Partitioned ROBDDs - A Compact, Canonical and Efficiently Manipulable
Representation for Boolean Functions

Amit Narayan Jawahar Jain?

Abstract

We present a new representationfor Boolean functions called Partitioned-
ROBDDs. In this representation we divide the Boolean space into ‘k’ par-
titions and represent a function over each partition as a separate ROBDD.
We show that partitioned-ROBDDs are canonical and can be efficiently ma-
nipulated. Further, they can be exponentially more compact than monolithic
ROBDDs and even Free BDDs. Moreover, at any given time, only one parti-
tion needs to be manipulated which further increasesthe space efficiency.

In addition to showing the utility of partitioned-ROBDDs on special
classes of functions, we provide automatic techniquesfor their construction.
We show that for large circuits our techniques are more efficient in space as
well astime over monolithic ROBDDs. Using thesetechniques, somecomplex
industrial circuits could be verified for the first time.

1 Introduction

A large number of problemsin VLSI-CAD and other areas of computer
science can be formulated in terms of Boolean functions. A central issuein
providing computer-aided solutions to these problemsis to find a compact
representation for Boolean functions on which the basic Boolean operations
and equivalence check can be efficiently performed.

The requirements of compactness and manipulability are generally con-
flicting. Currently, Reduced Ordered Binary Decision Diagrams (henceforth,
ROBDDs) serve as the most popular compromise between these conflicting
requirements. ROBDDs are canonical and efficiently manipulable. For many
practical functions ROBDDs are compact as well. Due to these nice prop-
erties, ROBDDs are frequently used as the Boolean representation of choice
to solve various CAD problems. Unfortunately, ROBDDs are not always
very compact; in alarge number of cases of practical interest, any ROBDD
representation of a Boolean function may require space which is exponential
in the number of primary inputs (PIs). This large space requirement placesa
limit on the complexity of problemswhich can be solved using ROBDDs.

Variousmethodshave been proposed to improvethe compactnessof ROB-
DDs. Some of the methods that achieve compactness do so by sacrificing
amost all the nice properties of ROBDDs. Other methods, which maintain
canonicity and manipulability, represent the function over the entire Boolean
space as asingle graph rooted at a unique source. In this paper, we claim that
thisis an unnecessary restriction.

We show that exponentially more compact representationscan be obtained
by partitioning the Boolean space and representing the functionality overeach
partition as a separate graph. This compactnessin representation is achieved
without sacrificing the desirable properties of the underlying graph which
is used to represent each partition. This notion of functional partitioning
is general and can be applied to other problems also. In this paper we
demonsgtrate its utility for graph based representations of Boolean functions,
and in particular, for ROBDDs.

We define partitioned-ROBDDs and show that they are canonical. We
prove that partitioned-ROBDDs can give exponentially compact representa-
tions compared to monolithic ROBDDs and even Free BDDs (FBDDs). At
any given time only one partition needs to be present in the memory. Dif-
ferent partitions can be processed independently and can employ different
variable orderings. However, the compactness of representation comes not

1Department of Electrical Engineeringand Computer Sciences, University
of California, Berkeley, CA 94720
2Fujitsu Labs of America, Santa Clara, CA 95054

ICCAD '96
1063-6757/96 $5.00 O 1996 |IEEE

M. Fujita?

A. Sangiovanni-Vincentellit

just from using different orderings for different partitions. We show that
partitioned-ROBDDs can be exponentially more compact even if all parti-
tions have the same variable order. We also show that there are functionsfor
which even FBDDs are exponential but partitioned-ROBDDsare polynomial.
Therefore, the class of functionsthat can be represented in polynomial space
by Partitioned-ROBDD is distinct from the class of polynomially sized FB-
DDs. We also show that partitioned-ROBDDs are efficiently manipulablein
addition to being canonical and compact. We consider some applications of
partitioned-ROBDDs in formal verification of combinational and sequential
circuits.

Inadditiontotheoretically provingthe propertiesof partitioned-ROBDDs,
we demonsgtrate their utility on some large industrial circuits. We discuss
methodsof automatically generating partitioned-ROBDDs. The effectiveness
of our techniqueis perhaps best demonstrated from the fact that we were able
to verify some circuits on which all previously known techniques had failed.

2 Previous Work

Inthe following, we assumethat the reader is familiar with the basic BDD
terminology [1, 6]. A Free BDD (FBDD) isaBDD in which variables can
appear only once in a given path from the source to the terminal; different
paths can have different variable orderings. An Ordered BDD is an FBDD
with the additional restriction that variablesfollow acommon orderingin all
paths from the source to theterminal. If no two nodesin an OBDD represent
thesamefunctionthenit issaid to beaReduced OBDD. In[6] Bryant showed
that ROBDDs are canonical and can be easily manipulated. For further details
on ROBDDs, and the implementation of a typical ROBDD package, please
referto [5, 6, 8].

The size of an ROBDD is strongly dependent on its ordering of variables.
Many algorithms have been proposed to determine good variable orders[21,
27, 28]. Partitioned-ROBDDs enhance the effectiveness of variable ordering
methods by allowing different partitionsto have different orderings.

Another approach to reducethe space requirement of ROBDDsisto relax
their total ordering requirement. FBDD isan example of thiscategory inwhich
different paths from the root to the terminal can have variables in different
orders. We will show that partitioned-ROBDDs can be exponentially more
compact than FBDDs. Further, the class of polynomially sized partitioned-
FBDDs (defined analogoudly to partitioned-ROBDDs) strictly contains the
class of polynomially size monolithic FBDDs.

A third approach to obtain a more compact representation for Boolean
functionsisto change the function decomposition associated with the nodes.
Instead of using a decomposition based on the Shannon Expansionin whicha
function f isexpressed asz fz+x f-, Someother decompostionliketheReed-
Muller expansion or a hybrid of different expansionsis used (e.g. Functional
Decision Diagrams(FDDs) [19], and Ordered Kronecker Functional Decision
Diagrams (OKFDDs) [12]). These representations can also be augmented
using our concept of partitioning.

All of the above mentioned methods represent a function over the entire
Boolean space as a single graph (rooted at a unique source). Our approach
to achieve compactness is fundamentally different. We create partitions of
the Boolean space and represent the function over different partitions of the
Boolean space as a separate graph. Any underlying datastructure can be used
to represent the function over different partitions, although in this paper we
restrict our attention mainly to ROBDDs and to some extent FBDDs.

The idea of partitioning has been used in the context of digital circuit
verification in the past. In [15], it was shown that many functions discussed

in[2, 7, 13] can be represented in space polynomially boundedin the number
of inputswhen subfunctionsare orderedindependently. Circuitswere verified
by partitioning them into these subfunctions. Our representationusesanotion
similar to the functional partitioning of [15]. However, most of thetechniques
suggested in [15] exploit specialized structural knowledge and cannot be
automated. Also, the partitioned-ROBDD data structure for representing
general Boolean functionswas not adequately developedin [15].

In[9], thetransition relation of agiven finite state machine was expressed
as either a digunction (using an interleaved model) or a conjunction (using a
synchronousmodel) of ROBDDs representing individual outputsand latches.
The notion of partitioning was restricted to building the ROBDDs of the
outputs and latches separately. Our notion of partitioning is much more
general than that of building the ROBDDs of different outputs separately. In
Section 4 wewill discusstheapplication of partitioned-ROBDDsto represent
the transition relation.

