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Abstract
To accelerate the design cycle for analog and mixed-signal sys-

tems, we have proposed a top-down,constraint-driven design method-
ology. The key idea of the proposed methodology is hierarchically
propagating constraints from performance specifications to layout.
Consequently, it is essential to provide the necessary tools and tech-
niques enabling the efficient constraint propagation. To illustrate
the applicability of the proposed methodology to the design of larger
systems, we present in this paper the complete design flow for a video
driver system. Critical advantages of the methodology illustrated
with this design example include avoiding costly low level re-designs
and getting working silicon parts from the first run. Following our
approach, a jitter constraint is imposed at the system level and then
is propagated hierarchically to the circuit blocks and layout, using
behavioral modeling and simulation. Experimental results are pre-
sented from working fabricated parts.

1 Introduction

The complexity of analog mixed-signal electronic systems has
been increasing rapidly over the past years. Since, unlike its
digital counterpart, analog circuit design is not supported by
fully automatic synthesis tools, there is a great need for effi-
cient tools and techniques to accelerate the analog design cy-
cle. To facilitate the design of analog and mixed analog-digital
circuits, we have proposed a “Top-Down, Constraint-Driven
Design Methodology” [1]. The key idea of the methodol-
ogy is the hierarchical propagation of constraints based on
behavioral modeling and optimization. At each level of the
design hierarchy, performance constraints are mapped onto
constraints on the parameters characterizing the blocks of the
subsequent level of the hierarchy. At the highest level, be-
havioral simulation and optimization can be used to evaluate
different architectures. Once an architecture has been chosen,
the process is repeated until the layout is generated or a mod-
ule meeting the constraints is found in the library. Behavioral
modeling and simulation allow for early detection of design
faults and efficient exploration of the design space. Since
models have to be estimated at high levels in the hierarchy,
a bottom-up verification is also essential to fully characterize
components, interconnects and parasitics.

Presented in this paper is the design process for a video
driver system. New behavioral modeling, optimization, and
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Figure 1: Display driver system diagram

layout techniques have been developed or extended from ex-
isting ones, in order to provide a full set of tools supporting the
design of a class of similar mixed-signal systems. This descrip-
tion focuses on the critical path of the design. At the high-level
synthesis phase, the frequency synthesizer phase-locked loop
(PLL) behavioral models and simulation techniques are de-
scribed in detail. The setup of the PLL optimization problem
that performs the constraint mapping, together with the appro-
priate optimization algorithm are also described. Included is
a jitter constraint which is set at the system level and mapped
onto circuit level constraints. This is a novel approach for
the design of such systems since typically jitter is measured
after fabrication and, if simulation is used, it is only performed
at the circuit level. Our approach can help avoid the cost of
expensive design and fabrication iterations. Following the crit-
ical path of the design, the voltage-controlled oscillator (VCO)
synthesis phase is depicted, with focus on the optimization ap-
proach that takes into account layout parasitics. The layout
constraints generated at the circuit level are enforced during
the VCO layout synthesis phase. Finally, detailed extraction
of the sub-blocks and behavioral system-level simulation is
used for the verification of the PLL performance.

2 System Description

The video driver system implemented is intended to gener-
ate the red, green, blue current signals and the synchronizing
clock for video monitors in various display modes. It includes
three basic subsystems: a PLL-based programmable frequency
synthesizer, three D/A converters, and a digital interface file



Type Specification Value

Performance Output Frequencies 25 to 135 MHz
Timing jitter � 1%
Video signal INL � 1 LSB
Video signal DNL � 0:5 LSB
DAC resolution 8 bits

Operation Supply voltage 5 V
Technology Spice models HP CMOS34

Design rules SCMOS

Table 1: Video driver system specifications

register for loading the D/A converters and programming the
frequency synthesizer. This system is similar to commercial
display drivers except that the SRAM lookup table is not im-
plemented. A general block diagram of the system is shown
in Figure 1. The specifications for the system are given in
Table 1. The synthesizer needs to generate a wide range of
frequencies to support different display modes.

