
ICCAD ’96
1063-6757/96 $5.00 1996 IEEE

Efficient Time-Domain Simulation
of Frequency-Dependent Elements

Sharad Kapur David E. Long Jaijeet Roychowdhury
Lucent Technologies Bell Laboratories

Abstract
We describe an efficient algorithm for time-domain simulation

of elements described by causal impulse responses. The compu-
tational bottleneck in the simulation of such elements is the need
to compute convolutions at each time point. Hence, direct ap-
proaches for the simulation of such elements require timeO(N 2),
where N is the length of the simulation. We apply ideas from
approximation theory to reduce this complexity to O(N logN)

while maintaining double-precision accuracy. The only restric-
tion imposed by our method is that the impulse response h(t)
gets “smoother” as t goes to infinity. Essentially all physically
reasonable impulse responses have this characteristic. The ideas
presented can also be applied to time-domain simulation of ele-
ments described in the frequency domain, including those char-
acterized by measured data. In this paper, we demonstrate the
efficiency of the algorithm by applying it to the simulation of lossy
transmission lines.

1 Introduction
Recently, increasing speeds have made it critical that

designers of digital systems consider phenomena that were
traditionally viewed as “analog.” With bit rates in high-
speed digital systems (e.g., ATM switches) approaching
one gigabit per second, the treatment of distributed effects
is now necessary in most state-of-the-art designs. For ex-
ample, transmission lines are often used to represent inter-
connections in high-speed systems. Distributed effects are
modeled at differing levels of sophistication, ranging from
ideal lines to elements incorporating loss and skin effect.
Often, analytical models prove to be inadequate for cap-
turing the electrical behavior of involved geometries and
one must resort to measured data (e.g., s-parameters over a
frequency range) for accurate characterization. Simulating
such models in the frequency-domain is relatively straight-
forward using techniques such as harmonic balance. How-
ever, for digital systems, transient analysis is often more
natural. In this paper, we describe a general and efficient
method for the time-domain simulation of elements such
as transmission lines and resistors with skin-effect.

The problem of simulating distributed effects in digital
circuits has received widespread attention over the last few

years. One common approach is to use a lumped-element
approximation [5]. This method has the advantages of
being simple and working easily with existing simulators.
However, there is a trade-off between accuracy and effi-
ciency. With few lumps, the simulation will exhibit artifacts
that would not be present if the distributed element were
used. Increasing the number of lumps to the point where
the accuracy is good often leads to long simulation times.
More robust methods involve computing convolutions with
the distributed element’s time-domain impulse response at
each point in the transient analysis. For efficiency, they
either enforce or assume certain forms for the response.
One such approach is based on reduced-order models. In
the most popular schemes, the frequency-domain response
is matched by a Padé approximation, which can then be
put into a partial fraction form [3, 8, 9]. When this form
is transformed to time domain, the result is a sum of expo-
nentials. The latter is suitable for a recursive convolution
computation, so only a constant amount of work is required
at each transient time point. One potential problem is that
the computed Padé approximation may have poles with
positive real parts, even when the circuit is in fact stable. It
is also possible to directly approximate the time-domain re-
sponse, again obtaining a form that is suitable for recursive
convolution [11]. Other methods, such as that described
by Roychowdhury et al. [10] for simulating transmission
lines, rely on the particular impulse responses for certain
types of elements.

Our approach is also based on computing convolutions,
but we make only one weak assumption about the time-
domain responseh(t): that it becomes “smoother” as t goes
to infinity. This is true of essentially all physically reason-
able impulse responses. The inspiration behind our method
comes from some of the recent work on fastn-body particle
simulation algorithms [7]. These methods use the fact that
the influence of a group of particles in a region of space
that is far from the group is slowly varying and hence can
be accurately approximated by a low-order polynomial. If
there are a large number of particles in the group, then the
influence can be evaluated much faster using this approx-
imation than by a direct scheme. This observation can be

exploited to yield a divide-and-conqueralgorithm that eval-
uates the influence on each of the n particles in O(n) or
O(n logn) time, compared with O(n2) time for the direct
method. Similar ideas have been used in a number of other
areas [2, 6]. We can apply these techniques in the context
of circuit simulation as follows. For an impulse response
that gets smoother as time increases, the convolution with
the tail of the response varies slowly. Hence, we can ap-
proximate this part of the convolution with a low-order
polynomial. At each time point, most of the convolution
can be computed by simply evaluating this polynomial.