3 Partitioned-ROBDDs

Assume that we are given a Boolean function f: B™ — B, defined
over n inputs X,, = {x1,...,zn}. We define the partitioned-ROBDD
representation, x ¢, of f asfollows:

Definition 1 Given a Boolean function f: B™ — B defined over X,,,
a partitioned-ROBDD representation x ; of f is a set of & function pairs,
xf = {(w1, f1), ..., (wk, fr)} where, w; : B* — B and f;: B® — B,
for 1 < ¢ < k, arealso defined over X, and satisfy thefollowing conditions:

e 1. w; and f, are represented as ROBDDs with the variable ordering
m;, for 1 <4 < k.

e 2 witwr+...+wp =1
e 3. fizwiAfforl<i<k

Here, + and A represent Boolean OR and AND respectively. The set
{w1,...,wy}isdenotedby W.

Each w; is called a window function. Intuitively, a window function w;
represents a part of the Boolean space over which f is defined. Every pair
(w;, fi) represents a partition of the function f. Here we are not using the
term “partition” in the conventional sense where partitionshaveto bedigjoint.
If in additionto Conditions 1-3in Definition 1, we also havethat w; Aw; = 0
for ¢ # j then the partitions are said to be orthogonal; clearly, each (w;, f,')
isnow a partition in the conventional sense.

Condition 1in Definition 1 statesthat each partition hasan associated vari-
able ordering which may or may not be different from the variable orderings
of other partitions. Condition 2 states that the w;s cover the entire Boolean
space and Condition 3 states that f; isthe sameas f over the Boolean space
coveredby w; . Ingenera, each fi canbe representedasw; A f;; thevalueof
fi isadon't carefor the part of the Boolean spacenot coveredby w,;. Thesize
of an ROBDD I isdenoted by | F|. Thenthe sum of thesizesof all partitions,
denoted by |x¢|, isgivenby |x¢| = (|fo| + ... | x| + [wa| + ... + [ws]).
From Conditions 2 and 3, it immediately follows that:

f=h+h+. . +f ()

This type of partitioning in which f is expressed as a digunction of fisis
called adigiunctive partition. A conjunctive partition can be defined as the
dual of the above definition. That is, the i*” partition is given by (w;, fi),
Condition 2 in Definition 1 becomeswy A ... A wg = 0, and Condition 3
becomes f; = w; + f. Inthiscase f = (f1 A ... A fi).

3.1 Canonicity of Partitioned-ROBDDs

It is easy to see that for agivenset W = {wz,...,wy} and a given
ordering 7; for every partition 7, the partitioned-ROBDD representation is
canonical. In Theorem 3.1 we show that for a given function f and a given
partitioned-ROBDD representation x 5 = {(ws, fi)|1 < ¢ < k} of f, fi is
unigque. Since each f; is represented as an ROBDD which is canonical (for a
given ordering 7;), from Theorem 3.1 it followsthat the partitioned-ROBDD
representationis canonical.

Theorem 3.1 Given functions f: B™ — B andg: B™ — B both defined
over X, let xp = {(wi, fi)|1 <7 < k}andxg = {(wi,gi)|1 <7 < k}
be the partitioned-ROBDD representationsof f and g respectively, i.e., x ¢
and x4 satisfy Conditions 1-3 of Definition 1. Then f = g iff f; = g; for
1<i<k.

3.2 Compactness of Partitioned-ROBDDs

In Section 3.2.1 we show exampleswhere partitioned-ROBDDs are expo-
nentially more compact than monolithic ROBDDs. We consider two cases:
in the first case, the compactnessin the representation is obtained by using
the flexibility of independently ordering different partitions while in the sec-
ond case we show an example where the partitioned-ROBDD representation
is exponentially smaller than the corresponding monolithic ROBDD even
though al partitions have the same order. In Section 3.2.2 we show that the
partitioned-ROBDD representation can be exponentially more compact than
an FBDD. In Section 3.2.3 we generalize the notion of partitioned-BDDs for
other classesof BDDs (like FBDDs, typed-FBDDs[14] etc.) and make some
observations about their compactness. In Section 3.2.4 we review the rela-
tionship between the VLS| complexity theory and ROBDDs [7] and discuss
some reasons for the compactnessof partitioned-ROBDDs.

3.2.1 MonolithicROBDDsvs. Partitioned-ROBDDs

A straightforward way of constructing examples of Boolean functions with
polynomially sized partitioned-ROBDDs and large monolithic ROBDDsisto
exploit the flexibility of independently ordering different partitions available
in the case of partitioned-ROBDDs. Consider the following function:

flze, .. en) = w1fi(e2, .. zn) + Tafo(2, ... 2n) 2

Assume that f; and f» have small ROBDDs for orderings 71 and m re-
spectively but exponentially sized ROBDDs for orderings > and 1. The
ROBDD representing f will be exponential under both orderings (z1, 71)
and (x1,72). In contrast the partitioned-ROBDD representation x ; =
(z1, 21 A f1),(Z1, 71 A f2) ispolynomial (under the orderings (z1, 71) for
partition 1 and (21, 72) for partition 2). Now consider 2% functions, where
k = O(logon), f1, f2, ... fox having polynomially sized ROBDDs such
that they do not have any good variable ordering in common, i.e. under all
orderings at least one of the 2% functions becomes exponential. If we com-
bine these 2¥ functions with a multiplexor tree of k variables, the resulting
functionwill haveexponentially sized ROBDD for any ordering. On the other
hand, since the partitioned-ROBDD representation keeps f1, f2, . . . for Sep-
arately and can employ different orderingsin different partitions, it will be
polynomial. In this way we can get a large class of functionsfor which the
partitioned-ROBDDsare exponentially more compact than the corresponding
monolithic ROBDDs; FHS function of [13] belongsto this class[15].

In the above example we have utilized the flexibility of independently
ordering different partitions to achieve compactness of representation. One
can show that there are functions for which partitioned-ROBDDs employ the
same orderingsin different partitionsbut are still exponentially more compact
than monolithic ROBDDs. One such example is the Hidden Weighted Bit
function (HWB). This function has . inputs: X, = {#1,...,2»}. Foran
input assignment z = (z1z2 ... %), its “weight” is defined as the number
of inputssetto 1, i.e,, wi(z) = [{z;|1 < ¢ < n,andz; = 1}|. The HWB
function selectstheith input if wi(z) =1, i.e,

0 if wi(z) =0

HWB(z) = { Toye(z) 1T wt(z) >0

It was shown in [7] that any ROBDD representation of the HWB function
requires Q(1.14™) vertices. We will show that the partitioned-ROBDD rep-
resentation of theHWB functionis polynomial [15]. A circuitimplementation
for a seven input HWB function is shown in Figure 1. The circuit inputs are
fed as data into both a balanced tree of adders and a balanced tree of 2-input
multiplexors. The adder tree computes the binary representation of wt(x).
There are & = O(logon) wires (labeled as 11, ¥, and +3 in Figure 1)
which serve as the control signal to the multiplexor tree, causing the value

Figure 1: A Circuit implementation for HWB(7)

Tot(z) 10 Appear at the output. Consider the following partitioned-ROBDD
representation of HWB(n):

XHWB = {(w070)7 (wlvwl/\gjl)v ey (wnvwnA$n)} (3)

wherewg = Elaz...ak,wl = ¢1E2~~~Ek: ooandwn, = Y1 .. Y.
For example, x rw 5(7) shownin Figure 1 hasthe following 8 partitions:

(013213, 0), (W10 o1z, W10 tb3 A1), - o @nd, (1902303, Y1vpath3 A 7).
Itis easy to seethat x 7y defined in Equation 3 satisfies all the conditions
of Definition 1 and is indeed a partitioned-ROBDD representation. In fact,
x gw 5 i1san orthogonally partitioned-ROBDD.

