then given byt (x) �

N
�
t0; �

2
t;x = �

T
A�xA

T �

�
. Next, the propagation of the

measurement errors�m to t is taken into account. As be-
fore, we assume�m � N

�
0;�bm�. So, the error�t in

the evaluation oft [15] is given by:�t � N
�
0; �2t;m =

�T�bm�
�

. Again, in order to obtain a robust test criterion

in the presence of measurement noise, the following rela-
tion should be satisfied as good as possible

�2t;x � �2t;m () �TA�xA
T� � �T�bm�: (4)

Please note that this relation is in good agreement to sen-
sitivity based measurement selection approaches [18, 19]
which aim at maximizingjATAj. On providing the de-
gree of freedom to construct test criteria based on the
most sensitive and most linearly independent measure-
ments a robust test design is enabled.From equation (4)
the following conclusion can be drawn:

The performance of the test criterion is independent on
jj�jj. Increasingjj�jj increases the sensitivity of the dis-
crimination functiont with respect to the statistical param-
eters. But on the other hand the increased propagation of
measurement errors offsets this advantage.

3.3 Classification quality
Evaluating the classification quality of the computed

test criteria in the presence of measurement noise involves
the investigation of the effect of measurement noise on the
fault– and the yield coverage [7, 14, 21]. The fault cov-
erage is the probability to detect a circuit which is faulty
with respect to the considered specification. The yield cov-
erage is the probability toaccept a fault–free circuit. The
worst–case absolute error in the evaluation of the discrim-
ination functiont is assumed to be given by�t. We let
�t = 3 � �t;m for a confidence level of 99.7%.�t is used
to compute a worst–case yield coverage ycwc and a worst–
case fault coverage fcwc. These conditional probabilities
are given by:

ycwc = p
�
t(m) � +�t

�� circuit is good
�

, and (5)

fcwc = p
�
t(m) < ��t

�� circuit is faulty
�

. (6)
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Figure 2: Classification quality in the presence of measure-
ment noise.

As can be seen from Figure 2, by this means only sample
elements that are robustly accepted or rejected in the pres-
ence of measurement noise may contribute to the worst–
case yield coverage and to the worst–case fault coverage,
respectively. All sample elements that are located in a
��t region around the computed separating hyperplane are
regarded to be falsely classified for validation purposes.
Please note that this region is independent ofjj�jj. This
is due to the conclusion drawn from equation (4).

4 Feature selection
It is obvious that for the task of testing a circuit with re-

spect to a given specification, not all measurements are of
similar importance. In order to obtain a test design based
on a small number of measurements, the measurements
should be sortedaccording to the significance of informa-
tion they carry for the respective testing task. This induces
a possible reduction of production testing time and an im-
provement of the performance of discrimination analysis.
The less measurements are used, the less parameters need
to be estimated. Thus estimation accuracy and robustness
of the test design is increased.

The task of extracting important features from the ob-
served sample elements is called feature selection or ex-
traction [10]. The optimal feature in linear discrimination
is given by�Tm (see [10]). This is reasonable as test cri-
terion (1) only depends on�Tm and the constant�0. The
single feature�Tm carries the same information for the
considered testing task than the set of all measurements.
Unfortunately, this implies no reduction of required mea-
surements in general. The optimal feature is a linear com-
bination of possibly all measurements.

In order to approximate the optimal feature�Tm by
a lower number of measurements, the measurements are
sorted according to the absolute value of the correspond-
ing component of�. It is assumed that a high component
value of� indicates a high significance of the correspond-
ing measurement. This is a heuristic based on a geomet-
rical view of the problem. An example illustrating this,
is given in Figure 3. The thick line depicts the separating

m1

m1

�1
m2 ��2m2

Figure 3: Illustration of the proposed heuristic for mea-
surement selection.

hyperplane. The circles represent the contour lines of the
probabilitydensity functions of the measurements for good
and faulty circuits. From this figure it is obvious that mea-
surementm1 carries more significant information for this
discrimination task than measurementm2. When measure-
mentm1 is considered, the marginal probability density
functions are far more separable than the ones when mea-
surementm2 is considered. Obviously, this corresponds to
the component�1 being much bigger than the component
�2.

Based on an increasing number of most significant mea-
surements, test criteria for the considered specification are
now computed and validated. The optimal number of re-
quired measurements is chosen interactively based on a
plot, see e.g. Figure 5, showing the test quality for an in-
creasing number of considered measurements.

5 Sample generation
In this section, the proceeding for the generation of

training and validation samples will be addressed. These
samples are required for the design and validation of the
test criteria. Each set of statistical parametersx represents
exactly one possibly manufactured circuit. By circuit sim-
ulations the corresponding measurementsm and the cor-
responding performancesp are evaluated. By this means
sample elements in the space of measurements are obtained
where for each of them the satisfaction or violation of given
specifications is known.

