
ICCAD ’96
1063-6757/96 $5.00  1996 IEEE

Partitioned ROBDDs - A Compact, Canonical and Efficiently Manipulable
Representation for Boolean Functions

Amit Narayan1 Jawahar Jain2 M. Fujita2 A. Sangiovanni-Vincentelli1

Abstract
We present a new representation for Boolean functions called Partitioned-

ROBDDs. In this representation we divide the Boolean space into ‘k’ par-
titions and represent a function over each partition as a separate ROBDD.
We show that partitioned-ROBDDs are canonical and can be efficiently ma-
nipulated. Further, they can be exponentially more compact than monolithic
ROBDDs and even Free BDDs. Moreover, at any given time, only one parti-
tion needs to be manipulated which further increases the space efficiency.

In addition to showing the utility of partitioned-ROBDDs on special
classes of functions, we provide automatic techniques for their construction.
We show that for large circuits our techniques are more efficient in space as
well as time over monolithic ROBDDs. Using these techniques, some complex
industrial circuits could be verified for the first time.

1 Introduction
A large number of problems in VLSI-CAD and other areas of computer

science can be formulated in terms of Boolean functions. A central issue in
providing computer-aided solutions to these problems is to find a compact
representation for Boolean functions on which the basic Boolean operations
and equivalence check can be efficiently performed.

The requirements of compactness and manipulability are generally con-
flicting. Currently, Reduced Ordered Binary Decision Diagrams (henceforth,
ROBDDs) serve as the most popular compromise between these conflicting
requirements. ROBDDs are canonical and efficiently manipulable. For many
practical functions ROBDDs are compact as well. Due to these nice prop-
erties, ROBDDs are frequently used as the Boolean representation of choice
to solve various CAD problems. Unfortunately, ROBDDs are not always
very compact; in a large number of cases of practical interest, any ROBDD
representation of a Boolean function may require space which is exponential
in the number of primary inputs (PIs). This large space requirement places a
limit on the complexity of problems which can be solved using ROBDDs.

Various methodshave been proposed to improve the compactnessof ROB-
DDs. Some of the methods that achieve compactness do so by sacrificing
almost all the nice properties of ROBDDs. Other methods, which maintain
canonicity and manipulability, represent the function over the entire Boolean
space as a single graph rooted at a unique source. In this paper, we claim that
this is an unnecessary restriction.

We show that exponentiallymore compact representationscan be obtained
by partitioning the Boolean space and representing the functionality overeach
partition as a separate graph. This compactness in representation is achieved
without sacrificing the desirable properties of the underlying graph which
is used to represent each partition. This notion of functional partitioning
is general and can be applied to other problems also. In this paper we
demonstrate its utility for graph based representations of Boolean functions,
and in particular, for ROBDDs.

We define partitioned-ROBDDs and show that they are canonical. We
prove that partitioned-ROBDDs can give exponentially compact representa-
tions compared to monolithic ROBDDs and even Free BDDs (FBDDs). At
any given time only one partition needs to be present in the memory. Dif-
ferent partitions can be processed independently and can employ different
variable orderings. However, the compactness of representation comes not

1Departmentof Electrical Engineering and ComputerSciences, University
of California, Berkeley, CA 94720

2Fujitsu Labs of America, Santa Clara, CA 95054

just from using different orderings for different partitions. We show that
partitioned-ROBDDs can be exponentially more compact even if all parti-
tions have the same variable order. We also show that there are functions for
which even FBDDs are exponentialbut partitioned-ROBDDs are polynomial.
Therefore, the class of functions that can be represented in polynomial space
by Partitioned-ROBDD is distinct from the class of polynomially sized FB-
DDs. We also show that partitioned-ROBDDs are efficiently manipulable in
addition to being canonical and compact. We consider some applications of
partitioned-ROBDDs in formal verification of combinational and sequential
circuits.

In addition to theoretically provingthe propertiesof partitioned-ROBDDs,
we demonstrate their utility on some large industrial circuits. We discuss
methods of automatically generating partitioned-ROBDDs. The effectiveness
of our technique is perhaps best demonstrated from the fact that we were able
to verify some circuits on which all previously known techniques had failed.

2 Previous Work
In the following, we assume that the reader is familiar with the basic BDD

terminology [1, 6]. A Free BDD (FBDD) is a BDD in which variables can
appear only once in a given path from the source to the terminal; different
paths can have different variable orderings. An Ordered BDD is an FBDD
with the additional restriction that variables follow a common ordering in all
paths from the source to the terminal. If no two nodes in an OBDD represent
the same function then it is said to be a Reduced OBDD. In [6] Bryant showed
that ROBDDs are canonical and can be easily manipulated. For further details
on ROBDDs, and the implementation of a typical ROBDD package, please
refer to [5, 6, 8].

The size of an ROBDD is strongly dependent on its ordering of variables.
Many algorithms have been proposed to determine good variable orders [21,
27, 28]. Partitioned-ROBDDs enhance the effectiveness of variable ordering
methods by allowing different partitions to have different orderings.

Another approach to reduce the space requirement of ROBDDs is to relax
their total ordering requirement. FBDD is an example of this category in which
different paths from the root to the terminal can have variables in different
orders. We will show that partitioned-ROBDDs can be exponentially more
compact than FBDDs. Further, the class of polynomially sized partitioned-
FBDDs (defined analogously to partitioned-ROBDDs) strictly contains the
class of polynomially size monolithic FBDDs.

A third approach to obtain a more compact representation for Boolean
functions is to change the function decomposition associated with the nodes.
Instead of using a decomposition based on the Shannon Expansion in which a
function f is expressed asxfx+xfx, some other decomposition like the Reed-
Muller expansion or a hybrid of different expansions is used (e.g. Functional
Decision Diagrams (FDDs) [19], and Ordered KroneckerFunctional Decision
Diagrams (OKFDDs) [12]). These representations can also be augmented
using our concept of partitioning.

All of the above mentioned methods represent a function over the entire
Boolean space as a single graph (rooted at a unique source). Our approach
to achieve compactness is fundamentally different. We create partitions of
the Boolean space and represent the function over different partitions of the
Boolean space as a separate graph. Any underlying data structure can be used
to represent the function over different partitions, although in this paper we
restrict our attention mainly to ROBDDs and to some extent FBDDs.

The idea of partitioning has been used in the context of digital circuit
verification in the past. In [15], it was shown that many functions discussed

in [2, 7, 13] can be represented in space polynomially bounded in the number
of inputs when subfunctionsare ordered independently. Circuits were verified
by partitioning them into these subfunctions. Our representation uses a notion
similar to the functional partitioning of [15]. However, most of the techniques
suggested in [15] exploit specialized structural knowledge and cannot be
automated. Also, the partitioned-ROBDD data structure for representing
general Boolean functions was not adequately developed in [15].

In [9], the transition relation of a given finite state machine was expressed
as either a disjunction (using an interleaved model) or a conjunction (using a
synchronousmodel) of ROBDDs representing individual outputs and latches.
The notion of partitioning was restricted to building the ROBDDs of the
outputs and latches separately. Our notion of partitioning is much more
general than that of building the ROBDDs of different outputs separately. In
Section 4 we will discuss the application of partitioned-ROBDDs to represent
the transition relation.