Since the number of control wires (labeled +;s) are O(logon), the total
number of partitions are O (2/°927) = O(=x). Further, for the ith window
functionw;, w; = 1iff wt(z) = 7. Sinceevery w; for1 < : < nisatotally
symmetric function of its inputs, the ROBDD representing w; is O(n?)[6].
Further, fZW 8 = ¢, andisof sizeO(1). Therefore, fi = wi A fiisasoof
size O (n?) and the partitioned ROBDD representation of the HWB function
is O(n?), i.e, it has n partitions each of size O(n?). Since the Boolean
manipulation and verification algorithmskeep only 1 partition in the memory
at agiven time, the maximum space complexity is only O (n?).

3.2.2 MonolithicFBDDsvs. Partitioned-ROBDDs

In this section we show that partitioned-ROBDDs can be exponentially more
compact than FBDDs. This demonstratesthat the flexibility obtained by rep-
resenting afunction as multiple graphsis morethan that of just independently
ordering different assignments.

Consider the function f : B3 — B defined on 3n variables: X,, =
{7307 ce 77377,—1}1 Yn = {y07 ce 71/77,—1}1 and Z, = {207 cee 7Zn—1}- Let
zyz = ($0...Tn_1¥0.. Yn—120.. . 2n—1 be a given assignment of the
inputsvariablesandlet wt(z) = o+ 1 + ... + zn, wi(y) = yo + v1 +
vt yn, and wi(z) = 204+ 21+ ... + zn. We also define e(z), e(y),
and e(z) which are equal to 1 iff wi(z), wt(y), and wi(z) respectively are
even. Similarly, o(z), o(y), and o(z) are 1 iff wi(z), wt(y), and wi(z)
respectively are odd. f is defined asfollows:

0 ife(z) ne(y) ne(z) =1
Z((wt(x)+wi(y))mod n) 1T () Ae(y) Ao(z) =1
Y(wt(z)+wt(2z))mod n) if 6(7;) A O(y) A 6(2) =1

_ Y(wt(z)+wt(2z))mod n) if 6(7;) A O(y) A O(Z) =1

H@,9,2) T((wi(y)+wt(z))modn) 1T 0(z) Ae(y) Ae(z) =1
Z((wt(z)+wi(y))mod n) 1T 0(z) Ae(y) Ao(z) =1
T((wi(y)+wt(z))modn) 1T 0(z) Ao(y) Ae(z) =1

0 if o(z) Ao(y) Ao(z) =1

It has been proved that any FBDD representation of the above function is
exponential [4]. We will show that the partitioned-ROBDD representation is
polynomial.

Consider the partitioned-ROBDD naturally suggested by the 8 orthog-
onal cases in the function definition; with the right column (such as
e(x) A o(y) A e(z)) representing the window function and the left column
(SUch @S Y (wt () 4 wt(z))mod =)) denoting the corresponding f;. It is easy
to check that this x ; satisfies conditions 1-3 of Definition 1 and is indeed
a partitioned-ROBDD representation of f. Now we will show that x; is

of polynomial size. By symmetry of the input variables we know that the
ROBDDs representing e(z), e(y), e(z), o(x), o(y), and o(z) are O(nz)
sized. Any w; is a conjunction of three functions of size O(n?) with dis-
joint supports (for example, w1 = e(x)e(y)e(z)). ROBDD representing the
conjunction of two functionswith disjoint supports can be obtained by con-
catenating the ROBDDs of the two operands, i.e., by directing all the edges
going to 1 terminal in the first ROBDD to the source of the second ROBDD.
Therefore, the size of eachw; iSO(SnZ). Now let usconsider thesize of f;s.
Consider f2 = 2((wt(z)+wi(y))mod n)- 115 €3Sy to see that this function
can be represented by an ROBDD of size O(2r?). This ROBDD will have
the ordering in which the = variables come after z and y variables. The
information about wt(x) 4+ wt(y) can be represented in the first 2n levels
in (2n)(2n + 1)/2 nodes. Then one out of the » bits is chosen based on
the value of ((wi(z) + wt(y))mod n). Therefore, the size of ROBDD
representing f2 is ((2r)(2n + 1)/2 4+ n) = O(2n?). Similarly it can be
shownthat every f; is of size0(2n2). Since both w; and f; are polynomial,
it follows that f; = w; A f; isaso polynomial. Also, there are a constant
number (eight) of partitions for any n. Therefore, the overall size of x ¢ is
polynomial.

3.2.3 Partitioned-FBDDs and other Partitioned-BDDs

We can define a partitioned-FBDD representation, XfBDD, for a given
function f by replacing Condition 1 in Definition 1 with the condition that
w;, and f; arerepresented by FBDDs. Similarly, a partitioned typed-FBDD
can be defined by associating atype ; with every partition < in the definition
of xFBDD,

Now the results of the previous sections can be summarized as follows.
The class of functions representable by polynomially sized monolithic ROB-
DDsis strictly contained in the class of functionsrepresentable by polynomi-
aly sized partitioned-ROBDDs. The containment is obvious as monolithic
ROBDDs are a special case of partitioned-ROBDDs with only one parti-
tion. The containment is strict as there are functions (such as FHS, HWB)
which have polynomially sized partitioned-ROBDD representations but no
polynomially sized monolithic ROBDD (see Section 3.2.1). Now, since
ROBDDs are a specia case of FBDDs (and also typed-FBDDs), it follows
that partitioned-ROBDDs are a special case of partitioned-FBDDs (and also
partitioned typed-FBDDs). Therefore, the function defined in Section 3.2.2
is an example for which FBDD (and hence typed-FBDD) is exponential but
partitioned-FBDD (and also partitioned typed-FBDD) is polynomial. That s,
the class of functionswhich have a compact FBDD representationsis strictly
contained in the class of functions which have a compact partitioned-FBDD
representation and the class of polynomially sized typed-FBDD is strictly
contained in the class of polynomially sized partitioned typed-FBDDs.

Similarly, we can generalize the notion of partitioning the Boolean space
for any class of BDD representations (e.g. partitioned-OKFDD, partitioned-
FDD, partitioned-ZBDD etc.). We conjecture that the compactness result of
partitioned-ROBDDs holds for any class of canonical BDD representation,
i.e., the class of functions having polynomial monalithic *-DD representation
(where*-DD canbe FDD, OKFDD, ZBDD [22], etc.) isstrictly containedin
the class of functions having polynomial partitioned *-DD representation.