The problem of the generation of training and validation
samples is thus reduced to the generation of samples in the
space of statistical parametersx of the circuit. The most
straight forward approach is to generate sample elements
according to the statistical distribution of the manufactur-
ing processx � N (x0;�x). By this means samples are
generated that reproduce the manufacturing process. On
application of this proceeding, a training and a validation
sample are obtained that are both physically interpretable.
A drawback of this proceeding is that only very few sample
elements are located near the boundary of theacceptance
region of a specification when it has a high individual yield.

In [17, 8], the authors report the importance of having



training samples near the boundary of theacceptance re-
gion, to obtain good estimates of the parameters required
for the test criterion. In order to obtain sample elements
on both sides of the separating hyperplane and to retain the
physically interpretability, we generate training and vali-
dation sample elements according to a normal distribution
with an expected valuexw, while keeping covariance ma-
trix �x. Here,xw is the worst–case point [22, 12, 13]
of the considered specification. The worst–case point of
a specification is defined as the set of statistical parame-
ters that just satisfies the corresponding specification and
has the highest probability density to occur. So, the vio-
lation of a specification is most likely in a region around
the worst–case pointxw of this specification. The task of
worst–case point computation for individual specifications
belongs to the statistical design of analog circuits.

These sample elements can be interpreted as belonging
to a drifted manufacturing process. The drift is such that
the considered specification is ‘most critical’ for testing.
This means that the yield for the (linearized) specification
is approximately 50%. This process drift is minimal in the
sense that the distance between the nominal expected value
x0 and the expected valuexw of the sample distribution is
minimal. This is with respect to a norm that takes into
account the different variations and correlations of the sta-
tistical parameters.

Thus, for each specification a training sampleT and a
validation sampleV is obtained in the space of measure-
ments. These samples correspond to statistical parameters
x � N (xw;�x). In order to maintain a more global view
on the problem, these sets are supplemented by a training
sampleT0 and by a validation sampleV0 that correspond
to statistical parametersx � N (x0;�x).

For the computation of the test criterion for a given
specification, the union of the global training sampleT0
and the respective training sampleT is used. For validation
of a single test criterion, the respective validation sampleV

is considered. Validation of the overall test design is done
by the global validation sampleV0.

6 Consideration of catastrophic faults

In this section, a very efficient method for the handling
of catastrophic faults will be presented. A circuit is re-
garded as faulty not only if any given specification is not
satisfied but also if the set of statistical parameters that cor-
respond to the circuit under test indicates a very large de-
viation from the nominal design. Such a circuit should not
be accepted, because a parameter deviation above a cer-
tain limit indicates a production fault. In the following, the
proposed proceeding for the detection of these faults will
be illustrated.

6.1 Bounding the acceptance region
In many cases, the acceptance regionAx in the space

of statistical parameters is not bounded. This means that
a circuit with parameters very far away from the nominal
design may satisfy all given specifications. By addition-
ally introducing box constraints for the measurements, the
acceptance regionAm in the measurement space can eas-
ily be bounded:mL � m � mU . As the measurements
completely characterize the state of the circuit with respect
to the statistical parameters, this induces a boundedaccep-
tance region of the test in the space of statistical param-
eters, too. The boundary values are rapidly obtained by
using all training sample elementsm generated for dis-
crimination analysis:(1 � i � nm)

mL
i = min

m2Am
mi � "i; mU

i = max
m2Am

mi + "i; (7)

where"i are positive constants chosen by the test engineer.
Now, a circuit is accepted if all test criteria and the box
constraints are satisfied. Please note that this extension of
the definition of a faulty circuit is based on similar con-
siderations as in [8, 9, 23]. In the approach proposed in
this paper, these rather crude test criteria take effect only
when no given specification induces a reasonable limit for
permissible parameter deviations.

The simulated results show that the application of these
box constraints improves the fault coverage with respect
to catastrophic faults, while test efficiency for parametric
faults is not reduced.

6.2 Test set compaction
In order to be able to handle catastrophic faults, a fault

list of these faults needs to be generated. Here, the four
most probable device faults are considered for each tran-
sistor. Shorts between gate and drain, and gate and source,
an open source contact, and an open drain contact [24] are
modeled. Of course, methods for inductive fault analysis
could also be applied for construction of the fault list.

For this fault list, an analog fault simulation is per-
formed, i.e. the corresponding measurements are deter-
mined. In order to save computation time, only the nominal
circuit design is considered here.