3 High-Level Design

The idea of hierarchical design is not new by itself; what
makes this methodology valuable is providing the necessary
tools and techniques for fast and efficient hierarchical mapping
of the constraints. Therefore the behavioral simulation and
optimization tools used will be described in detail.
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Figure 2: Video Driver System Hierarchy

The hierarchy of our design example contains two high-
level decompositions (Figure 2). For the first, the constraints
of Table 1 can be trivially decomposed into D/A and fre-
quency synthesizer constraints. The D/A converter synthesis
hierarchy stops after the constraints are given, since a module
generator [2] is used for automatic synthesis from specifica-
tions. For the design of the file register, standard cell libraries
are used. The description of the methodology will focus on
the path highlighted in Figure 2. It is important to note that at
each level of the hierarchy, the performance deterioration due
to routing parasitics is taken into account.
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Figure 3: PLL programmable frequency synthesizer

For the PLL system design, constraints obtained from the
previous level of the hierarchy will be mapped onto an archi-
tecture and component parameter constraints. In this example
only one architecture is optimized. Typically though, more
architectures can be evaluated using behavioral simulation.

The architecture selected is a charge-pump PLL (Figure 3)
using a ring oscillator VCO and a phase-frequency detector
(PFD). The main advantage of this architecture is that it does
not require any external components and hence it can be easily
integrated. By changing the divider values, various integer
fractions of the input clock can be realized: Fout = N

M�K
�Fref .

PLL Behavioral Models

For the high-level mapping, a behavioral description of the
PLL has to be used. It is important that the behavioral models
are implementation independent and capture all the important
second order effects determining the performance of analog
circuits. A modified version of an event-driven behavioral
simulator for PLLs [3] was used, including more accurate
behavioral modeling of effects such as the PFD dead zone,
charge-pump charge injection and mismatch, and VCO satu-
ration and nonlinearities. The PLL is described by a set of
differential equations:
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F (Vc(t)) = F0 +K0Vc + : : :+KnV
n
c ; Vc > Vsat (6)

The state variables �i, Vc, Vx, �j represent the phase of the
input clock, the VCO control voltage, the voltage on capacitor
C, and the phases of the nd stages of the VCO delay stages
respectively. ST = 0;�1; 1, depending on the state of the
PFD. F (Vc(t)) is the instantaneous VCO frequency.



Figure 4: Jitter Flexibility Function

The PFD is modeled as a state-transition table. The state
transition events happen at the zero-crossing of the VCO out-
put, i.e. �(t0) = n�. An iterative integration method is used
to compute the exact transition times, so that numerical noise
is minimized.

Even though many effects such as power supply and sub-
strate coupling can contribute to the overall timing jitter, the
fundamental performance limit is due to the devices’ intrinsic
thermal noise. If careful design techniques are used, such as
differential architectures, separate power supplies and on-chip
decoupling capacitors, most coupling effects can be reduced
so that PLL timing jitter can be attributed mainly to thermal
noise, which is modeled as a white Gaussian random process.
The overall jitter is then predicted by adding random noise at
the time of each VCO transition and subsequently processing
the resulting waveform [3].

PLL High-Level Optimization

Since the behavioral description does not depend on the low-
level implementation, we choose the high-level parameters by
optimizing for maximum design flexibility [1]. Flexibility is
a heuristic measure of the easiness to meet a set of design
specifications. Typically, parabolic and hyperbolic functions
are used. The flexibility function for parameter ∆�V COrms
is shown in Figure 4. The criterion used to build the flexibil-
ity functions was attributing flex(x) = �10 for a parameter
value considered “hard”, and flex(x) = 0 for a parameter
value considered “easy” to obtain. Those parameters were
heuristically adjusted. By using flexibility functions it is pos-
sible to consider design trade-offs at the system level in a
systematic way, without knowing the details of the implemen-
tation. This significantly accelerates the design process.

The performance constraints of the PLL are, stability in
the frequencies of operation, and timing jitter. Stability is
checked for the worst case configuration by imposing a maxi-
mum acquisition time. Jitter is also checked at the worst jitter
accumulation configuration. To ensure tolerance to parameter
variations, that can be as high as 30% of the nominal value, an
additional phase margin constraint is added. The optimization
problem can therefore be expressed as:

max
nX
i=1

flexi(xi) (7)
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where fmax = 140 MHz, fu is the unity gain frequency,
and n is the number of parameters used in the optimization:
Ko;∆�V CO; Ip; R;C;C2.

Most nonlinear optimization algorithms require accurate
computation of the first and/or second order derivatives for
convergence reasons. This may be difficult to obtain when
simulators are used to calculate the constraints. Furthermore,
the gradients of the constraint function are often not defined
outside the feasible region. This is the case of the PLL, where
timing jitter and acquisition time cannot be defined when the
system is unstable.