3.24 ROBDDs, Partitioned-ROBDDs and VLSl Com-
plexity Theory

In[7] an important relation was established between the size of ROBDD rep-
resentations and the complexity of VLS| implementations. In classical VLS
complexity theory [29], the complexity of a Boolean function is expressed in
terms of the product of AT2, where A is a measure of the chip area needed
to implement the function and 7" is ameasure of the computationtime. In[7]
Bryant showed that if the area-time complexity of a function is quadratic
then any ROBDD representing it will have exponential size. However, the
converseis not awaystrue. There can be functions with low area-time com-
plexity (AT? = O(n't€), for ¢ > 0) which have exponential ROBDDs
under any possible ordering. The reason for this is that VLS| implementa-
tions can exploit two-way communication between variables while ROBDDs

cannot; in ROBDDs the information can flow only in one direction.

To understand thisintuitively, let us again consider the implementation of
the HWB function shown in Figure 1. For thisimplementation, the area-time
complexity is AT? = O(nlogbn) = O(n'*) [7]. Now if we consider
an imaginary line across the chip dividing the inputs into two equal halves,
around logon bits of information crosses it in both directions. The VLS
implementation of HWB is efficient because of this two-way communication.
If werestrict the information to flow only in one direction, then we will need
to transfer Q(n) bits of data across the partition; otherwise there would be
no way to accurately determine which bit is required at the output. This is
exactly what happens in the ROBDD representation of the HWB function.
Since the same inputs serve as both the control and the data, Q(r) bits of
information needsto be represented (as distinct nodes of an ROBDD) before
a decision can be made about the value of the function. Hence, the ROBDD
is exponential .

The power of partitioned-ROBDDs lies in the fact that that they allow
two way communication between variables without sacrificing canonicity or
manipulability. In the case of HWB, this is achieved by partitioning the
relevant information needed about the control signals(i.e. ;) into digjoint
cases (w;'s) and representing the value of the resulting functions (f;s) as
separateROBDDs. Sincethenumber of disjoint casesisO () and therelevant
information, «v¢(z), can beeasily represented using ROBDDsin O (n?) space
(due to symmetry), the partitioned-ROBDD representation takes only O (n%)
spaceto represent all partitions.

This discussion leads to some interesting theoretical questionswhich are
unanswered at present: 1) What techniques can be used to provelower bounds
for thesize of partitioned-ROBDDs? Communication complexity based argu-
ments used in the case of ROBDDs are not valid for partitioned-ROBDDs; 2)
Are there functions with small area-time complexity (i.e. AT2 = O(nlt¢)
but exponential partitioned-ROBDDs? 3) Are there functions with quadratic
area-time complexity (i.e. AT? = O(n?)) but small partitioned-ROBDDS?

3.3 Boolean Manipulation Using Partitioned-
ROBDDs

Given a partition of the Boolean space, W = {w1, ..., wg }, we will
show that the asymptotic complexity of performing basic Boolean operations
(e.g. NOT, AND, OR) on the partitioned-ROBDD representations is poly-
nomial in the sizes of the operands; the same as ROBDDs. Therefore, the
compactnessof representation doesn’t cost anything in termsof the efficiency
of manipulation. In fact, since partitioned-ROBDDs are in general smaller
than monolithic ROBDDs and each partition can be manipulated indepen-
dently, their manipulation is also more efficient.

Theorem 3.2 Let f and g be two Boolean functions and let x; =
{(wi, F)1< i < kYandxg = {(w:,§:)|1 < i < k} betheir respective
partitioned-ROBDDs satisfying Conditions 1-3 in Definition 1. Further as-
sumethat thesth partitionsin both x ; and x , havethesamevariableordering

mi. Then, (8) x = {(wi, wi A 7:)1 < i < k} isthe partitioned-ROBDD
representing f (i.e. NOT of f); and, (b) x g = {(wi,w; A (fi ®3:))|1<
1 < k} isthepartitioned-ROBDD representationof f @ g where® represents
any binary operation between f and g.

3.3.1 Complexity of Operations

Given two ROBDDs F' and (3, the operation F' = GG can be performed in
O(|F'||G|) spaceand time. In partitioned-ROBDDs, different partitions are
manipulated independently and the worst case time complexity of f @ g is
=5 (1 F:115:]) which isO(|x¢llxgl). Since only one partition needsto be
in the memory at any time, the worst case space complexity is given by
max; (| f:||7:|) which isin general < |xsl|x4l|. Also, similar to ROBDDs,
the size of the satisfying set of afunction f can be computedin O(|x ¢|) for
orthogonally partitioned-ROBDDs.

3.3.2 Exigtential Quantification

Besides the basic Boolean operations, another useful operation which is ex-
tensively used in formal verification of sequential circuits is the existential

quantification (3, f) operation. The existential quantification of variable =
from the function f (3 f) isgivenby 3, f = fz + f7 where f; and f&
are the positive and negative cofactors of f respectively. In the partitioned-
ROBDD representation, the cofactors can be obtained easily by cofactoring
each w,; and f, with respect to z, i.e, Xfe = {(w,x,f,x)|l <¢< k,and
(wufz) € Xf} ande— = {(wl—7fl)|l <i <k and (wufz) € Xf}
But after performing the’ cofactorlng operatl on, the positive and negative co-
factorshave different window functions(given by w; . and w;_ respectively)
and the digjunction cannot be performed directly on the partitions. This prob-
lem doesn't arise if we choosewindow functionswhich do not depend on the
variables that have to be quantified. We state the following theorem without
proof:

Theorem 33 Let x; = {(wy, fi)|1 < 7 < k} be a partitioned-ROBDD
representation of f such that 3,w; = wg, for 1 <7 < k. Then x3, s =
{(wi, 3 fi)|1 < ¢ < k} isthe partitioned-ROBDD representationof 3 f.

In many applications we do not need to explicitly represent the window
functions. The only property that a partitioned representation is required to
have is that f can be represented as the digunction of the f;’s. In such
cases our partltloned representation, x s, of f isjust a set of fi such that
f= f1 + ...+ fk Since existential quantification distributes over +,
it implies thaI 3.f = Fafr, + ...+ 2 fr,. So from the partitioned
representation of f, we can directly get the partitioned representation of 3, f
by existentially quantifying = over each f;; though the underlying window
functions have changed. One important application of partitioned-ROBDDs
which doesn’t need information regarding the underlying window functionsis
the use of partitioned transition relationsin sequential circuit verification [9].
We will discuss this application in more detail in Section 4.2.

3.3.3 Universal Quantification

Another important operation that is frequently used is the universal quantifi-
cation of = from f (denoted by V. f). A sufficient condition for universal
quantificationis that the window functionsare orthogonal in addition to being
independent of the variablesto be quantified. We state the following theorem
without proof:

Theorem 34 Let x5 = {(w;, fi)]1 < ¢ < k} be a partitioned-ROBDD
representationof f suchthat Vyw,; = w; andw; Aw; = 0for1< 4,7 < k
and: # j. Then xv,; = {(w;,Vufi)|1 < i < k} is the partitioned-
ROBDD representation of V. f.