2 Time-Domain Simulation and Convolu-
tions

Circuit elements with linear frequency dependencies can
be easily described in the frequency domain by the transfer
function H(s) which gives the input-output relationship
of the element. For an input X(s), the output is simply
Y (s) = H(s)X(s). In a time-domain simulation of such
an element, the multiplication becomes a convolution.

y(t) =

Z t

0
h(t� �)x(�) d� (1)

At each simulation time point, we need to compute this
integral. Numerically, each integral will involve a sum
over all previous time points. For simplicity, we assume
that the above integral is computed using the rectangular
rule (in practice, a higher-order scheme is applied). If the
simulation time points are ft1; : : : ; tNg, then at time tn,
the continuous convolution (1) can be approximated by the
following discrete sum:

y(tn) � ỹ(tn) =

n�1X
i=1

h(tn � ti)x(ti)∆i; (2)

where ∆i = ti+1 � ti. Over the course of the simulation,
n progresses from 1 toN . If we evaluate each sum directly,
the total computation time is O(N 2). Unfortunately, we
cannot evaluate the convolutions using techniques that re-
quire the entire sequence fx(tj)g, such as the FFT, since
ỹ(tn) must be evaluated before we know x(tj) for j � n.
This is because the circuit equations create an implicit de-
pendence of x(tj) on ỹ(tj).

3 Review of Approximation Theory
First, we recall a few facts from real analysis [1, 4].

Given a function f :R ! R and points fc1; c2; : : : ; cpg,
the unique polynomial of degree p�1 which agrees with f
at each of these points is

P (x) =

pX
m=1

um(x)f(cm); (3)

t1 t2 ts: : : a bt

Figure 1: Evaluating equation (5)

whereum(x) is themth Lagrange polynomial of degreep�
1.

um(x) =

pY
k=1
k 6=m

x� ck

cm � ck

To reduce the interpolation error, when approximating f
over an interval [a; b], the fcmg are chosen to be Chebyshev
nodes on [a; b].

cm =
a+ b

2
+
b� a

2
cos

(2m� 1)�
2p

Over this interval, jf(x)� P (x)j is bounded above by

2(b� a)p

4pp!
maxf jf (p)(�)j; where � 2 [a; b] g: (4)

If the derivatives of f can be bounded and the interval is
fixed, then the error decreases exponentially with p.

4 Basic Strategy
To illustrate the basic idea behind our method, we con-

sider the following piece of the sum (2):

g(t) =

sX
i=1

h(t� ti)x(ti)∆i;

where s < n. For notational convenience, we define �i =
x(ti)∆i.

g(t) =

sX
i=1

h(t� ti)�i (5)

We consider the problem of evaluating this sum for t in the
interval [a; b], where [a; b] is to the right of [t1; ts] (see fig-
ure 1). Evaluating the sum directly for any given t requires
O(s) operations. Suppose that we apply the approximation
in equation (3) to f(t) defined by f(t) = h(t � ti). We
choose Chebyshev nodes on the interval [a; b] and obtain

h(t� ti) �

pX
m=1

um(t)h(cm � ti):

Substituting into equation (5) gives

g(t) �

sX
i=1

pX

m=1

um(t)h(cm � ti)

!
�i:

Interchanging the order of summation yields

g(t) �

pX
m=1

um(t)

sX
i=1

h(cm � ti)�i:

t1 t2 ts: : : a btn| {z }
interpolation nodes

approximatez }| { directz }| {

Figure 2: Evaluation of ỹ(tn)

Now note that the inner sum is independent of t; hence we
can define

 m =

sX
i=1

h(cm � ti)�i: (6)

The coefficient m is simply the value g(cm). The f mg
can be evaluated once, in time O(ps), and then stored.
Afterwards, evaluating the approximation at any given t 2
[a; b] involves only O(p) steps.

g(t) �

pX
m=1

um(t) m

(The set of coefficients fum(t)g can be computed in
O(p) operations.) If we need to evaluate g(t) at q points,
then computing the sums directly requires O(qs) oper-
ations, while the approximation method uses O(ps +

pq) steps. When p is small compared to q and s, the second
approach is much faster.