3 Partitioned-ROBDDs
Assume that we are given a Boolean function f : Bn ! B, defined

over n inputs Xn = fx1; : : : ; xng. We define the partitioned-ROBDD
representation,�f , of f as follows:

Definition 1 Given a Boolean function f : Bn ! B defined over Xn,
a partitioned-ROBDD representation �f of f is a set of k function pairs,
�f = f(w1; f̃1); : : : ; (wk; f̃k)g where, wi : Bn ! B and f̃i : Bn ! B,
for 1 � i � k, are also defined overXn and satisfy the following conditions:

� 1. wi and f̃i are represented as ROBDDs with the variable ordering
�i, for 1 � i � k.

� 2. w1 + w2 + : : :+ wk = 1

� 3. f̃i = wi ^ f , for 1 � i � k

Here, + and ^ represent Boolean OR and AND respectively. The set
fw1; : : : ; wkg is denoted by W .

Each wi is called a window function. Intuitively, a window function wi
represents a part of the Boolean space over which f is defined. Every pair
(wi; f̃i) represents a partition of the function f . Here we are not using the
term “partition” in the conventionalsense where partitions have to be disjoint.
If in addition to Conditions 1-3 in Definition 1, we also have thatwi^wj = 0
for i 6= j then the partitions are said to be orthogonal; clearly, each (wi; f̃i)

is now a partition in the conventional sense.
Condition 1 in Definition 1 states that each partition has an associated vari-

able ordering which may or may not be different from the variable orderings
of other partitions. Condition 2 states that the wis cover the entire Boolean
space and Condition 3 states that f̃i is the same as f over the Boolean space
covered bywi . In general, each f̃i can be represented aswi^fi; the value of
fi is a don’t care for the part of the Boolean space not coveredbywi . The size
of an ROBDD F is denoted by jF j. Then the sum of the sizes of all partitions,
denoted by j�f j, is given by j�f j = (jf̃1j+ : : : jf̃kj+ jw1j+ : : :+ jwkj).
From Conditions 2 and 3, it immediately follows that:

f = f̃1 + f̃2 + : : :+ f̃k (1)

This type of partitioning in which f is expressed as a disjunction of f̃is is
called a disjunctive partition. A conjunctive partition can be defined as the
dual of the above definition. That is, the ith partition is given by (wi; f̃i),
Condition 2 in Definition 1 becomesw1 ^ : : : ^ wk = 0, and Condition 3
becomes f̃i = wi + f . In this case f = (f̃1 ^ : : : ^ f̃k).

3.1 Canonicity of Partitioned-ROBDDs
It is easy to see that for a given set W = fw1; : : : ; wkg and a given

ordering �i for every partition i, the partitioned-ROBDD representation is
canonical. In Theorem 3.1 we show that for a given function f and a given
partitioned-ROBDD representation �f = f(wi; f̃i)j1 � i � kg of f , f̃i is
unique. Since each f̃i is represented as an ROBDD which is canonical (for a
given ordering �i), from Theorem 3.1 it follows that the partitioned-ROBDD
representation is canonical.

Theorem 3.1 Given functions f : Bn ! B and g : Bn ! B both defined
overXn, let �f = f(wi; f̃i)j1 � i � kg and �g = f(wi; g̃i)j1 � i � kg

be the partitioned-ROBDD representations of f and g respectively, i.e., �f
and �g satisfy Conditions 1-3 of Definition 1. Then f = g iff f̃i = g̃i for
1 � i � k.

3.2 Compactness of Partitioned-ROBDDs
In Section 3.2.1 we show examples where partitioned-ROBDDs are expo-

nentially more compact than monolithic ROBDDs. We consider two cases:
in the first case, the compactness in the representation is obtained by using
the flexibility of independently ordering different partitions while in the sec-
ond case we show an example where the partitioned-ROBDD representation
is exponentially smaller than the corresponding monolithic ROBDD even
though all partitions have the same order. In Section 3.2.2 we show that the
partitioned-ROBDD representation can be exponentially more compact than
an FBDD. In Section 3.2.3 we generalize the notion of partitioned-BDDs for
other classes of BDDs (like FBDDs, typed-FBDDs [14] etc.) and make some
observations about their compactness. In Section 3.2.4 we review the rela-
tionship between the VLSI complexity theory and ROBDDs [7] and discuss
some reasons for the compactness of partitioned-ROBDDs.

3.2.1 Monolithic ROBDDs vs. Partitioned-ROBDDs

A straightforward way of constructing examples of Boolean functions with
polynomially sized partitioned-ROBDDs and large monolithic ROBDDs is to
exploit the flexibility of independently ordering different partitions available
in the case of partitioned-ROBDDs. Consider the following function:

f(x1; : : : ; xn) = x1f1(x2; : : : ; xn) + x1f2(x2; : : : ; xn) (2)

Assume that f1 and f2 have small ROBDDs for orderings �1 and �2 re-
spectively but exponentially sized ROBDDs for orderings �2 and �1. The
ROBDD representing f will be exponential under both orderings (x1; �1)

and (x1; �2). In contrast the partitioned-ROBDD representation �f =

(x1; x1 ^ f1); (x1; x1 ^ f2) is polynomial (under the orderings (x1; �1) for
partition 1 and (x1; �2) for partition 2). Now consider 2k functions, where
k = O(log2n), f1; f2; : : : f2k having polynomially sized ROBDDs such
that they do not have any good variable ordering in common, i.e. under all
orderings at least one of the 2k functions becomes exponential. If we com-
bine these 2k functions with a multiplexor tree of k variables, the resulting
function will have exponentiallysized ROBDD for any ordering. On the other
hand, since the partitioned-ROBDD representation keeps f1; f2; : : : f2k sep-
arately and can employ different orderings in different partitions, it will be
polynomial. In this way we can get a large class of functions for which the
partitioned-ROBDDs are exponentially more compact than the corresponding
monolithic ROBDDs; FHS function of [13] belongs to this class [15].

In the above example we have utilized the flexibility of independently
ordering different partitions to achieve compactness of representation. One
can show that there are functions for which partitioned-ROBDDs employ the
same orderings in different partitions but are still exponentially more compact
than monolithic ROBDDs. One such example is the Hidden Weighted Bit
function (HWB). This function has n inputs: Xn = fx1; : : : ; xng. For an
input assignment x = (x1x2 : : : xn), its “weight” is defined as the number
of inputs set to 1, i.e., wt(x) = jfxij1 � i � n, and xi = 1gj. The HWB
function selects the ith input if wt(x) = i, i.e.,

HWB(x) =

n
0 if wt(x) = 0
xwt(x) if wt(x) > 0

It was shown in [7] that any ROBDD representation of the HWB function
requires Ω(1:14n) vertices. We will show that the partitioned-ROBDD rep-
resentation of the HWB function is polynomial [15]. A circuit implementation
for a seven input HWB function is shown in Figure 1. The circuit inputs are
fed as data into both a balanced tree of adders and a balanced tree of 2-input
multiplexors. The adder tree computes the binary representation of wt(x).
There are k = O(log2n) wires (labeled as 1, 2, and 3 in Figure 1)
which serve as the control signal to the multiplexor tree, causing the value

MUX
1

0

MUX
1

0

MUX
1

0

MUX
1

0

MUX
1

0

MUX
1

0

MUX
1

0

+

+

+

+

HWB

a7

a6

a5

a4

a3

a2

a1

0

+

+

+

+

2 13

Figure 1: A Circuit implementation for HWB(7)

xwt(x) to appear at the output. Consider the following partitioned-ROBDD
representation of HWB(n):

�HWB = f(w0; 0); (w1;w1 ^ x1); : : : ; (wn; wn ^ xn)g (3)

wherew0 = 1 2 : : : k ,w1 = 1 2 : : : k , : : :, andwn = 1 2 : : : k .
For example,�HWB(7) shown in Figure 1 has the following 8 partitions:

(1 2 3; 0), (1 2 3; 1 2 3 ^x1), : : :, and, (1 2 3; 1 2 3 ^x7).
It is easy to see that �HWB defined in Equation 3 satisfies all the conditions
of Definition 1 and is indeed a partitioned-ROBDD representation. In fact,
�HWB is an orthogonally partitioned-ROBDD.