Theadditional restriction of orthogonality of partitionsisnot avery serious
oneinreality. In Section 5 we give effective heuristics to generate orthogonal
partitions. For applications which do not need any information about the
window functions, we can use conjunctive partitions (which were defined
as the dual of digunctive partitions in Section 3), and represent f as f =
JSiA...A fi. InthiscasewegetVyf = Vaf1 A ... AV fi.

4 Some Applicationsof Partitioned-ROBDDs

4.1 Combinational Verification

Partitioned ROBDDs can be directly applied to check the equivalence of
two combinational circuits. Given two circuits f and g, we combine their
respective outputs by an XOR gate to get a single circuit. Then we use
partitioned ROBDDs to check whether the resulting circuit is satisfiable. For
this we simply check whether fi @5 = oforal partitions. In practice,
this technique can be easily used as a back end to most implication based
combinational verification methods [17, 26] which employ ROBDDs. The
verification can be terminated even without processing al the partitions if in
any window w; thefunction f; @ g; isfoundto be satisfiable.

Another way of verifying two circuits is to probabilistically check their
equivalence[3, 16]. In probabilistic verification, every minterm of afunction
f isconvertedinto an integer value under some random integer assignment p
to the input variables. All the integer values are then arithmetically added to
get the hash code H,,(f) for f. One can assert, with a negligible probability
of error,that f = g iff H,(f) = Ho(g). Inthe caseof orthogonal partitions,

no two partitions share any common minterm. Hence, we can hash each
partition separately, and just add their hash codesto obtain H () [16]. This
impliesthat to check if H,(f) = H,(g), we can partition and hash both /
and g independently. We do not need to keep both fi and §; in the memory
at the same time. Further, it is not necessary that both f and g have the same
window functions.

4.2 Sequential Verification

A key step in sequential circuit verification using ROBDDsisreachability
analysis [10, 11] which consists of computing the set of states that a system
can reach starting from the initial states. Given the present set of reached
states, R(s), and the transition relation for the system, T(s,s'), relating
present state variables, s, with the next state variables, s, the set of next
states, N (s'), is evaluated using Equation 4

N(s') = 3T (s,s") A R(s)] (4)

The set of next states is added to the set of present states and the above
computation is repeated until a fixed point is reached. This fixed point
represents the set of all reachable states of the system.

In many cases, the ROBDDs representing the transition relation 7'(s, s”)
becomevery large. To handlethese cases, in[9] the notion of partitioned tran-
sition relations was proposed in which the transition relations of individual
latches, T; (s, s)s, are represented separately (with some possible clustering
of T;s). Two types of partitioned transition relations were discussed: con-
junctive and digunctive. In the conjunctive partitioning of [9], the transition
relationisgivenby T'(s, s') = Ta(s, s YA AT (s, s) whereeach T} is
represented as a separate ROBDD. This type of partitioning is a special case
of our conjunctively partitioned-ROBDDs. Our hotion of partitioning ismore
genera since in our case the T;s need not always correspond to individual
latches. The usefulness of the conjunctively partitioned transition relations
of [9] islimited because existential quantification doesn't distribute over con-
junctions. In the worst case, if all the T;’s depend on all the present state
variables then the conjunctive partitions of [9] cannot be used at all.

A moreinteresting caseisthat of disjunctivepartitionsin which existential
quantification distributes over the partitions. In the method of [9], the only
way to get thedigjunctive partitionsisby using aninterleaving model, in which
only onewireisallowed to transition at atime. In general, this givesdifferent
resultsthan anon-interleavingmodel and thus can be used only in some cases.
In our approach, we can disjunctively partition the transition relation without
having to place any restrictions on the underlying model of transition for a
given system. In our case any set of f;ssuch that T'(s, sl) = fl +...+ fk
can be used to represent the transition relation. The set of next states can be
evaluated using the following equation:

N(s)=3(R(s) A f1) + ...+ 3s(R(s) A f2) 5
This calculation can be performed by keeping only one fi for1 <1<k
in the memory. Notice that in the above calculation we do not need the

window functionswhich correspondto f;s. (Please refer to the discussionin
Section 3.3.2)

4.3 Parallel Implementation of an ROBDD Package

Parallel algorithms for constructing ROBDDs were investigated in [20,
25]. Large communication requirements between different partitions limits
their applicability. In [25] the ROBDD nodesare distributed among machines
in abreadth-first manner. This method can at best givelinear (in the number
of partitions) reduction in space and time. In addition, dynamicreordering is
limited only to the variables present in one partition. In contrast, our method
of partitioning can give a superlinear reduction (even exponential) in the
resources required to build ROBDDs. Further, each partition is independent
and can be scheduled on a different processor with minimal communication
overhead. Each partition can also be ordered independently and can exploit
full power of dynamic reordering.

5 Heurigtics for Constructing Partitioned-
ROBDDs

The performanceof partitioned-ROBDDsdependscritically on our ability
to generate good partitions of the Boolean space over which the function can

be compactly represented. The issue of finding good partitions of the Boolean
space is as central to the partitioned-ROBDD representation as the issue of
finding good variable orderings is to monolithic ROBDDs. In this section
we will discuss some simple heuristics which were found to be very effective
in generating compact orthogonally partitioned-ROBDDs. Though we use a
Boolean netlist model in the following discussion, our techniquesare general
and can be applied to any arbitrary sequence of Boolean operations.

In our approach wefirst decomposethe given function 7, and then obtain
the window functions for creating its partitioned-ROBDD by analyzing the
decomposed BDD for F'. The number of windowsis decided either a priori
or dynamically. After awindow w; is decided, a partitioned-ROBDD corre-
spondingto it isobtained by composing 7' inthe Bool ean space corresponding
to the window w; .

5.1 Creating a Decomposed Representation

Given a circuit representing a Boolean function f : B™ — B, defined
over X,, = {x1...zy}, our decomposition strategy consistsof introducing
new variables based on theincrease in the ROBDD size during a sequence of
ROBDD operations. We introduce a new variable whenever the total number
of nodesin aROBDD manager increasesby adisproportionatemeasure dueto
someoperation. For example,if whileperformingtheoperation R = R1+ R»
on ROBDDs R; and Ry we find that R has become very large, we undo the
operation. We introduce new variables/1 and v, and express R asv1 + 2
We maintain a separate array which contains the ROBDDs corresponding to
the decomposition points. We add R; and R, corresponding to the /1 and
1o to thisarray. In thisway we postpone the instances of difficult functional
manipulationsto alater stage. Due to Boolean simplification many of these
cases may never occur in the final result, especialy if the final memory
requirement is much less than the peak intermediate requirement [18].

In our current implementation, the check for memory explosion is done
only if the manager size is larger than a predetermined threshold. Also,
decomposition points are added when the ROBDD grows beyond another
threshold value. This ensures that the decomposition points themselves do
not havevery large ROBDDs. We find that even a simple size-based decom-
position scheme works quite effectively for demonstrating the potential of
partitioned-OBDDs.

