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Abstract
Although numerous methods have been proposed for

interconnect simulation, no single model exists for
all kind of transmission line problems. This paper
presents a new, single, general dispersive coupled uni-
form/nonuniform transmission line model which can
be used for interconnect simulation in SPICE. The
mathematical model is based on the use of Chebyshev
polynomials for the representation of the spatial varia-
tion of the transmission-line voltages and currents. A
simple collocation procedure is used to obtain a matrix
representation of the transmission line equations with
matrix coe�cients that are �rst polynomials in s, and
in which terminal transmission-line voltages and cur-
rents appear explicitly. Thus, the model is compatible
with both the SPICE's numerical integration algorithm
and the modi�ed nodal analysis formalism.

1 Introduction
Simulation of package and chip interconnects using

coupled transmission line models is now routine prac-
tice for noise, delay and overall signal degradation pre-
diction in the design of high-speed electronic systems.
Over the past �fteen years a variety of models have
been proposed for interconnect simulation. In most
cases, their development was driven by the desire to
e�ect computationally e�cient and accurate intercon-
nect simulation within the framework of SPICE-like
circuit simulators [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11].

A comparison of the aforementioned transmission-
line models reveals variations in modeling accuracy
and computation e�ciency among the models. These
variations are dependent on one or more of the fol-
lowing factors: a) the physical properties of the inter-
connects; b) the bandwidth of interest to the speci�c
transient simulation; c)the speci�c design application.
For example, the method of characteristics is ideal
for modeling lossless interconnects; however, its exten-
sions for handling lossy lines become computationally
ine�cient for electrically long lines of signi�cant loss.
On the other hand, model-order reduction schemes,
such as AWE and its derivatives and enhancements,
have been proven highly e�cient for lossy transmis-
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sion line simulation [5] [9] [11]. However it has been
also observed that when the macromodels, obtained
using order-reduction techniques, combined with the
nonlinear drivers and loads, stability problems may
arise. From the above discussion it becomes obvious
that a single transmission-line model that can provide
highly accurate broadband performance without pe-
nalizing e�ciency is not available yet. Instead, \hy-
brid" approaches are being proposed where, with the
frequency range of validity and computation e�ciency
of the various models properly quanti�ed, a selection of
the \optimalmodel" is made based on a predetermined
modeling error and desired computation e�ciency for
the speci�c application of interest[12].

Even though such a \hybrid" approach is very sen-
sible from an engineering point of view, there are im-
portant advantages associated with the availability of
the single, general transmission-line model mentioned
in the previous paragraph. First and foremost such
a general model, equipped with an a-priori estimate
of its accuracy, becomes an invaluable tool for eval-
uation and veri�cation of other models, especially for
those cases that the aforementioned \hybrid" approach
is used. Second, there is a de�nitive simplicity asso-
ciated with the use of a single, general model that is
hard to overlook. In essence, a transmission line sys-
tem becomes simply another \element" in the circuit
simulator, handled the same way no matter what its
per-unit-length electrical properties might be. Finally,
the use of such a model for accurate simulation during
the �nal stages of design for the purpose of design ver-
i�cation is highly desirable, especially if the model is
compatible with model-order reduction schemes. The
development of such a general transmission line model
is the subject of this paper.

2 New Transmission Line Model
The general approach to include the multiconductor

transmission line (MTL) systems into a circuit simula-
tor is to treat them as linear multiports described by
a suitable relationship between terminal voltages and
currents:

A(s)Vt(s) +B(s)It(s) = 0 (1)

where Vt(s) and It(s) are column vectors containing,
respectively, the terminal voltages and currents of the
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MTL system. The matrices A(s) and B(s) are de-
scribed in terms of line parameters. In order to be
able to use numerical integration algorithm to analyze
circuits containing transmission lines, the elements of
the matrices A(s) and B(s) need to be �rst-degree
polynomials in s. The development of such a model
using Chebyshev polynomials is presented next.