With the results of this fault simulation, a test set com-
paction [25] is performed, i.e. all measurements that are
not necessarily required for the test design are removed.
For each modeled fault, all tests which detect that fault are
determined. A test is either a test criterion that was de-
signed for testing a given specification, or it consists of two
box constraints concerning the lower and upper boundary
values for one measurement (mL

i � mi � mU
i ). A test ta-

ble is then formed containing a row for each test, a column
for each fault and the entry in row� and column� is 1 if
and only if the test� detects the fault�. In order to find a
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Figure 4: Circuit to be tested.

Gain GBW SR� SR+ �Vout

>69dB >2.5MHz >4.0V/�s >4.0V/�s >3.8V

Table 1: Specifications given for the circuit.

minimal set of measurements to detect all detectable faults,
the following proceeding is performed: First, all faults are
removed that are detected by the designed test criteria and
by the box constraints that concern already used measure-
ments. The problem of finding a minimal number of addi-
tional tests, such that all faults that can be detected by the
set of all measurements, are detected by the set of selected
tests, too, can be formulated as a covering problem [25].
Here a well known heuristic is used: The test that detects
the highest number of faults is added to the list of measure-
ments that really have to be measured in the actual testing
phase. Then, these faults are removed from the fault list.
This is repeated until the fault list contains only faults that
are not detectable by any remaining test. On termination
of this simple but very efficient heuristic, a nearly minimal
set of additional measurements has been determined that is
required for testing the circuit with respect to catastrophic
faults.

Modeled catastrophic faults that cannot be detected by
the considered measurements are not proven to be redun-
dant. For these faults any known method for the detection
of catastrophic faults may be applied. The efficiency of
these methods generally depends on the number of catas-
trophic faults that need to be considered. Thus, by first
performing the test design with respect to parametric faults
and exploiting the results as efficiently as possible with re-
spect to catastrophic faults, leads to an improved starting
position for methods dealing with the detection of catas-
trophic faults.

7 Experimental results
For the complex CMOS operational amplifier shown in

Figure 4, the test design was performed. The specifications
in Table 1 need to be guaranteed to the customer. For test-
ing, the operational amplifier is configured as a voltage fol-
lower. All accessible quantities are considered to be mea-

U 1.5V 2.5V 3.5V
DC DC 670kHz DC 100kHz!

1.60MHz 1.09MHz 1.60MHz 670kHz 1.60MHz

Table 2: Considered input stimuli.

surable, i.e. the input current, the currents over the power
supply voltages, the voltage at the inverting input, and the
output voltage. Parametric faults of the amplifier are mod-
eled by multiple deviations of twelve statistical model pa-
rameters. They represent perturbations in the transistor
geometries�W and�L, in the oxide thicknesstox, the
mobilities�0;p=n, the threshold voltagesVT0;p=n, the bulk
threshold parameters
p=n, the junction capacitancescj;p=n
(for p– and n–type transistors) and the bias current. The
considered DC and AC input stimuli are listed in Table 2.
These measurements were selected by a sensitivity based
measurement selection procedure [18, 19]. The number of
measurements in a DC or an AC test is five or ten, respec-
tively. So,nm = 85 measurements of the circuit are avail-
able. The measurement errors are assumed to be not cor-
related and worst–case measurement errors of0:1% of the
nominal values are assumed.1000 global training sample
elements (T0) and4000 global validation sample elements
(V0) are generated. For each of the five specifications, the
individual training samplesT consist of1000 sample ele-
ments and the individual validation samplesV consist of
500 sample elements. The overall number of simulations
was12; 500.

7.1 Design of individual test criteria
The test criteria, equation (1), are computed for each of

the five specifications considering allnm measurements.
By application of the proposed heuristic for feature selec-
tion an ordering of measurements with respect to their sig-
nificance for the respective testing task is obtained. Next,
the test criteria are computed once again considering only
the n most significant measurements (n = 1; : : : ; nm).
Figure 5 shows the quadratic mean of the fault– and the
yield coverage for an increasing number of considered
measurements for the test design for specificationSR�. In
a first phase, the quality of the test increases significantly
with the number of considered measurements. After this
phase, the quality of the test does not improve any more.
This is true for the other specifications as well. For testing
the specificationSR� 16 measurements are sufficient.

The yield– and fault coverages for all five test criteria
are given in Table 3. Validation is done with the respec-
tive validation sampleV . Thus, the test design is validated
with respect to the most critical process drift for the in-
dividual specification as discussed in section 5. This table
shows that the consideration of measurement noise leads to
a slight decrease in the yield– as well as in the fault cover-
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Figure 5: Quadratic mean of fault– and yield coverage for
the test design for specificationSR�.

Spec. yield yc ycwc fc fcwc n?