Since the number of control wires (labeled is) are O(log2n), the total
number of partitions are O(2log2n) = O(n). Further, for the ith window
functionwi ,wi = 1 iffwt(x) = i. Since everywi for 1 � i � n is a totally
symmetric function of its inputs, the ROBDD representing wi is O(n2)[6].
Further, fHWB

i = xi and is of sizeO(1). Therefore, f̃i = wi^fi is also of
size O(n2

) and the partitioned ROBDD representation of the HWB function
is O(n3), i.e., it has n partitions each of size O(n2). Since the Boolean
manipulation and verification algorithms keep only 1 partition in the memory
at a given time, the maximum space complexity is onlyO(n2

).

3.2.2 Monolithic FBDDs vs. Partitioned-ROBDDs

In this section we show that partitioned-ROBDDs can be exponentially more
compact than FBDDs. This demonstrates that the flexibility obtained by rep-
resenting a function as multiple graphs is more than that of just independently
ordering different assignments.

Consider the function f : B3n ! B defined on 3n variables: Xn =

fx0; : : : ; xn�1g, Yn = fy0; : : : ; yn�1g, and Zn = fz0; : : : ; zn�1g. Let
xyz = (x0 : : : xn�1y0 : : : yn�1z0 : : : zn�1 be a given assignment of the
inputs variables and let wt(x) = x0 + x1 + : : :+ xn, wt(y) = y0 + y1 +

: : : + yn, and wt(z) = z0 + z1 + : : : + zn . We also define e(x), e(y),
and e(z) which are equal to 1 iff wt(x), wt(y), and wt(z) respectively are
even. Similarly, o(x), o(y), and o(z) are 1 iff wt(x), wt(y), and wt(z)
respectively are odd. f is defined as follows:

f(x; y; z) =

8>>>>>>><
>>>>>>>:

0 if e(x)^ e(y) ^ e(z) = 1
z((wt(x)+wt(y))mod n) if e(x)^ e(y) ^ o(z) = 1
y((wt(x)+wt(z))mod n) if e(x)^ o(y) ^ e(z) = 1
y((wt(x)+wt(z))mod n) if e(x)^ o(y) ^ o(z) = 1
x((wt(y)+wt(z))mod n) if o(x)^ e(y) ^ e(z) = 1
z((wt(x)+wt(y))mod n) if o(x)^ e(y) ^ o(z) = 1
x((wt(y)+wt(z))mod n) if o(x)^ o(y) ^ e(z) = 1
0 if o(x)^ o(y) ^ o(z) = 1

It has been proved that any FBDD representation of the above function is
exponential [4]. We will show that the partitioned-ROBDD representation is
polynomial.

Consider the partitioned-ROBDD naturally suggested by the 8 orthog-
onal cases in the function definition; with the right column (such as
e(x) ^ o(y) ^ e(z)) representing the window function and the left column
(such as y((wt(x)+wt(z))mod n)) denoting the corresponding f̃i . It is easy
to check that this �f satisfies conditions 1-3 of Definition 1 and is indeed
a partitioned-ROBDD representation of f . Now we will show that �f is

of polynomial size. By symmetry of the input variables we know that the
ROBDDs representing e(x), e(y), e(z), o(x), o(y), and o(z) are O(n2

)

sized. Any wi is a conjunction of three functions of size O(n2
) with dis-

joint supports (for example,w1 = e(x)e(y)e(z)). ROBDD representing the
conjunction of two functions with disjoint supports can be obtained by con-
catenating the ROBDDs of the two operands, i.e., by directing all the edges
going to 1 terminal in the first ROBDD to the source of the second ROBDD.
Therefore, the size of eachwi is O(3n2

). Now let us consider the size of fis.
Consider f2 = z((wt(x)+wt(y))mod n). It is easy to see that this function
can be represented by an ROBDD of size O(2n2

). This ROBDD will have
the ordering in which the z variables come after x and y variables. The
information about wt(x) + wt(y) can be represented in the first 2n levels
in (2n)(2n + 1)=2 nodes. Then one out of the n bits is chosen based on
the value of ((wt(x) + wt(y))mod n). Therefore, the size of ROBDD
representing f2 is ((2n)(2n+ 1)=2 + n) = O(2n2

). Similarly it can be
shown that every fi is of sizeO(2n2

). Since bothwi and fi are polynomial,
it follows that f̃i = wi ^ fi is also polynomial. Also, there are a constant
number (eight) of partitions for any n. Therefore, the overall size of �f is
polynomial.

3.2.3 Partitioned-FBDDs and other Partitioned-BDDs

We can define a partitioned-FBDD representation, �FBDD
f

, for a given
function f by replacing Condition 1 in Definition 1 with the condition that
wi, and f̃i are represented by FBDDs. Similarly, a partitioned typed-FBDD
can be defined by associating a type �i with every partition i in the definition
of �FBDD

f
.

Now the results of the previous sections can be summarized as follows.
The class of functions representable by polynomially sized monolithic ROB-
DDs is strictly contained in the class of functions representable by polynomi-
ally sized partitioned-ROBDDs. The containment is obvious as monolithic
ROBDDs are a special case of partitioned-ROBDDs with only one parti-
tion. The containment is strict as there are functions (such as FHS, HWB)
which have polynomially sized partitioned-ROBDD representations but no
polynomially sized monolithic ROBDD (see Section 3.2.1). Now, since
ROBDDs are a special case of FBDDs (and also typed-FBDDs), it follows
that partitioned-ROBDDs are a special case of partitioned-FBDDs (and also
partitioned typed-FBDDs). Therefore, the function defined in Section 3.2.2
is an example for which FBDD (and hence typed-FBDD) is exponential but
partitioned-FBDD (and also partitioned typed-FBDD) is polynomial. That is,
the class of functions which have a compact FBDD representations is strictly
contained in the class of functions which have a compact partitioned-FBDD
representation and the class of polynomially sized typed-FBDD is strictly
contained in the class of polynomially sized partitioned typed-FBDDs.

Similarly, we can generalize the notion of partitioning the Boolean space
for any class of BDD representations (e.g. partitioned-OKFDD, partitioned-
FDD, partitioned-ZBDD etc.). We conjecture that the compactness result of
partitioned-ROBDDs holds for any class of canonical BDD representation,
i.e., the class of functions having polynomial monolithic *-DD representation
(where *-DD can be FDD, OKFDD, ZBDD [22], etc.) is strictly contained in
the class of functions having polynomial partitioned *-DD representation.