To quickly evaluate the full sum in equation (2), we use
the following strategy. When the simulation has progressed
to time tn, we will evaluate ỹ(tn) by splitting the sum into
two parts. The first part of the sum will cover those time
points “close” to tn, and will be evaluated directly. The
second part is for the time points that are “well-separated”
from tn. This part will be evaluated using the approxima-
tion method discussed above (see figure 2). Thus, if tn
is within the region [a; b], and if [a; b] contains interpola-
tion nodes fcmg, then we define coefficients f mg as in
equation (6) and obtain

ỹ(tn) =

n�1X
i=1

h(tn � ti)�i

=

sX
i=1

h(tn � ti)�i +

n�1X
i=s+1

h(tn � ti)�i

�

pX
m=1

um(tn) m +

n�1X
i=s+1

h(tn � ti)�i: (7)

For a given tn, these last summations can be evaluated in
time O(p + (n � s)) once the f mg are computed. The
computation of the coefficients f mg can be amortized
over all of the time points in the interval [a; b].

5 Description of the Algorithm
As the simulation progresses, we must increase s in

sum (7) to maintain efficiency. That is, we need to increase
the part of the computation that is done approximately. For
this purpose, we divide the simulation period into intervals.
If the current simulation time lies within interval l, then we
will evaluate the part of the sum corresponding to intervals
l and l � 1 directly and the part that represents intervals
1 through l � 2 approximately. (We evaluate the sum over
interval l � 1 directly since when tn is near the start of
interval l, interval l� 1 is not well-separated from tn. This
would lead to a poor quality approximation unless the num-
ber of interpolation nodes is unreasonably large.) When the
simulation advances to interval l + 1, we update the coef-
ficients f mg to include the part of sum corresponding to
interval l � 1.

More precisely, we write f l
mg to denote the coefficients

used for evaluating the sum over intervals 1 through l.
The number of interpolation nodes for these coefficients
will actually vary from interval to interval, but to avoid
notational clutter, we will always just write p. The nodes for
interval l will be denoted by fclmg. The notation

P
i2l will

indicate a sum over time points corresponding to interval l.
The coefficient l+1

j is computed by

 l+1
j =

X
i21::: l+1

h(cl+1
j � ti)�i

=
X

i21::: l

h(cl+1
j � ti)�i +

X
i2l+1

h(cl+1
j � ti)�i

�

pX
m=1

um(c
l+1
j) l

m +
X
i2l+1

h(cl+1
j � ti)�i

The coefficients f 1
mg are computed directly.

 1
j =

X
i21

h(c1
j � ti)�i

For simplicity, we assume that there are exactly q time
points in each interval; then the time required to compute
the f l+1

m g is O(p2 + pq).
Over the entire simulation, the time spent computing

convolutions using the above scheme is accounted for by:

1. N=q sets of coefficients f l
mg, each computed in

time O(p2 + pq); plus

2. N convolution sums, each involving O(2q) direct
terms and an approximate term that is computed in
time O(p).

Hence the total time is O(N(p2 + pq)=q +N(2q + p)).
Now we discuss the selection of interpolation nodes.

Note that when we compute f l
mg, we must have interpo-

lation nodes on all intervals to the right of interval l + 1.

0 2 4 6 8 10

�6�108

�4�108

�2�108

0

h1

h2

h3

Time (�10�9)

Figure 3: Transmission line impulse responses

| {z }
p0

| {z }
p0

|{z}
p0

 l
m

interpolation nodesz }| {

Figure 4: Interpolation node distribution

This is because information about the sumX
i21::: l

h(t� ti)�i

is required for all time points in intervals l + 1 and on-
wards. If it were necessary to have p0 interpolation nodes
per interval to attain a given accuracy, then p = Np0=q

and the complexity of the method is high. Fortunately,
any physically reasonable impulse response h(t) has the
property that it gets smoother as t increases. Typical ex-
amples are the impulse responses associated with a lossy
transmission line; these are shown in figure 3. Based on
inequality (4), we know that fewer interpolation nodes are
needed to maintain accuracy in regions where the response
is smoother. In fact, for functions such as those shown, the
number of interpolation nodes required grows only loga-
rithmically with N . Thus, we take p = O(p0 log(N=q))
and distribute the nodes as shown in figure 4. Also, in the
actual implementation, when interpolating at some time t,
we use only the appropriate p0 nodes surrounding t (so in-
terpolation is really an O(p0) operation). We also choose
the interval size so that q is about two to three times p0.
Then the total time required for convolutions becomes sim-
plyO(Np0 log(N=p0)). Empirically, we find that p0 around
7 is sufficient for single-precision accuracy, and p0 around

500 1000 1500 2000

0

100

200

300

direct

p0 = 14

p0 = 7

Time points

C
P
U
ti
m
e

Figure 5: CPU time versus simulation time points

14 gives double-precision.