Let l be the length of the transmission line system,
i.e. (0 � x0 � l). The transformation x = 2x0=l � 1
maps the domain [0; l] onto the domain [�1; 1], which
is convenient in dealing with Chebyshev polynomials.
For the sake of simplicity, we consider �rst the sim-
ple two-conductor transmission line case. The trans-
formed Telegrapher's equations for a two-conductor
transmission line of length l, with one of the conduc-
tors taken as reference, are:

d

dx
V (x; s) = �

l

2
(R(x) + sL(x))I(x; s) (2)

d

dx
I(x; s) = �

l

2
(G(x) + sC(x))V (x; s) (3)

where V (x; s) and I(x; s) are, respectively, voltage and
current distribution along the line; R(x), L(x),C(x),
and G(x) are per-unit-length (p.u.l.) line parameters.
For the sake of clarity, the model is �rst developed
for the case of lines with frequency-independent p.u.l.
parameters. The extension of the model to lines with
frequency-dependent p.u.l. parameters is given in Sub-
section 2.1. In the proposed methodology, the line volt-
ages and currents are approximated by their truncated
Chebyshev expansions:

V (x; s) =

MX
m=0

am(s)Tm(x) (4)

I(x; s) =

MX
m=0

bm(s)Tm(x) (5)

where Tm(x) = cos(m cos�1 x) is the mth degree
Chebyshev polynomial of type 1. The choice of Cheby-
shev polynomials for the representation of the spatial
variation of the line voltage and current is motivated
by the exponential rate of convergence of Chebyshev
expansions [13]. Because of this property, highly ac-
curate approximations of the voltage and current dis-
tributions along the lines can be e�ected with a small
number of polynomials (M ). More speci�cally, it can
be shown that � expansion functions per wavelength
are required for a highly accurate resolution of a si-
nusoidal variation using a truncated Chebyshev repre-
sentation [13]. In view of this, the following expression
is used for the selection of the number of Chebyshev
polynomials for the representation of the spatial volt-
age and current distributions on a line of length l

M = 4
l

�min

+ 2 (6)

where �min is the minimumwavelength of interest.
Let V (xn; s), I(xn; s), n = 0; 1; 2; . . .;M , be the

voltage and current values at the points xn de�ned by

xn = cos(�n=M ); n = 0; 1; � � �;M: (7)

Clearly, x0 = 1 and xM = �1 correspond, respectively,
to the far- and near-end terminals of the transmission
line. It can be shown that the coe�cients am and bm
in (4) and (5) are given by [13]

am(s) =
2

M

1

cm

MX
n=0

V (xn; s)Tm(xn)

cn
(8)

bm(s) =
2

M

1

cm

MX
n=0

I(xn; s)Tm(xn)

cn
(9)

where cm is de�ned as

cm =

�
1; m 6= 0;M
2; otherwise (10)

Substituting (8) and (9) into (4) and (5), respectively,

V (x; s) =

MX
m=0

V (xm; s)gm(x) (11)

I(x; s) =

MX
m=0

I(xm; s)gm(x) (12)

where gm(x) are given by

gm(x) =
(1� x2)T 0

M (x)(�1)m+1

cmM2(x � xm)
(13)

As expected, the polynomials gm(x) have the Lagrange
polynomial-type property gm(xn) = �mn, where �mn is
the Kronecker delta. To obtain an approximation to
the di�erential equations given in (2) and (3), a collo-
cation method is used with collocation points those in
(7). Substituting (11) and (12) into (2) and (3),

MX
m=0

V (xm; s)
d

dx
gm(x) = �

l

2
(R(x) + sL(x))

�

MX
m=0

I(xm; s)gm(x) (14)

MX
m=0

I(xm; s)
d

dx
gm(x) = �

l

2
(G(x) + sC(x))

�

MX
m=0

V (xm; s)gm(x) (15)

To perform the collocation, the derivatives of polyno-
mials gm at the collocation points are needed. They
are found to be

d

dx
gm(x)

����
x=xn

= Dnm (16)

where

Dnm =
cn

cm

(�1)n+m

xn � xm
(n 6= m)



Dnn = �
xn

2(1� x2n)
1 � n �M � 1

D00 =
2M2 + 1

6
= �DM;M

In view of the above results and de�nitions, the sys-
tem of linear equations obtained from the collocation
process may be cast in the form

MX
m=0

V (xm; s)Dnm = �
l

2
(R(xn) + sL(xn))I(xn; s)

MX
m=0

I(xm; s)Dnm = �
l

2
(G(xn) + sC(xn))V (xn; s)

for n = 0; 1; :::;M .
Let D be the (M +1)� (M +1) square matrix with

elements Dnm. Then, the above system of equations
may be cast in matrix form as follows:

DVs(s) = �Z(s)Is(s) (17)

DIs(s) = �Y(s)Vs(s) (18)

where

Vs(s) = [ V (x0; s); V (x1; s); � � � ; V (xM ; s) ]
T

Is(s) = [ I(x0; s); I(x1; s); � � � ; I(xM ; s) ]
T

and, Z(s) and Y(s) are diagonal matrices

Z(s) =
l

2
diagfR(x0) + sL(x0); :::; R(xM) + sL(xM )g

Y(s) =
l

2
diagfG(x0) + sC(x0); :::; G(xM) + sC(xM )g

The next step is to express (17) and (18) in terms
of the terminal voltages and currents of the transmis-
sion line. For this purpose, we use the following colon
notation to select speci�c rows and columns of a ma-
trix. Let submatrix of A that is between the ith and
jth rows, and mth and nth columns of A. Similarly,
A(i:j;m) is a column vector of length (j � i + 1) hav-
ing as elements the elements of the mth column of the
matrixA between (and including) rows i and j. Recog-
nizing that (17) and (18) constitute the approximation
of a two-point boundary value problem, two boundary
conditions (involving the values of terminal voltages or
the values of the terminal currents or impedance rela-
tionships between the terminal voltages and currents)
need be speci�ed for the problem to be well posed.
This implies that two of the equations in (17) and (18)
associated with the terminal quantities need be elimi-
nated in favor of the aforementioned boundary condi-
tions. Without loss of generality, the �rst and last of
the equations in (17) are the ones eliminated. Conse-
quently, using the aforementioned colon notation (17)
and (18) are cast in the form�

Da Db

Ya(s) Yb(s)

� �
Vnear(s)
Vfar(s)

�
+

�
0 0 Za(s) Dc

Dd De Df Yc(s)

�264
Inear(s)
Ifar(s)

Îs(s)

V̂s(s)

3
75 =

�
0
0

�
(19)

where the following abbreviated array notation has
been used: Da = D(2:M;M+1), Db = D(2:M;1), Dc =
D(2:M;2:M), Dd = D(1:M+1;M+1), De = �D(1:M+1;1),

Df = D(1:M+1;2:M), Ya(s) = Y(1:M+1;M+1)(s),

Yb(s) = Y(1:M+1;1)(s), Yc(s) = Y(1:M+1;2:M)(s),

Za(s) = Z(2:M;2:M)(s). Also, Vnear(s) = V (xM ; s),

Vfar(s) = V (x0; s), Inear(s) = I(xM ; s), Ifar(s) =
�I(x0; s), while

V̂s(s) = [ V (x1; s) V (x2; s) � � �V (xM�1; s) ]
T

Îs(s) = [ I(x1; s) I(x2; s) � � � I(xM�1; s) ]
T

Equation (19) can be written as,

(AR + sAI)Vt(s) + (BR + sBI)J(s) = 0 (20)

where

J(s) =

2
4 It(s)

V̂(s)

Î(s)

3
5 ;

and Vt = [ Vnear Vfar ]T , It = [ Inear Ifar ]T are,
respectively, the vectors of terminal voltages and cur-
rents of the line. In the time domain, the above equa-
tion becomes

ARvt(t) +AI d

dt
vt(t) +BRj(t) +BI d

dt
j(t) = 0 (21)

which is compatible with the numerical integration al-
gorithm used in SPICE.

The development of the model for the case of MTL's
will not be presented here. It is very similar to the
one for the two-conductor line. This is easily seen by
noting that for an (N + 1)-conductor MTL (with the
(N +1)st conductor taken as reference) the collocation
procedure that led to (17) and (18) produces now the
following system of equations2

4 D � � � 0
...

. . .
...

0 � � � D

3
5
2
64
V1(s)

...
VN (s)

3
75 =

�

2
64
Z11(s) � � � Z1N (s)

...
. . .

...
ZN1(s) � � � ZNN (s)

3
75
2
64
I1(s)
...

IN (s)

3
75 ; (22)

2
4 D � � � 0

...
. . .

...
0 � � � D

3
5
2
64
I1(s)
...

IN (s)

3
75 =

�

2
64
Y11(s) � � � Y1N (s)

...
. . .