3.2.4 ROBDDs, Partitioned-ROBDDs and VLSI Com-
plexity Theory

In [7] an important relation was established between the size of ROBDD rep-
resentations and the complexity of VLSI implementations. In classical VLSI
complexity theory [29], the complexity of a Boolean function is expressed in
terms of the product of AT 2, where A is a measure of the chip area needed
to implement the function and T is a measure of the computation time. In [7]
Bryant showed that if the area-time complexity of a function is quadratic
then any ROBDD representing it will have exponential size. However, the
converse is not always true. There can be functions with low area-time com-
plexity (AT 2

= O(n1+�
), for � > 0) which have exponential ROBDDs

under any possible ordering. The reason for this is that VLSI implementa-
tions can exploit two-way communication between variables while ROBDDs

cannot; in ROBDDs the information can flow only in one direction.
To understand this intuitively, let us again consider the implementation of

the HWB function shown in Figure 1. For this implementation, the area-time
complexity is AT 2

= O(nlog6n) = O(n1+�
) [7]. Now if we consider

an imaginary line across the chip dividing the inputs into two equal halves,
around log2n bits of information crosses it in both directions. The VLSI
implementation of HWB is efficient because of this two-way communication.
If we restrict the information to flow only in one direction, then we will need
to transfer Ω(n) bits of data across the partition; otherwise there would be
no way to accurately determine which bit is required at the output. This is
exactly what happens in the ROBDD representation of the HWB function.
Since the same inputs serve as both the control and the data, Ω(n) bits of
information needs to be represented (as distinct nodes of an ROBDD) before
a decision can be made about the value of the function. Hence, the ROBDD
is exponential.

The power of partitioned-ROBDDs lies in the fact that that they allow
two way communication between variables without sacrificing canonicity or
manipulability. In the case of HWB, this is achieved by partitioning the
relevant information needed about the control signals (i.e. is) into disjoint
cases (wi’s) and representing the value of the resulting functions (fis) as
separate ROBDDs. Since the number of disjoint cases isO(n) and the relevant
information,wt(x), can be easily represented using ROBDDs inO(n2

) space
(due to symmetry), the partitioned-ROBDD representation takes onlyO(n3

)

space to represent all partitions.
This discussion leads to some interesting theoretical questions which are

unanswered at present: 1) What techniques can be used to prove lower bounds
for the size of partitioned-ROBDDs? Communication complexity based argu-
ments used in the case of ROBDDs are not valid for partitioned-ROBDDs; 2)
Are there functions with small area-time complexity (i.e. AT 2

= O(n1+�)
but exponential partitioned-ROBDDs? 3) Are there functions with quadratic
area-time complexity (i.e. AT 2

= O(n2
)) but small partitioned-ROBDDs?

3.3 Boolean Manipulation Using Partitioned-
ROBDDs

Given a partition of the Boolean space, W = fw1; : : : ; wkg, we will
show that the asymptotic complexity of performing basic Boolean operations
(e.g. NOT, AND, OR) on the partitioned-ROBDD representations is poly-
nomial in the sizes of the operands; the same as ROBDDs. Therefore, the
compactness of representation doesn’t cost anything in terms of the efficiency
of manipulation. In fact, since partitioned-ROBDDs are in general smaller
than monolithic ROBDDs and each partition can be manipulated indepen-
dently, their manipulation is also more efficient.

Theorem 3.2 Let f and g be two Boolean functions and let �f =

f(wi; f̃i)j1 � i � kg and �g = f(wi; g̃i)j1 � i � kg be their respective
partitioned-ROBDDs satisfying Conditions 1-3 in Definition 1. Further as-
sume that the ith partitions in both�f and�g have the same variable ordering

�i. Then, (a) �
f
= f(wi; wi ^ f̃ i)j1 � i � kg is the partitioned-ROBDD

representing f (i.e. NOT of f); and, (b) �f�g = f(wi; wi ^ (f̃i � g̃i))j1 �
i � kg is the partitioned-ROBDD representation off�g where� represents
any binary operation between f and g.

3.3.1 Complexity of Operations

Given two ROBDDs F and G, the operation F � G can be performed in
O(jF jjGj) space and time. In partitioned-ROBDDs, different partitions are
manipulated independently and the worst case time complexity of f � g is
Σki=1(jf̃ijjg̃ij) which is O(j�f jj�gj). Since only one partition needs to be
in the memory at any time, the worst case space complexity is given by
maxi(jf̃ijjg̃ij) which is in general� j�f jj�gj. Also, similar to ROBDDs,
the size of the satisfying set of a function f can be computed in O(j�f j) for
orthogonally partitioned-ROBDDs.

3.3.2 Existential Quantification

Besides the basic Boolean operations, another useful operation which is ex-
tensively used in formal verification of sequential circuits is the existential

quantification (9xf) operation. The existential quantification of variable x
from the function f (9xf) is given by 9xf = fx + fx where fx and fx
are the positive and negative cofactors of f respectively. In the partitioned-
ROBDD representation, the cofactors can be obtained easily by cofactoring
each wi and f̃i with respect to x, i.e., �fx = f(wix ; f̃ix)j1 � i � k, and
(wi; f̃i) 2 �fg and �fx = f(wix ; f̃ix)j1 � i � k, and (wi; f̃i) 2 �fg.
But after performing the cofactoring operation, the positive and negative co-
factors have different window functions (given bywix andwix respectively)
and the disjunction cannot be performed directly on the partitions. This prob-
lem doesn’t arise if we choose window functions which do not depend on the
variables that have to be quantified. We state the following theorem without
proof:

Theorem 3.3 Let �f = f(wi; f̃i)j1 � i � kg be a partitioned-ROBDD
representation of f such that 9xwi = wi, for 1 � i � k. Then �9xf =

f(wi;9xf̃i)j1 � i � kg is the partitioned-ROBDD representation of 9xf .

In many applications we do not need to explicitly represent the window
functions. The only property that a partitioned representation is required to
have is that f can be represented as the disjunction of the f̃i’s. In such
cases our partitioned representation, �f , of f is just a set of f̃i such that
f = f̃1 + : : : + f̃k . Since existential quantification distributes over +,
it implies that 9xf = 9xf̃1x + : : : + 9xf̃kx . So from the partitioned
representation of f , we can directly get the partitioned representation of 9xf
by existentially quantifying x over each f̃i; though the underlying window
functions have changed. One important application of partitioned-ROBDDs
which doesn’t need information regarding the underlying window functions is
the use of partitioned transition relations in sequential circuit verification [9].
We will discuss this application in more detail in Section 4.2.

3.3.3 Universal Quantification

Another important operation that is frequently used is the universal quantifi-
cation of x from f (denoted by 8xf). A sufficient condition for universal
quantification is that the window functions are orthogonal in addition to being
independent of the variables to be quantified. We state the following theorem
without proof:

Theorem 3.4 Let �f = f(wi; f̃i)j1 � i � kg be a partitioned-ROBDD
representation of f such that 8xwi = wi andwi ^wj = 0 for 1 � i; j � k

and i 6= j. Then �8xf = f(wi;8xf̃i)j1 � i � kg is the partitioned-
ROBDD representation of 8xf .