Gain 53.1% 97.2% 96.4% 100.0% 100.0% 28
GBW 48.0% 91.0% 88.2% 100.0% 100.0% 2
SR� 48.3% 95.7% 95.3% 99.6% 99.2% 16
SR+ 98.7% 98.5% 98.3% 100.0% 100.0% 12
�Vout 53.3% 98.3% 98.3% 99.5% 99.5% 8

Table 3: Yield– and fault coverages for the individual test
criteria. The subscript wc denotes the consideration of
measurement noise. The last column shows the number
of used measurements.

age. Nevertheless, if another scaling than the one presented
in section 3.1 is performed before discrimination analy-
sis is carried out, a strong degradation of the quality of
the test can be observed when measurement noise is taken
into account. If, e.g., a scaling is performed such that all
measurements are located inside the unity cube, both, the
worst–case yield– and fault coverages for the testing of,
e.g., specification Gain, drop to 0%. Such test criteria are
absolutely meaningless. This emphasizes the necessity of
systematically considering measurement noise in all stages
of the test design.

A more detailed diagnosis of misclassified circuits for
specificationSR� is given in Figure 6. It can be easily
seen that the performance values of misclassified circuits
are very close to the specified boundary value of 4.0V/�s
(see Table 1), represented by the thick dashed line. This
statement is true for the other specifications as well.

7.2 Validation of the total test criterion

The results for the conjunction of all individual test cri-
teria are shown in Table 4. The difference in the results
between Table 3 and Table 4 is not only due to the fact that
Table 4 gives the results for the conjunction of all five test
criteria but also due to the different samples that are used
for validation. Considering Tables 3 and 4 together, it can
be seen that the proposed method performs very good with
respect to the detection of parametric faults. All 4000 vali-
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Figure 6: Histogram of performance values of misclassi-
fied circuits for specificationSR�. Dark shaded bars show
results without and light shaded bars show results with
consideration of measurement noise. Top right histogram
shows the total distribution of the performanceSR� for the
validation sampleV .

Spec. yield yc ycwc fc fcwc n?tot

tot. circ. 99.9% 100.0% 100.0% 100.0% 100.0% 35

Table 4: Yield– and fault coverages for the total test crite-
rion. The subscript wc denotes the consideration of mea-
surement noise. Validation is performed with validation
sampleV0. The last column gives the total number of used
measurements.

dation sample elements that characterize the nominal man-
ufacturing process are correctly tested. From Table 4 it can
be seen that the total number of measurements required for
the test design with respect to parametric faults is only 35.
This is much less than the sum of measurements required
for the testing of the five individual specifications. This is
due to the fact that sometimes the same measurements are
found to be significant for the individual testing tasks.

7.3 Consideration of catastrophic faults

The modeling of catastrophic faults described in sec-
tion 6.2 results in a fault list with 164 faults for this circuit
when the single fault assumption is applied and designed
shorts as e.g. in current mirrors are removed. With this
fault list, analog fault simulation and test set compaction
is performed. The results for specification testing and for
the proposed method, without and with box constraints for
measurements that are already required for the detection of
parametric faults are shown in Table 5. The last row of this
table shows the results of the heuristic for the fault cover-
ing problem. Only three additional measurements of the
circuit need to be performed to detect all 156 detectable
catastrophic faults. Eight faults cannot be detected by any
of the considered tests. With respect to specification test-
ing a circuit is regarded as fault free if all specifications
of Table 1 are satisfied. Please note that no additional DC
measurements are considered here.

It can be seen that the proposed method especially



164 faults considered # tested n?tot

specification testing 94 �

test criteria 101 35

test criteria & box constraints
for used measurements

121 35

test criteria & box constraints
for maximal coverage

156 38

Table 5: Results for catastrophic faults.

with additionally considered box constraints features a
very large number of detected modeled catastrophic faults,
while specification testing lags behind.

8 Conclusion
In this paper, a new and very efficient method for the

design of robust test criteria is presented. For each given
specification, a test criterion is computed based on discrim-
ination analysis. These test criteria are very robust with
respect to measurement noise. This is due to the follow-
ing considerations: First, measurement noise is systemat-
ically considered in all stages of the test design. Second,
by application of methods for feature selection the com-
puted test criteria are based on a minimal number of mea-
surements that are most significant for the testing of the
respective specification. Third, on applying a novel sam-
pling strategy both a more global as well as a local view
on the problem is provided. By this means samples are
generated that are especially meaningful for the respective
testing task. By applying these test criteria, the satisfaction
or violation of the original circuit specifications can be re-
liably inferred from the measurements of the circuit under
test. Moreover, on application of digital testing methods
the test design is extended to cover catastrophic faults, at
low additional test cost. The simulated results demonstrate
the very good performance of the proposed method with
respect to parametric as well as to catastrophic faults.
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