At the end of the decomposition phase we obtain a decomposed rep-
resentation, f4(W, X), of f where W = {¢n,...,9¢y} is called a de-
composition set of the circuit and each »; € W is a decomposition point.
Let Weaq = {¥1,540 - -+ ¥k, yy) rEPresent the array containing the ROB-
DDs of the decomposition points, i.e., each ¢; € W has a corresponding
ROBDD, #;, ,, € Wpaq, interms of primary input variables as well as (pos-
sibly) other »; € W, where ¢; # +;. Similarly we represent the array of
¢ibddwl by "“bddw,- The composition [6] of ¥; in f4(¥, X) is denoted by

fa(W, X). (i = iy,) where,
Ja(W, X0 (i = iyag) = Vi ~fd¢— + biyga-fay, (6)

Thevector compositionof theWin f4(W, X) isdenotedas f4 (W, X).(W¥ +
Wpaq) and represents successive composition of +;’sinto f.

5.2 Partitioning a Decomposed Representation
5.2.1 Creating f; for agiven w;

Given a window function w;, a decomposed representation f4(W, X'), and
the ROBDD array W44 Of f, we want to find f; such that the ROBDD
repr@entingfi = w; A f; issmaler than f. Here we make the following
observation:
Observation 1: Let f; = fdw, (W, X (W « "pbddw,) and f =
Fa(W, X)) (W + Wpqq). If w; isacubeon Plsthen |f;| < |f]| for any
givenvariable order for f and f;.
Proof: Wearegiven f; = fq,, (W, X)(W < Wyqq,,). If w; dependsonly
on PIs then the order of cofactori ng and composition can be changed. Hence,
fi = [fa(W, X)(WY < Wpaa)lw,. Thisgives, f; = fu,. If w; isacube,
then | fu,| < |f| andhence |£;| < |f].

Now, given fg, Wpqq and w;s, we create the cofactors W,,, and f4,, ..
Then by composing Wbddwl in fdw,v we get partition function f; = fwl,.

So given a set of window functions w;, the partitioned-ROBDD x ¢ of f is
givenby x5 = {(ws, wi A fuw,)|1 <4 < k}. Itiseasy to check that the
above definition satisfies all the conditions of Definition 1

If w; isacube, f; is guaranteed to have a smaller size than the ROBDD
for f. Also, the ROBDD representing w; has %k internal nodes where &
is the number of literals in w;. Since w; and f.,; have digoint support,
[fil = |lwi A fi]l = (k4 |fi]) = |fi]. Also, as each intermediate result
of building f; will be smaller than that of building f, the intermediate peak
memory requirement is also reduced.

Note that observation 1 doesn’t hold in the presence of dynamic variable
reordering when f and f; can have different variable orderings. However, in
practice since dynamic variable reordering is working on smaller graphsin
the case of partitioning it is perhaps even more effective.

Even when the window function is a more complex function of PIs than
acube, weuse f; = fuw,. Here f.,, isthe generalized cofactor of f onw;.
The generalized cofactor of f on w; is generally much smaller than f. But
in this case the size of the:‘" partitioned-ROBDD | f; | can be O (Jw;]| £) in
the worst case. To avoid this, while using general window functions we use
w; Swhich are small.

5.2.2 Sdection of Window Functions

After deciding how to construct the partition function from a given window
function we examine methodsto obtain good window functions. These meth-
ods can be divided into two categories: a priori selection and “explosion”
based selection.

A priori Partitioning: In this method we select a predetermined number of
Pisto partition. If we decideto partitionon‘k’ PIsthenwe create 2% partitions
corresponding to all the binary assignments of these variables. For example,
if we decideto partition on say z1 and =, then we create four partitionsz1z>,
r17, T1w2 and 1 ;. From the observation made in the previous section,
we know that given window functions of this kind we can create partitioned-
ROBDDs which are guaranteed to be smaller than the monolithic ROBDD.
Since only one partition needs to be in the memory at a given time we will
aways win in space. In the results section we will see that the reduction in
memory is large and is accompanied by an overall reductionin the time taken
to processall partitionsaswell.

We want to select those variables which maximize the partitioning
achieved while minimizing the redundancy that may arise in creating dif-
ferent partitions independently; a fundamental principle of any divide and
conquer approach. For this we define the cost of partitioning afunction f on
variablez as

costy (f) = alpa(f)] + Blr=(f)] U]
wherep; (f) representsthe partitioning factor and is given by,
pe() = maa(L LB ®
and r (f) representsthe redundancy factor and is given by,
x = 9
rz(f) 7] ©)

Noticethat alower partitioning factor isgood asit impliesthat the worst of the
two partitions is small and similarly alower redundancy factor is good since
it implies that the total work involved in creating the two partitions is less.
The variable z which has thelower overall cost is chosen for partitioning.

For agivenvector of functionsF and avariable x, the cost of partitioning
is defined as: k

costz (F) = Z costz (fi) (20)
=1

We order all the Plsinincreasing order of their cost of partitioning f4 and

W and select the best ‘k’ (where ‘K’ is a predetermined number specified by
the user). Note that using a similar cost function we can select not only Pl
variablesbut also psuedo-variables, such asav;, , , expressedintermsof Pis,
to create partitioned-ROBDDs. In this case the cofactor operations become
generalized cofactor operations for window functions which are non-cubes.
This type of selection, where all the PIs are ranked according to their cost
of partitioning f4 and W, is called a static partition selection. On the other

hand, we can have a dynamic partitioning strategy in which the best Pl (say
x) is selected based on f4; and W and then the subsequent Pis are recursively
selected based on f; and W, in one partition and in f;_ and W5 in the
other partition. The dynamic partitioning method will requigfe an exponential
number of cofactorsand can beexpensive. This cost can besomewhat reduced
by exploiting thefact that the only valuesthat we areinterested in arethe sizes
of the cofactorsof fq and+;, ,,s. An upper boundonthe valueof | g, | can
be calculated by traversing the ROBDD of f,; and taking the z = 1 branch
whenever the node with variable id corresponding to = is encountered. This
method doesn't give the exact count as the BDD obtained by traversing the
ROBDD in this manner is not reduced. The advantageis that no new nodes
need to be created and the traversal is fast.

Explosion Based Partitioning: In this method we successively compose
the;, ,,Sin f4. If the graphsizeincreasesdrastically for some composition
(say +;), we select awindow function, w, based onthe current f; and 5, , ..
(Thewindow functionsare either aPl and its complement or some, , , and
its complement which is expressed in terms of Pis only and hasavery small
size.) Once the window function w, is obtained, we create two partitions
(wA fa,,Ww)and (wA S W) and recursively call theroutine on each
of the partitions.

5.3 Order of Composition

After we have selected a window function and created the decomposed
representation for the i*” partition given by fdw, and W, , thefinal step is
to compose Wy, in fq, i€, fa,. (W, X)(W <+ Wpqq,). Although, the
final ROBDD size is constant for a'given variable ordering, we observe that
the intermediate memory reguirement and thetimefor compositionisastrong
function of the order in which the decomposition points are composed.

For every candidate variablethat can becomposedinto f 4, weassignacost
which estimatesthesize of theresulting composed ROBDD. Thevariablewith
thelowest cost estimateis composed. Onceagain asimple cost function based
on the support set size was found to perform well in practice. Accordingly,
we choose that decomposition variable which leads to the smallest increase
in the size of the support set of the ROBDD after composition. At each
step, we restrict the candidate s for composition to those decomposition
points which are not present in any of the other «;44S. This guaranteesthat
a decomposition variable needs to be composed only once in f4. Further
details can be found in [24]

6 Experimental Results

In the following we compare monolithic and orthogonally partitioned-
ROBDD representations for some hard industrial circuits. In our experience,
partitioned-ROBDDs turn out to be far superior to ROBDDs only when the
ROBDD graph sizes grow quite large. We consider an ROBDD of around
100,000 nodes as large. Since, in the presence of dynamic ordering, large
ROBDDs are not encountered in the ISCAS85 benchmark (except for multi-
plier), wedevotethefollowing spacemainly to our experimentswith industrial
circuits.