...
YN1(s) � � � YNN (s)

3
75
2
64
V1(s)

...
VN (s)

3
75 (23)



where Vi(s) is the vector of voltage samples along the
ith conductor,

V
i(s) =

�
V i(x0; s) V i(x1; s) � � � V i(xM ; s)

�
and

Zij =
l

2
diagfRij(x0) + sLij(x0); ::; R

ij(xM ) + sLij(xM)g

Ii(s) and Yij(s) are de�ned similarly.

2.1 Transmission lines with frequency-
dependent line parameters

It is well-known that high-frequency wave propaga-
tion in transmission lines in inhomogeneous media is
characterized by geometric dispersion. Furthermore,
lossy substrates and the �nite conductivity of the con-
ductors combine with the aforementioned geometric
dispersion and result in frequency dependent p.u.l. line
parameters. The frequency dependence needs to be
taken into account for the accurate simulation of high-
speed pulse propagation in interconnects. In the fol-
lowing, we extend the methodology of the previous sec-
tion to the case with frequency-dependent line param-
eters.

Even though the methodology is also applicable to
nonuniform lines, we choose to develop the model for
the case of a uniform line in order to keep the nota-
tion as simple as possible. For a uniform line with
frequency-dependent line parameters the transformed
Telegrapher's equations become

d

dx
V (x; s) = �

l

2
Z(s)I(x; s) (24)

d

dx
I(x; s) = �

l

2
Y (s)V (x; s) (25)

where p.u.l. impedance and admittance functions,
Z(s) and Y (s), are related to the p.u.l. line param-
eters through the expressions

Z(s = j!) = R(!) + j!L(!) (26)

Y (s = j!) = G(!) + j!C(!) (27)

It will be assumed that the p.u.l. line parameters are
either calculated over the frequency range of interest
using a full-wave analysis method, or are determined
from measurements. In the proposed method, we ap-
proximate the p.u.l. impedance and admittance func-
tions with rational functions of s,

Z(s) =
bZ(s)

aZ(s)
=

bZ0 + � � �+ bZqs
q

aZ0 + � � �+ aZqsq
(28)

Y (s) =
bY (s)

aY (s)
=

bY 0 + � � �+ bY qs
q

aY 0 + � � �+ aY qsq
(29)

where q is the maximum of the orders of the four poly-
nomials. The coe�cients of the rational functions are
forced to be real and obtained from the available R, L,
C, G data using least squares �tting. More discussion
about this issue can be found in [11].

Then the MNA stamp given in (19) becomes

2
64

Da Db

0
bY (s)

aY (s)
bY (s)

aY (s)
0

3
75
�
Vnear(s)
Vfar(s)

�
+

2
6664

0 0
bZ(s)

aZ(s)
1 Dc

Dd De Df

0T

bY (s)

aY (s)
1

0T

3
7775
2
64

Inear(s)
Ifar(s)

Îs(s)

V̂s(s)

3
75 =

�
0
0

�

where 1's and 0's are identity matrices and column
vectors of zeros, respectively, with suitable sizes. Mul-
tiplying the �rstM�1 rows of the above matrices with
aZ(s) and the remaining M + 1 rows with aY (s), we
obtain

(A0 + � � �+Aqs
q)Vt + (B0 + � � �+Bqs

q)J = 0 (30)

where,

Ai =

"
aZi �Da aZi �Db

0 bY i
bY i 0

#

and

Bi =

2
64

0 0 bZi � 1 aZi �Dc

aY i �Dd aY i �De aY i �Df

0T

bY i � 1
0T

3
75

Next, we introduce a set of new vectors,

sVt = Vt1

...
sVt(q�1) = Vtq

(31)

and

sJ = J1
...

sJq�1 = Jq

(32)

Then, (30), (31), and (32) may be cast in the form

2
666666666664

A0

0
0
...
0
s1
0
...
0

3
777777777775
VT +

2
666666666664

B0 B1 � � � Bq A1 � � � Aq

s1 �1 � � � 0 0 � � � 0
0 s1 � � � 0 0 � � � 0
...

...
...

...
...

...
...

0 0 � � � �1 0 � � � 0
0 0 � � � 0 �1 � � � 0
0 0 � � � 0 s1 � � � 0
...

...
...

...
...

...
...