The additional restriction of orthogonality of partitions is not a very serious
one in reality. In Section 5 we give effective heuristics to generate orthogonal
partitions. For applications which do not need any information about the
window functions, we can use conjunctive partitions (which were defined
as the dual of disjunctive partitions in Section 3), and represent f as f =

f̃1 ^ : : :^ f̃k . In this case we get 8xf = 8xf̃1 ^ : : :^ 8xf̃k .

4 Some Applications of Partitioned-ROBDDs
4.1 Combinational Verification

Partitioned ROBDDs can be directly applied to check the equivalence of
two combinational circuits. Given two circuits f and g, we combine their
respective outputs by an XOR gate to get a single circuit. Then we use
partitioned ROBDDs to check whether the resulting circuit is satisfiable. For
this we simply check whether f̃i � g̃i = 0 for all partitions. In practice,
this technique can be easily used as a back end to most implication based
combinational verification methods [17, 26] which employ ROBDDs. The
verification can be terminated even without processing all the partitions if in
any window wi the function f̃i � g̃i is found to be satisfiable.

Another way of verifying two circuits is to probabilistically check their
equivalence [3, 16]. In probabilistic verification, every minterm of a function
f is converted into an integer value under some random integer assignment �
to the input variables. All the integer values are then arithmetically added to
get the hash codeH�(f) for f . One can assert, with a negligible probability
of error, that f � g iff H�(f) = H�(g). In the case of orthogonal partitions,

no two partitions share any common minterm. Hence, we can hash each
partition separately, and just add their hash codes to obtainH�(f) [16]. This
implies that to check if H�(f) = H�(g), we can partition and hash both f
and g independently. We do not need to keep both f̃i and g̃i in the memory
at the same time. Further, it is not necessary that both f and g have the same
window functions.

4.2 Sequential Verification
A key step in sequential circuit verification using ROBDDs is reachability

analysis [10, 11] which consists of computing the set of states that a system
can reach starting from the initial states. Given the present set of reached
states, R(s), and the transition relation for the system, T (s; s

0

), relating
present state variables, s, with the next state variables, s

0

, the set of next
states,N(s0), is evaluated using Equation 4

N(s0) = 9s[T (s; s
0
) ^R(s)] (4)

The set of next states is added to the set of present states and the above
computation is repeated until a fixed point is reached. This fixed point
represents the set of all reachable states of the system.

In many cases, the ROBDDs representing the transition relation T (s; s0)
become very large. To handle these cases, in [9] the notion of partitioned tran-
sition relations was proposed in which the transition relations of individual
latches, Ti(s; s

0

)s, are represented separately (with some possible clustering
of Tis). Two types of partitioned transition relations were discussed: con-
junctive and disjunctive. In the conjunctive partitioning of [9], the transition
relation is given by T (s; s0) = T1(s; s

0

)^ : : :^Tm(s; s
0

) where eachTi is
represented as a separate ROBDD. This type of partitioning is a special case
of our conjunctively partitioned-ROBDDs. Our notion of partitioning is more
general since in our case the Tis need not always correspond to individual
latches. The usefulness of the conjunctively partitioned transition relations
of [9] is limited because existential quantification doesn’t distribute over con-
junctions. In the worst case, if all the Ti’s depend on all the present state
variables then the conjunctive partitions of [9] cannot be used at all.

A more interesting case is that of disjunctive partitions in which existential
quantification distributes over the partitions. In the method of [9], the only
way to get the disjunctive partitions is by using an interleaving model, in which
only one wire is allowed to transition at a time. In general, this gives different
results than a non-interleaving model and thus can be used only in some cases.
In our approach, we can disjunctively partition the transition relation without
having to place any restrictions on the underlying model of transition for a
given system. In our case any set of fis such that T (s; s

0

) = f̃1 + : : :+ f̃k
can be used to represent the transition relation. The set of next states can be
evaluated using the following equation:

N(s0) = 9s(R(s)^ f̃1) + : : :+ 9s(R(s)^ f̃k) (5)

This calculation can be performed by keeping only one f̃i for 1 � i � k

in the memory. Notice that in the above calculation we do not need the
window functions which correspond to fis. (Please refer to the discussion in
Section 3.3.2.)

4.3 Parallel Implementation of an ROBDD Package
Parallel algorithms for constructing ROBDDs were investigated in [20,

25]. Large communication requirements between different partitions limits
their applicability. In [25] the ROBDD nodes are distributed among machines
in a breadth-first manner. This method can at best give linear (in the number
of partitions) reduction in space and time. In addition, dynamic reordering is
limited only to the variables present in one partition. In contrast, our method
of partitioning can give a superlinear reduction (even exponential) in the
resources required to build ROBDDs. Further, each partition is independent
and can be scheduled on a different processor with minimal communication
overhead. Each partition can also be ordered independently and can exploit
full power of dynamic reordering.

5 Heuristics for Constructing Partitioned-
ROBDDs

The performance of partitioned-ROBDDs dependscritically on our ability
to generate good partitions of the Boolean space over which the function can

be compactly represented. The issue of finding good partitions of the Boolean
space is as central to the partitioned-ROBDD representation as the issue of
finding good variable orderings is to monolithic ROBDDs. In this section
we will discuss some simple heuristics which were found to be very effective
in generating compact orthogonally partitioned-ROBDDs. Though we use a
Boolean netlist model in the following discussion, our techniques are general
and can be applied to any arbitrary sequence of Boolean operations.

In our approach we first decompose the given functionF , and then obtain
the window functions for creating its partitioned-ROBDD by analyzing the
decomposed BDD for F . The number of windows is decided either a priori
or dynamically. After a window wi is decided, a partitioned-ROBDD corre-
spondingto it is obtained by composingF in the Boolean space corresponding
to the windowwi .

5.1 Creating a Decomposed Representation
Given a circuit representing a Boolean function f : Bn ! B, defined

overXn = fx1 : : : xng, our decomposition strategy consists of introducing
new variables based on the increase in the ROBDD size during a sequence of
ROBDD operations. We introduce a new variable whenever the total number
of nodes in a ROBDD manager increases by a disproportionatemeasure due to
some operation. For example, if while performing the operationR= R1+R2
on ROBDDs R1 and R2 we find that R has become very large, we undo the
operation. We introduce new variables 1 and 2 and expressR as 1 + 2
We maintain a separate array which contains the ROBDDs corresponding to
the decomposition points. We add R1 and R2 corresponding to the 1 and
 2 to this array. In this way we postpone the instances of difficult functional
manipulations to a later stage. Due to Boolean simplification many of these
cases may never occur in the final result, especially if the final memory
requirement is much less than the peak intermediate requirement [18].

In our current implementation, the check for memory explosion is done
only if the manager size is larger than a predetermined threshold. Also,
decomposition points are added when the ROBDD grows beyond another
threshold value. This ensures that the decomposition points themselves do
not have very large ROBDDs. We find that even a simple size-based decom-
position scheme works quite effectively for demonstrating the potential of
partitioned-OBDDs.