Test Circuit Details: Our test circuitsinclude various designs from industry
such as data transfer buffers, data transfer controllers, hard-wired models
for logic/fault simulation, and crossbar switch controllers. The sizes of the
circuits are indicated through a triplet of the form {# of PI, # of PO, # of
gates}.

Experimental Setup and Results: The partitioning method of Section 5was
implementedin aC program and the experimentswere performed on Sparc-20
machines. For ROBDDswhich were provingintractableon regular machines,
we employed a Sparc-20 server machinewith a512MB RAM, and more than
2GB swap space. However, we were able to run the partitioned-ROBDD
exampleson regular workstationswith 128 MB memory.

For smaller circuits (such as ISCAS85 circuits), decomposition points
were introduced at graph sizes of 100 node or more and for the larger indus-
trial circuitsthe graph decomposition size was set at 500 nodes. In our imple-
mentation, the program automatically controls the decomposition threshold
asthe size of the ROBDD manager increases. |n the current implementation,
number of partitions are decided a priori. The industrial experiments were

performed with either 8 partitions (OPU2, RC, RBC) or 32 partitions (OPU1,
NINPTB).1

Since only one partition is needed at a time, the maximum memory re-
quired for partitioned-ROBDDsis given by the size of thelargest partition. In
the following, we demonstrate that we can construct the partitioned-ROBDD
representation for many difficult industrial circuits for which building ROB-
DDs was much harder or not feasible at all - even on our Sparc-20 server.
Some of thesecircuitsarenot sufficiently similar and hencethetraditional ver-
ification techniqueswhich exploit circuit similarity were found to fail. Using
partitioned-ROBDDs we were able to verify these circuits for the first time.

In Table 1 we compare the time taken by ROBDDs against the total time
in constructing all partitions. (The time is reported in seconds, and the space
is reported in the number of ROBDD nodes.) Since at any given time we
need only one partition, the ROBDD size in column 5 is compared with the
size of the largest partition-ROBDD in column 6. Column 7 givesthe sum of
the sizes of all partitioned-ROBDDs. However, thisis only an upper bound;
if all the partitions are represented at the same time, then the resulting graph
size may be smaller due to the sharing of identical graphs between different
partitions.

Partial Verification Using Partitioning: For some hard cases we were not
able to compactly represent the entire function even by partitioned-ROBDDs.
In these cases we were able to construct asignificant fraction of the function.
For example, in NINPTB[C], we could construct 132 out of 256 partitions
before we aborted the program execution due to time resource constraints. In
thisway we could analyzeabout 52% of thetruth table. In contrast, monolithic
ROBDDs aborted without giving any meaningful partial information. Need-
less to say, a simulation technique would also have been grossly inadequate
in covering the given function. Similar results were obtained for MSWCN;
acircuit too difficult for ROBDDs as well as partitioned-ROBDDs. Due to
the difficult nature of this circuit, we tried constructing 5096 partitions and
aborted the computation after one week. Though only 32 partitions could be
constructed, at least somepartial information about the functionwasobtained.
Such partial function coverageis indicated by annotating the space and time
entries by “(p)”. When a design is erroneous, there is a high likelihood that
the erroneous minterms are distributed in more than one partition and can
be detected by processing only a few partitions. Our experience with erro-
neous circuits suggests that in almost al cases the errors can be detected by
constructing only one or two partitions.

Control on the Success of Verification Experiments: Partitioned-ROBDDs
dlow a remarkable control on the space/time resources and functional-
coverage. Thus, the success of a verification experiment can be ensured
by changing the parameters of decomposition and the number of partitions
that need to be created. While at present such control can be exercised only
manually in our programs, this is to be contrasted with no or a very minimal
control available in the case of ROBDDs.

Tautology Checking Using Partitioning: We have also implemented an
ROBDD based tautology checker in the SIS environment. Given design
and specification circuits F', (G, the program checks the tautology for each
corresponding output pair by analyzingthe BDD F;; ¢ ;. Theresultsof our
experimentscan be found in [23].

Deficiencies and Possible Improvements: In most of our experiments, in-
cluding the results reported here, the primary input based partitioning was
found to perform the best. Although theoretically more general window
functions can give up to an exponentially better performance, our current
heuristics are not able to consistently discover them. Only OPU1[A] in Ta-
ble 1 (marked as*) used a generalized window function. We are currently in
the process of developing better heuristicswhich can exploit the full power of
partitioned-ROBDDs.

Wehave observed that many timesdifferent partitionshavesignificant sim-
ilarities. In the present implementation, for a given set of window functions,
we generateall partitions separately. The process of constructing Partitioned-
ROBDDs can be made more efficient by identifying these partitions and
combining them into one.

1For the intractable output NINPTB[C] we had to use 256 partitions, and
for MSWCN 5096 partitions.

7 Conclusions

In this paper we have introduced an efficient data structure, partitioned-
ROBDDs, to represent Boolean functions. We have shown that partitioned-
ROBDDs are canonical as well as efficiently manipulable. We have aso
shown that they can be exponentially more compact than not only monolithic
ROBDDs but even FBDDs. More over, at any given time, only one partition
needsto be manipulated which further increasesits space efficiency. Efficient
parallel construction and a capability of earlier detection of inequivalence of
two given functions are some additional advantages of Partitioned-ROBDDs.

In addition to theoretically showing the utility of partitioned-ROBDDs
on special classes of circuits, we have given effective and automatic heuris-
tics to construct them. We have performed extensive experiments on 1S
CASS5 circuits aswell as some very hard industrial circuits and have shown
that partitioned-ROBDDs can give orders of magnitude reduction in mem-
ory requirement over monolithic ROBDDs. This reductionin memory isalso
accompaniedby alargereductionin thetime requiredto construct partitioned-
ROBDDs. Using our technique, somevery hardreal life circuits were verified
for the first time. For circuits which were so hard that even our techniques
could not fully verify them, wewere ableto do partial verificationand achieve
asignificant vector coverage.

We believe that along with the issues of node decomposition, and vari-
able ordering, partitioning should be considered as another dimension central
to the representation of Boolean functions. Future research is directed to-
wards solving some of the theoretical issuesrelating to partitioned-ROBDDs
which were raised in this paper and developing more powerful heuristics for
constructing them.

8 Acknowledgement

We would like to thank Ingo Wegener and Beatte Bollig for providing us
the examplein Section 3.2.2, and Claudionor Coelho for his assistance with
this project. The first author was supported by CA State MICRO program
grant #94-110 and SRC 95-DC-324.

References
[1] S B.Akers. Binary decision diagrams. | EEE Transactionson Comput-
ers, C-27:509-516, June 1978.

[2] P Ashar et. al. Boolean satisfiability and equivalence checking using
general binary decision diagrams. ICCD, 1991.