0 0 � � � 0 0 � � � �1

3
777777777775



�

2
666666666664

J
J1
J2
...
Jq
VT1

VT2

...
VTq

3
777777777775
=

2
666666666664

0
0
0
...
0
0
0
...
0

3
777777777775

(33)

where 0's are either column vectors or matrices of zeros
with suitable sizes. Equation (33) can be written as

(AR + sAI)Vt(s) + (BR + sBI)J(s) = 0: (34)

If the line has frequency-independent parameters, (20)
is stenciled to the MNA matrix instead of (34).

This result for the two-conductor line can be ex-
tended easily to the case of MTL systems. For such
systems, the entries of the p.u.l. impedance and ad-
mittance matrices are approximated as

Zij =
b
ij

Z (s)

aiZ(s)
; Y ij =

b
ij

Y (s)

aiY (s)
; i; j = 1; � � � ; N

The reason for choosing the same denominator poly-
nomial for all entries in a row of the p.u.l. impedance
and admittance matrices can be explained as follows.
In the MNA stamp of a MTL system, any row contains
only one row of either the p.u.l. impedance or admit-
tance matrix. Therefore, when we multiply that row
with aiZ(s) or a

i
Y (s), we obtain an equation set which

has polynomials in s as coe�cients and the maximum
order of these polynomials is kept as small as possible.

3 Numerical Experiments
The new transmission line model has been imple-

mented in SPICE3f4 and several example circuits have
been tested. We present three examples in this section.

Example 1: Consider the stripline circuit shown in
Fig. 1. The stripline structure was analyzed using
the method given in [14] and the p.u.l. line induc-
tance and resistance parameters were calculated at a
set of frequency points. Then, a third order rational
approximation was obtained for the impedance func-
tion, Z(s). Fig. 2 depicts the comparison of the output
voltage obtained a) using the frequency-dependent R
and L parameters and b) using frequency-independent
values for R and L, namely, the (in�nite-frequency) ex-
ternal inductance value for L and the dc value for R.

copper

h
t

w
h=125 microns

w=25 microns

t=25 microns

The stripline structure

Vs

Vout

d=15cm

Ω15

1 pF

The stripline circuit

Figure 1: The circuit for example 1.
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Figure 2: The response of the circuit of example 1.

Clearly, the pulse su�ers signi�cant dispersion which
is not accurately modeled using simply the dc value
of the p.u.l. resistance. The CPU time for dispersive
case was 0.84 seconds.

Example 2: Consider the interconnect circuit shown
in Fig. 3. The input to the driver is a pulse of 0.1 ns
rise and fall times and 5 ns duration. The output re-
sponse is shown in Fig. 4. In the same �gure the
SPICE output is also given. The SPICE output was
found using SPICE's lossy line model. For the pro-
posed model the CPU time was 26.73 seconds, while
the lossy line model requires 87.85 seconds.

Example 3: The last example is the packaging inter-
connection system shown in Fig. 5. The coupled lines
are identical and their length is l = 5 cm. The p.u.l.
line parameters are : (L11 = L22 = L33 = 4:976; L12 =
0:765; L13 = 0:152)nH=cm, (C11 = C33 = 1:082; C22 =
1:124; C12 = �0:197; C13 = �0:006)pF=cm, and R11 =
R22 = R33 = 3:448
=cm. The output waveform is
shown in Fig. 6. The CPU time was 18.92 seconds.
The same circuit can be also analyzed using SPICE's
lossy MTL model. However, it works under some as-
sumptions: a-) restricts coupling to between adjacent
wires only, b-)the lines must be identical and equally
spaced [7]. In this case the simulation of the above
circuit takes 10.35 seconds.

1 pF

1 pF

1 pF

1 pF
1 pF

0.5 pF

0.5 pF 1 pF
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5 V
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10 nH

10 nH 10 nH
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5 nH 5 nH
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Ω25

Ω25
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T4 T5
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Figure 3: The interconnect circuit.
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Figure 4: The response of the interconnect circuit.

4 Conclusions
We have introduced a new mathematicalmodel that

allows the simulation of dispersive, multiconductor,
uniform/nonuniform transmission lines in SPICE. The
new model is general, robust and does not require any
pre-processing before the numerical integration. We
have implemented the new model in SPICE3f4 and
demonstrated the validity and generality of the pro-
posed method by testing several example circuits.
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Figure 5: The packaging interconnection circuit.
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Figure 6: The response of the circuit of example 3.
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