At the end of the decomposition phase we obtain a decomposed rep-
resentation, fd(Ψ; X), of f where Ψ = f 1; : : : ; kg is called a de-
composition set of the circuit and each i 2 Ψ is a decomposition point.
Let Ψbdd = f 1bdd ; : : : ; kbddg represent the array containing the ROB-
DDs of the decomposition points, i.e., each i 2 Ψ has a corresponding
ROBDD, ibdd 2Ψbdd, in terms of primary input variables as well as (pos-
sibly) other j 2 Ψ, where j 6= i. Similarly we represent the array of
 ibddwi

by Ψbddwi
. The composition [6] of i in fd(Ψ; X) is denoted by

fd(Ψ; X):(i ibdd) where,

fd(Ψ; X):(i ibdd) = ibdd :fd i
+ ibdd :fd i

(6)

The vector composition of the Ψ in fd(Ψ; X) is denoted as fd(Ψ;X):(Ψ
Ψbdd) and represents successive composition of i’s into fd.

5.2 Partitioning a Decomposed Representation
5.2.1 Creating f̃i for a given wi

Given a window function wi, a decomposed representation fd(Ψ; X), and
the ROBDD array Ψbdd of f , we want to find fi such that the ROBDD
representing f̃i = wi ^ fi is smaller than f . Here we make the following
observation:
Observation 1: Let fi = fdwi

(Ψ; X)(Ψ Ψbddwi
) and f =

fd(Ψ; X)(Ψ Ψbdd). If wi is a cube on PIs then jfij � jf j for any
given variable order for f and fi .
Proof: We are given fi = fdwi

(Ψ; X)(Ψ Ψbddwi
). If wi depends only

on PIs then the order of cofactoring and composition can be changed. Hence,
fi = [fd(Ψ; X)(Ψ Ψbdd)]wi . This gives, fi = fwi . If wi is a cube,
then jfwi j � jf j and hence jfij � jf j.

Now, given fd, Ψbdd and wis, we create the cofactors Ψwi and fdwi .
Then by composing Ψbddwi

in fdwi , we get partition function fi = fwi .

So given a set of window functions wi, the partitioned-ROBDD �f of f is
given by �f = f(wi; wi ^ fwi)j1 � i � kg. It is easy to check that the
above definition satisfies all the conditions of Definition 1

If wi is a cube, fi is guaranteed to have a smaller size than the ROBDD
for f . Also, the ROBDD representing wi has k internal nodes where k
is the number of literals in wi . Since wi and fwi have disjoint support,
jf̃ij = jwi ^ fij = (k + jfij) � jfij. Also, as each intermediate result
of building fi will be smaller than that of building f , the intermediate peak
memory requirement is also reduced.

Note that observation 1 doesn’t hold in the presence of dynamic variable
reordering when f and fi can have different variable orderings. However, in
practice since dynamic variable reordering is working on smaller graphs in
the case of partitioning it is perhaps even more effective.

Even when the window function is a more complex function of PIs than
a cube, we use fi = fwi . Here fwi is the generalized cofactor of f on wi .
The generalized cofactor of f on wi is generally much smaller than f . But
in this case the size of the ith partitioned-ROBDD jf̃ij can beO(jwijjfij) in
the worst case. To avoid this, while using general window functions we use
wis which are small.

5.2.2 Selection of Window Functions

After deciding how to construct the partition function from a given window
function we examine methods to obtain good window functions. These meth-
ods can be divided into two categories: a priori selection and “explosion”
based selection.
A priori Partitioning: In this method we select a predetermined number of
PIs to partition. If we decide to partition on ‘k’ PIs then we create 2k partitions
corresponding to all the binary assignments of these variables. For example,
if we decide to partition on say x1 and x2 then we create four partitions x1x2,
x1x2, x1x2 and x1 x2. From the observation made in the previous section,
we know that given window functions of this kind we can create partitioned-
ROBDDs which are guaranteed to be smaller than the monolithic ROBDD.
Since only one partition needs to be in the memory at a given time we will
always win in space. In the results section we will see that the reduction in
memory is large and is accompanied by an overall reduction in the time taken
to process all partitions as well.

We want to select those variables which maximize the partitioning
achieved while minimizing the redundancy that may arise in creating dif-
ferent partitions independently; a fundamental principle of any divide and
conquer approach. For this we define the cost of partitioning a function f on
variable x as

costx(f) = �[px(f)] + �[rx(f)] (7)

where px(f) represents the partitioning factor and is given by,

px(f) = max(
jfxj

jf j
;
jfxj

jf j
) (8)

and rx(f) represents the redundancy factor and is given by,

rx(f) =
jfxj+ jfxj

jf j
(9)

Notice that a lower partitioning factor is good as it implies that the worst of the
two partitions is small and similarly a lower redundancy factor is good since
it implies that the total work involved in creating the two partitions is less.
The variable x which has the lower overall cost is chosen for partitioning.

For a given vector of functionsF and a variable x, the cost of partitioning
is defined as:

costx(F) =

kX
i=1

costx(fi) (10)

We order all the PIs in increasing order of their cost of partitioning fd and
Ψ and select the best ‘k’ (where ‘k’ is a predetermined number specified by
the user). Note that using a similar cost function we can select not only PI
variables but also psuedo-variables, such as a ibdd expressed in terms of PIs,
to create partitioned-ROBDDs. In this case the cofactor operations become
generalized cofactor operations for window functions which are non-cubes.
This type of selection, where all the PIs are ranked according to their cost
of partitioning fd and Ψ, is called a static partition selection. On the other

hand, we can have a dynamic partitioning strategy in which the best PI (say
x) is selected based on fd and Ψ and then the subsequent PIs are recursively
selected based on fdx and Ψx in one partition and in fd

x
and Ψx in the

other partition. The dynamic partitioning method will require an exponential
numberof cofactors and can be expensive. This cost can be somewhat reduced
by exploiting the fact that the only values that we are interested in are the sizes
of the cofactors of fd and ibdd s. An upper bound on the value of jfdx j can
be calculated by traversing the ROBDD of fd and taking the x = 1 branch
whenever the node with variable id corresponding to x is encountered. This
method doesn’t give the exact count as the BDD obtained by traversing the
ROBDD in this manner is not reduced. The advantage is that no new nodes
need to be created and the traversal is fast.
Explosion Based Partitioning: In this method we successively compose
the ibdd s in fd. If the graph size increases drastically for some composition
(say j), we select a window function,w, based on the current fd and jbdd .
(The window functions are either a PI and its complement or some kbdd and
its complement which is expressed in terms of PIs only and has a very small
size.) Once the window function w, is obtained, we create two partitions
(w^ fdw ;Ψw) and (w^ fdw ;Ψw) and recursively call the routine on each
of the partitions.

5.3 Order of Composition
After we have selected a window function and created the decomposed

representation for the ith partition given by fdwi and Ψwi , the final step is
to compose Ψwi in fdwi , i.e., fdwi (Ψ; X)(Ψ Ψbddwi

). Although, the
final ROBDD size is constant for a given variable ordering, we observe that
the intermediate memory requirement and the time for composition is a strong
function of the order in which the decomposition points are composed.