[3] M. Blum et. al. Equivalence of free Boolean graphs can be decided
probabilistically in polynomial time. Inf. Proc. Letters, 10, March 1980.

[4] B. Ballig. Personal communication, manuscript, February 1996.

[5] K. S Brace, R. L. Rudell, and R. E. Bryant. Efficient Implementation
of aBDD Package. In DAC, pages 4045, June 1990.

[6] R. E. Bryant. Graph-based Algorithms for Boolean Function Manipu-
lation. |EEE Transactionson Computers, C-35:677-691, August 1986.

[71 R. E. Bryant. On the complexity of VLS| implementations and graph
representations of Boolean functions with application to integer multi-
plication. IEEE Trans. on Comp., C-40:206-213, Feb. 1991.

[8] R. E. Bryant. Binary Decision Diagrams and Beyond: Enabling Tech-
nologiesfor Formal Verification. In ICCAD, November 1995.

[9] J. R.Burch, E. M. Clarke, and D. E. Long. Symbolic Model Checking
with Partitioned Transition Relations. In DAC, pages 403-407, 1991.

[10] J.R.Burchet. al. Symbolic Model Checking: 10%° States and Beyond.
Inf. and Comp., 98(2):142-170, 1992.

[11] O. Coudert et. al. Verification of Sequential Machines Based on Sym-
bolic Execution. In Proc. of the Workshop on Automatic \erif. Methods
for Finite State Systems, Grenoble, France, 1989.

[12] R.Drechsler et. al. Efficient representation and manipulation of switch-
ing functions based on Ordered Kronecker Functional Decision Dia-
grams. In DAC, pages415-419, 1994.

Table 1:

Ckt TOTAL TIME SPACE
ROBDDs POBDDs Gain ROBDDs Largest Gain Sum of
Factor POBDD | Factor || POBDD sizes
C3540(22) 315 47 6.70 6266 6071 1.03 15741
C6288(12) 352 171 2.05 20840 8892 2.34 35446
C6288(13) 820 291 2.82 49924 19542 | 255 75986
C6288(14) 5368 2351 2.28 100156 23041 | 418 717472
C6288(15) 5519 2547 2.17 241865 28801 | 839 1.35M
C6288(16) 24986 7228 3.45 581153 57418 | 1012 5.29M
Total 37360 12635 2.96 M 125123 8 7.49M
OPUI[AJ* 45515 6683 6.81 1.7M 156652 | 10.85 214138
OPU1[B 9278 3031 3.06 245812 28554 | 861 157047
OPU1[C 18090 4831 3.74 139481 15682 | 889 73356
OPUI[D] 11399 3222 354 201573 49096 | 4.10 114505
Total 84K 17.76K 473 2.23M 0.25M 8.96 0.56M
OPUZ[A] 10716 6168 173 654412 61561 | 10.63 147535
OPUZ[B] 7371 2187 337 272518 19576 | 13.92 79651
OPU2[C] 6527 2795 2.33 131377 53150 | 247 169418
OPU2[D] 15739 6961 2.26 369824 113066 | 3.27 255568
[Total [40K [18K [222 | 143M [025M [572 [[065M |
NINPTB[A - 20686 INF spaceout 41413 INF 481973
NINPTB[B - 26110 INF spaceout 62405 INF 575951
NINPTB[C - >100K (p) | INF spaceout 228437 | INF 17.2M (p)
MSWCN - >500K (p) | INF spaceout 5.46M INF 17.3M (p)
RC[1] - 3778 INF spaceout 135265 | INF 263513
RCB[1] - 4374 INF Spaceout 93857 INF 262477
[Total - [>600K [INF [spaceout || 807M | INF [36.02M |
ISCAS85 Circuits C3540 and C6288. Industria Circuits OPUL1 (Size: {317,232,17076}), OPU2 (Size:

{317,232, 17148}), NINPTB (Size: {226,392, 15308}), MSWCN (Size: {205, 131,1939}), RC (Size: {203, 8,1320}), and
RCB (Size: {203, 8, 1175}).

[13]

[14]

[15]

[16]

[17]

(18]

[19]
[20]

[21]

L. Fortune, J. Hopcroft, and E. M. Schmidt. The complexity of equiva-
lence and containment for free single variable program schemes. Goos,
Hartmanis, Ausiello and Bohm, Eds., Lecture Notes in Computer Sci-
ence 62, Springer-\erlag, pages 227-240, 1978.

J. Gergov and C. Meinel. Efficient Boolean Manipulation With
OBDD’scan be Extendedto FBDD's. |EEE Transaction on Computers,
43(10):1197-1209, 1994.

J. Jain, J. Bitner, D. S. Fussell, and J. A. Abraham. Functional partition-
ing for verification and related problems. Brown/MIT VLS Conference,
March 1992.

J. Jain, J. Bitner, D. S. Fussell, and J. A. Abraham. Probabilistic ver-
ification of Boolean functions. Formal Methodsin System Design, 1,
1992.

J. Jain, R. Mukherjee, and M. Fujita. Advanced Verification Techniques
Based on Learning. In DAC, pages 420426, June 1995.

J. Jain et. al. Decomposition Techniques for Efficient ROBDD Con-
struction. In Formal Methods in CAD 96, LNCS. Springer-Verlag,
1996.

U. Kebschull et. al. Multilevel logic synthesis based on Functional
Decision Diagrams. European DAC, pages 4347, 1992.

S. Kimura and E. M. Clarke. A parallel algorithm for constructing
binary decision diagrams. ICCD90.

S. Malik et. al. Logic Verification using Binary Decision Diagramsin a
Logic Synthesis Environment. In ICCAD, pages 6-9, November 1988.

[22]

[23]

[24]

[25]

[26]

[27]
[28]

[29]

S. Minato. Zero-suppressed bddsfor set manipulationin combinatorial
problems. 30th DAC, 1993.

A. Narayan et. al. Overcoming Memory Constraints in ROBDD Con-
struction By Functional Decomposition and Partitioning. Technical Re-
port UCB/ERL M95/91, Electronics Research Lab, Univ. of California,
Berkeley, CA 94720, 1995.

A. Narayan et. al. A Study of Composition Schemes for Mixed Ap-
ply/Compose Based Construction of ROBDDs. In Proc. of the Intl.
Conf. on VLS Design, January 1996.

M. Rebaudengo, S. Gai, and M. Sonza Reorda. An improved data
parallel algorithm for Boolean function manipulation using BDDs. Eu-
romicro Workshop on Parallel and Distributed Processing 1995.

S. Reddy et. al. Novel verification framework combining structural
and OBDD methodsin a synthesis environment. DAC, pages 414-419,
1995.

R. L. Rudell. Dynamic Variable Ordering for Ordered Binary Decision
Diagrams. In ICCAD, pages42-47, November 1993.

F. Somenzi, S. Panda, and B. Plessier. Symmetry Detection and Dynamic
Variable Ordering of Decision Diagrams. In ICCAD, November 1994.

C.D. Thompson. Area-time complexity for VLSI. InACM STOC, 1979.

	CDROM Home Page
	1996 Home Page
	ICCAD 96
	Front Matter
	Table of Contents
	Session Index
	Author Index