6 Examples
We implemented the above method in a time-domain

lossy transmission line model and tested it on a number
of examples. Figure 5 shows CPU time versus number
of simulation time points for the mosaic example from
Roychowdhury et al. [10] The top curve corresponds to
direct convolution, the next is our method with p0 = 14
(double-precision), and the bottom is our method with p0 =
7 (single-precision).

As a more realistic example, we considered a low-swing
CMOS line driver circuit designed at Bell Labs. The driver
contains about one hundred MOSFETs, and the output of
the driver is connected through a lossy transmission line
to the load. The original circuit design was done with
a lumped-element approximation to the transmission line.
We ran three simulations, using:

1. the original lumped-element approximation;

2. a lossy transmission line with the convolution com-
puted directly; and

3. a lossy transmission line with the convolution com-
puted by our method with p0 = 14 (double-precision).

Output waveforms are shown in figure 6. The lumped-
element simulation exhibits the artificial ringing that is typ-
ical when using such models. Both simulations with a lossy
transmission line model agree to double-precision accuracy,
but the simulation using our approach is forty percent faster.
This example shows only modest speedup since most of

Lossy
Lumped

9 9.5 10 10.5 11 11.5

0

0.5

1

1.5

Time (�10�8)

V
o
lt
a
g
e

Figure 6: Line driver output waveforms

the simulation time is spent evaluating the comprehensive
MOSFET model. (With our method, about two percent of
the total simulation time is spent evaluating the transmis-
sion line model.)

7 Conclusions
We have presented an O(N logN) algorithm for simu-

lating distributed elements such as transmission lines. Our
method is based on computing convolutions quickly using
approximation theory, and maintains double-precision ac-
curacy. We have implemented a lossy transmission line
model using these ideas and demonstrated substantial time
savings compared to the direct approach. The scheme is
general enough to be applied to a variety of situations, in-
cluding simulation of devices characterized by measured
data. In contrast to other approaches for performing fast
convolutions, we do not assume any particular form for
the impulse responses: the only requirement is that they
become smoother with increasing time.

Acknowledgements
Thad Gabara provided us with the line driver circuit.

References
[1] M. Abramowitz and I. Stegun. Handbook of Mathematical

Functions. National Bureau of Standards, 1964.

[2] B. Alpert and V. Rokhlin. A fast algorithm for the evaluation
of Legendre expansions. SIAM Journal of Scientific and
Statistical Computing, 12(1):158–179, January 1991.

[3] J. E. Bracken, V. Raghavan, and R. A. Rohrer. Interconnect
simulation with Asymptotic Waveform Evaluation. IEEE
Transactions on Circuits and Systems I: Fundamental The-
ory and Applications, 39(11):869–878, November 1992.

[4] G. Dahlquist and A. Bjorck. Numerical Methods. Prentice-
Hall, 1974.

[5] H.W. Dommel. Digital computer solution of electro-
magnetic transients in single and multiphase networks.
IEEE Transactions on Power Apparatus and Systems, PAS-
88(4):388, April 1969.

[6] A. Dutt and V. Rokhlin. Fast Fourier transforms for noneq-
uispaced data, II. Applied and Computational Harmonic
Analysis, 2(1):85–100, January 1995.

[7] L. Greengard and V. Rokhlin. A fast algorithm for particle
simulations. Journal of Computational Physics, 73(2):325–
348, December 1987.

[8] R. Griffith, E. Chiprout, Q. Zhang, and M. Nakhla. A
CAD framework for simulation and optimization of high-
speed VLSI interconnections. IEEE Transactions on Cir-
cuits and Systems I: Fundamental Theory and Applications,
39(11):893–906, November 1992.

[9] S. Lin and E. S. Kuh. Transient simulation of lossy inter-
connects based on the recursive convolution formula. IEEE
Transactions on Circuits and Systems I: Fundamental The-
ory and Applications, 39(11):879–892, November 1992.

[10] J. S. Roychowdhury, A. R. Newton, and D. O. Pederson.
Algorithms for the transient simulation of lossy interconnect.
IEEE Transactions on Computer-Aided Design of Integrated
Circuits, 13(1):96–104, January 1994.

[11] A. Semlyen and A. Dabuleanu. Fast and accurate switch-
ing transient calculations on transmission lines with ground
return using recursive convolution. IEEE Transactions on
Power Apparatus and Systems, PAS-94:561–571, 1975.

	CDROM Home Page
	1996 Home Page
	ICCAD 96
	Front Matter
	Table of Contents
	Session Index
	Author Index