For every candidate variable that can be composed intofd, we assign a cost
which estimates the size of the resulting composed ROBDD. The variable with
the lowest cost estimate is composed. Once again a simple cost function based
on the support set size was found to perform well in practice. Accordingly,
we choose that decomposition variable which leads to the smallest increase
in the size of the support set of the ROBDD after composition. At each
step, we restrict the candidate s for composition to those decomposition
points which are not present in any of the other bdds. This guarantees that
a decomposition variable needs to be composed only once in fd. Further
details can be found in [24]

6 Experimental Results
In the following we compare monolithic and orthogonally partitioned-

ROBDD representations for some hard industrial circuits. In our experience,
partitioned-ROBDDs turn out to be far superior to ROBDDs only when the
ROBDD graph sizes grow quite large. We consider an ROBDD of around
100,000 nodes as large. Since, in the presence of dynamic ordering, large
ROBDDs are not encountered in the ISCAS85 benchmark (except for multi-
plier), we devote the following space mainly to ourexperimentswith industrial
circuits.
Test Circuit Details: Our test circuits include various designs from industry
such as data transfer buffers, data transfer controllers, hard-wired models
for logic/fault simulation, and crossbar switch controllers. The sizes of the
circuits are indicated through a triplet of the form f# of PI, # of PO, # of
gatesg.
Experimental Setup and Results: The partitioning method of Section 5 was
implemented in a C program and the experimentswere performed on Sparc-20
machines. For ROBDDs which were proving intractable on regular machines,
we employed a Sparc-20 server machine with a 512MB RAM, and more than
2GB swap space. However, we were able to run the partitioned-ROBDD
examples on regular workstations with 128 MB memory.

For smaller circuits (such as ISCAS85 circuits), decomposition points
were introduced at graph sizes of 100 node or more and for the larger indus-
trial circuits the graph decomposition size was set at 500 nodes. In our imple-
mentation, the program automatically controls the decomposition threshold
as the size of the ROBDD manager increases. In the current implementation,
number of partitions are decided a priori. The industrial experiments were

performed with either 8 partitions (OPU2, RC, RBC) or 32 partitions (OPU1,
NINPTB).1

Since only one partition is needed at a time, the maximum memory re-
quired for partitioned-ROBDDs is given by the size of the largest partition. In
the following, we demonstrate that we can construct the partitioned-ROBDD
representation for many difficult industrial circuits for which building ROB-
DDs was much harder or not feasible at all - even on our Sparc-20 server.
Some of these circuits are not sufficiently similar and hence the traditional ver-
ification techniques which exploit circuit similarity were found to fail. Using
partitioned-ROBDDs we were able to verify these circuits for the first time.

In Table 1 we compare the time taken by ROBDDs against the total time
in constructing all partitions. (The time is reported in seconds, and the space
is reported in the number of ROBDD nodes.) Since at any given time we
need only one partition, the ROBDD size in column 5 is compared with the
size of the largest partition-ROBDD in column 6. Column 7 gives the sum of
the sizes of all partitioned-ROBDDs. However, this is only an upper bound;
if all the partitions are represented at the same time, then the resulting graph
size may be smaller due to the sharing of identical graphs between different
partitions.
Partial Verification Using Partitioning: For some hard cases we were not
able to compactly represent the entire function even by partitioned-ROBDDs.
In these cases we were able to construct a significant fraction of the function.
For example, in NINPTB[C], we could construct 132 out of 256 partitions
before we aborted the program execution due to time resource constraints. In
this way we could analyze about52% of the truth table. In contrast, monolithic
ROBDDs aborted without giving any meaningful partial information. Need-
less to say, a simulation technique would also have been grossly inadequate
in covering the given function. Similar results were obtained for MSWCN;
a circuit too difficult for ROBDDs as well as partitioned-ROBDDs. Due to
the difficult nature of this circuit, we tried constructing 5096 partitions and
aborted the computation after one week. Though only 32 partitions could be
constructed, at least some partial information about the function was obtained.
Such partial function coverage is indicated by annotating the space and time
entries by “(p)”. When a design is erroneous, there is a high likelihood that
the erroneous minterms are distributed in more than one partition and can
be detected by processing only a few partitions. Our experience with erro-
neous circuits suggests that in almost all cases the errors can be detected by
constructing only one or two partitions.
Control on the Success of Verification Experiments: Partitioned-ROBDDs
allow a remarkable control on the space/time resources and functional-
coverage. Thus, the success of a verification experiment can be ensured
by changing the parameters of decomposition and the number of partitions
that need to be created. While at present such control can be exercised only
manually in our programs, this is to be contrasted with no or a very minimal
control available in the case of ROBDDs.
Tautology Checking Using Partitioning: We have also implemented an
ROBDD based tautology checker in the SIS environment. Given design
and specification circuits F , G, the program checks the tautology for each
corresponding output pair by analyzing the BDDFi �Gi . The results of our
experiments can be found in [23].
Deficiencies and Possible Improvements: In most of our experiments, in-
cluding the results reported here, the primary input based partitioning was
found to perform the best. Although theoretically more general window
functions can give up to an exponentially better performance, our current
heuristics are not able to consistently discover them. Only OPU1[A] in Ta-
ble 1 (marked as *) used a generalized window function. We are currently in
the process of developing better heuristics which can exploit the full power of
partitioned-ROBDDs.

We have observed that many times different partitions have significant sim-
ilarities. In the present implementation, for a given set of window functions,
we generate all partitions separately. The process of constructing Partitioned-
ROBDDs can be made more efficient by identifying these partitions and
combining them into one.

1For the intractable output NINPTB[C] we had to use 256 partitions, and
for MSWCN 5096 partitions.

7 Conclusions
In this paper we have introduced an efficient data structure, partitioned-

ROBDDs, to represent Boolean functions. We have shown that partitioned-
ROBDDs are canonical as well as efficiently manipulable. We have also
shown that they can be exponentially more compact than not only monolithic
ROBDDs but even FBDDs. More over, at any given time, only one partition
needs to be manipulated which further increases its space efficiency. Efficient
parallel construction and a capability of earlier detection of inequivalence of
two given functions are some additional advantages of Partitioned-ROBDDs.

In addition to theoretically showing the utility of partitioned-ROBDDs
on special classes of circuits, we have given effective and automatic heuris-
tics to construct them. We have performed extensive experiments on IS-
CAS85 circuits as well as some very hard industrial circuits and have shown
that partitioned-ROBDDs can give orders of magnitude reduction in mem-
ory requirement over monolithic ROBDDs. This reduction in memory is also
accompaniedby a large reduction in the time required to construct partitioned-
ROBDDs. Using our technique, some very hard real life circuits were verified
for the first time. For circuits which were so hard that even our techniques
could not fully verify them, we were able to do partial verification and achieve
a significant vector coverage.

We believe that along with the issues of node decomposition, and vari-
able ordering, partitioning should be considered as another dimension central
to the representation of Boolean functions. Future research is directed to-
wards solving some of the theoretical issues relating to partitioned-ROBDDs
which were raised in this paper and developing more powerful heuristics for
constructing them.

8 Acknowledgement
We would like to thank Ingo Wegener and Beatte Bollig for providing us

the example in Section 3.2.2, and Claudionor Coelho for his assistance with
this project. The first author was supported by CA State MICRO program
grant #94-110 and SRC 95-DC-324.

References
[1] S. B. Akers. Binary decision diagrams. IEEE Transactions on Comput-

ers, C-27:509–516, June 1978.

[2] P. Ashar et. al. Boolean satisfiability and equivalence checking using
general binary decision diagrams. ICCD, 1991.

[3] M. Blum et. al. Equivalence of free Boolean graphs can be decided
probabilistically in polynomial time. Inf. Proc. Letters, 10, March 1980.

[4] B. Bollig. Personal communication, manuscript, February 1996.

[5] K. S. Brace, R. L. Rudell, and R. E. Bryant. Efficient Implementation
of a BDD Package. In DAC, pages 40–45, June 1990.

[6] R. E. Bryant. Graph-based Algorithms for Boolean Function Manipu-
lation. IEEE Transactions on Computers, C-35:677–691, August 1986.

[7] R. E. Bryant. On the complexity of VLSI implementations and graph
representations of Boolean functions with application to integer multi-
plication. IEEE Trans. on Comp., C-40:206–213, Feb. 1991.

[8] R. E. Bryant. Binary Decision Diagrams and Beyond: Enabling Tech-
nologies for Formal Verification. In ICCAD, November 1995.

[9] J. R. Burch, E. M. Clarke, and D. E. Long. Symbolic Model Checking
with Partitioned Transition Relations. In DAC, pages 403–407, 1991.

[10] J. R. Burch et. al. Symbolic Model Checking: 1020 States and Beyond.
Inf. and Comp., 98(2):142–170, 1992.

[11] O. Coudert et. al. Verification of Sequential Machines Based on Sym-
bolic Execution. In Proc. of the Workshop on Automatic Verif. Methods
for Finite State Systems, Grenoble, France, 1989.

[12] R. Drechsler et. al. Efficient representation and manipulation of switch-
ing functions based on Ordered Kronecker Functional Decision Dia-
grams. In DAC, pages 415–419, 1994.

Ckt TOTAL TIME SPACE
ROBDDs POBDDs Gain ROBDDs Largest Gain Sum of

Factor POBDD Factor POBDD sizes

C3540(22) 315 47 6.70 6266 6071 1.03 15741
C6288(12) 352 171 2.05 20840 8892 2.34 35446
C6288(13) 820 291 2.82 49924 19542 2.55 75986
C6288(14) 5368 2351 2.28 100156 23941 4.18 717472
C6288(15) 5519 2547 2.17 241865 28801 8.39 1.35M
C6288(16) 24986 7228 3.45 581153 57418 10.12 5.29M

Total 37360 12635 2.96 1M 125123 8 7.49M

OPU1[A]* 45515 6683 6.81 1.7M 156652 10.85 214138
OPU1[B] 9278 3031 3.06 245812 28554 8.61 157047
OPU1[C] 18090 4831 3.74 139481 15682 8.89 73356
OPU1[D] 11399 3222 3.54 201573 49096 4.10 114505

Total 84K 17.76K 4.73 2.23M 0.25M 8.96 0.56M

OPU2[A] 10716 6168 1.73 654412 61561 10.63 147535
OPU2[B] 7371 2187 3.37 272518 19576 13.92 79651
OPU2[C] 6527 2795 2.33 131377 53150 2.47 169418
OPU2[D] 15739 6961 2.26 369824 113066 3.27 255568

Total 40K 18K 2.22 1.43M 0.25M 5.72 0.65M

NINPTB[A] - 20686 INF spaceout 41413 INF 481973
NINPTB[B] - 26110 INF spaceout 62405 INF 575951
NINPTB[C] - >100K (p) INF spaceout 228437 INF 17.2M (p)

MSWCN - >500K (p) INF spaceout 5.46M INF 17.3 M (p)
RC[1] - 3778 INF spaceout 135265 INF 263513

RCB[1] - 4374 INF spaceout 93857 INF 262477

Total - >600K INF spaceout 8.07M INF 36.02M

Table 1: ISCAS85 Circuits C3540 and C6288. Industrial Circuits OPU1 (Size: f317; 232; 17076g), OPU2 (Size:
f317; 232; 17148g), NINPTB (Size: f226; 392; 15308g), MSWCN (Size: f205; 131; 1939g), RC (Size: f203; 8; 1320g), and
RCB (Size: f203; 8; 1175g).

[13] L. Fortune, J. Hopcroft, and E. M. Schmidt. The complexity of equiva-
lence and containment for free single variable program schemes. Goos,
Hartmanis, Ausiello and Bohm, Eds., Lecture Notes in Computer Sci-
ence 62, Springer-Verlag, pages 227–240, 1978.

[14] J. Gergov and C. Meinel. Efficient Boolean Manipulation With
OBDD’s can be Extended to FBDD’s. IEEE Transaction on Computers,
43(10):1197–1209, 1994.

[15] J. Jain, J. Bitner, D. S. Fussell, and J. A. Abraham. Functional partition-
ing for verification and related problems. Brown/MIT VLSI Conference,
March 1992.

[16] J. Jain, J. Bitner, D. S. Fussell, and J. A. Abraham. Probabilistic ver-
ification of Boolean functions. Formal Methods in System Design, 1,
1992.

[17] J. Jain, R. Mukherjee, and M. Fujita. Advanced Verification Techniques
Based on Learning. In DAC, pages 420–426, June 1995.

[18] J. Jain et. al. Decomposition Techniques for Efficient ROBDD Con-
struction. In Formal Methods in CAD 96, LNCS. Springer-Verlag,
1996.

[19] U. Kebschull et. al. Multilevel logic synthesis based on Functional
Decision Diagrams. European DAC, pages 43–47, 1992.

[20] S. Kimura and E. M. Clarke. A parallel algorithm for constructing
binary decision diagrams. ICCD90.

[21] S. Malik et. al. Logic Verification using Binary Decision Diagrams in a
Logic Synthesis Environment. In ICCAD, pages 6–9, November 1988.

[22] S. Minato. Zero-suppressed bdds for set manipulation in combinatorial
problems. 30th DAC, 1993.

[23] A. Narayan et. al. Overcoming Memory Constraints in ROBDD Con-
struction By Functional Decomposition and Partitioning. Technical Re-
port UCB/ERL M95/91, Electronics Research Lab, Univ. of California,
Berkeley, CA 94720, 1995.

[24] A. Narayan et. al. A Study of Composition Schemes for Mixed Ap-
ply/Compose Based Construction of ROBDDs. In Proc. of the Intl.
Conf. on VLSI Design, January 1996.

[25] M. Rebaudengo, S. Gai, and M. Sonza Reorda. An improved data
parallel algorithm for Boolean function manipulation using BDDs. Eu-
romicro Workshop on Parallel and Distributed Processing 1995.

[26] S. Reddy et. al. Novel verification framework combining structural
and OBDD methods in a synthesis environment. DAC, pages 414–419,
1995.

[27] R. L. Rudell. Dynamic Variable Ordering for Ordered Binary Decision
Diagrams . In ICCAD, pages 42–47, November 1993.

[28] F. Somenzi, S. Panda, and B. Plessier. Symmetry Detection and Dynamic
Variable Ordering of Decision Diagrams. In ICCAD, November 1994.

[29] C. D. Thompson. Area-time complexity for VLSI. In ACM STOC, 1979.

	CDROM Home Page
	1996 Home Page
	ICCAD 96
	Front Matter
	Table of Contents
	Session Index
	Author Index