A quite efficient method to address such problems is the
supporting hyperplane method. The algorithm operates as fol-
lows: after an initial feasible point is given, an unconstrained
optimization is performed. Then, all nonlinear constraints are
checked and if the solution point Pk+1 is feasible, the algorithm
stops and the solution is a global minimum. If a constraintgi is
violated, then the point uk+1 is found on the line joining the ini-
tial feasible point P0 and the last solution Pk+1, that lies on the
boundary of the feasible region S. Then a linear constraint is
added such as: rgj(uk+1)(x � uk+1) � 0. Consequently, the
linearized constrained optimization problem is solved again.
This process is repeated until a global minimum is found that
satisfies the nonlinear constraints. The algorithm is depicted
graphically in Figure 5. In order to guarantee convergence to
a global optimum, the feasible space must be convex.

In this algorithm, derivatives are only needed in the feasible
space, where the constraint functions are well defined. In
the case of the PLL a great problem is eliminated, since the
jitter constraint is not defined when the system is unstable.
However, the convexity requirement is a significant drawback
since it is hard to guarantee in most circuit design problems.
Even though it worked in the specific PLL case, the algorithm
could fail in more complicated optimization problems with
more variables.

The algorithm was implemented in C++. Behavioral simu-
lation was used to compute the jitter and stability constraints.
The initial feasible point, found using behavioral simulation,



Parameters Final Initial
K0 (MHz/V) 40 50
∆�VCOrms (ps) 3.33 1.03
Ip (�A) 15.8 5
R (KΩ) 200.5 220
C (pF) 57.8 220
C1 (pF) 5 5
Constraints Final Initial
∆�rms � 50 ps (ps) 50.42 45
Phase margin � 45o(o) 43.6 60
Flexibility 2.79 -48.9

CPU Time (sec) 7606.1
Iterations 11

Table 2: Optimization results

was externally provided to the optimizer. The phase margin
constraint was computed first to save CPU time. Since the jitter
constraint is the result of a Monte-Carlo simulation, the gra-
dients computed can be quite inaccurate. An iterative method
was used to define the step for the finite differences. A large
step within the feasible region was initially used, which was
reduced until the value of the derivative became noisy. If a so-
lution to the linear optimization problem could not be found,
the point at which the derivative was computed was moved
more “within” the feasible region. The possible loss of overall
optimality is of little concern, since a heuristic objective is
used. The results of the high-level optimization are summa-
rized in Table 2. The tolerance of the optimization result to
worst-case parameter variations was verified using behavioral
simulation.

4 Low-Level Design

Following the methodology, the high-level parameters become
performance constraints for the low-level building blocks and
are mapped onto a sized architecture of transistors and layout
parasitics. A standard dead zone-free PFD was automatically
synthesized from high-level description using digital synthe-
sis tools. For the charge-pump, a design similar to the one
described in [4] was used.

For the VCO, a ring oscillator VCO topologyusing differen-
tial cells with CMOS loads in triode region [5, 4] was selected
in order reduce the effect of power supply and substrate cou-
pling. The oscillator consists of eight cells and its output is
converted to full CMOS swing via a level-restoring circuit.
A modified version of the cell topology described in [5] was
used. The topology of the cell with the bias circuit is shown
in Figure 6.

Optimization Taking into Account Parasitics

Following the proposed methodology, the performance con-
straints for the VCO must be mapped onto component values.
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Figure 6: VCO delay cell and bias circuit

To ensure that the performance constraints are met after the
layout is done, it is critical that layout parasitics are taken into
account during the optimization phase.

Let P a performance vector, C the parasitics vector and Pmax

the corresponding maximum allowed performance degrada-
tion due to those parasitics. Assuming a linear model around
the nominal performance and small parasitics, the performance
degradation ∆P i can be given by:

∆P i =

h
SPiC

iT
� ∆C (11)

SPiC is the sensitivity vector of performance Pi with respect
to the parasitics’ vector C and ∆C is the deviation from the
nominal estimate of the parasitics. Given a bound ∆Cmax on
the maximum allowed deviations from the nominal estimate
of the parasitics, we can force the optimization result to have
a reduced sensitivity to parasitics by imposing a constraint on
the maximum performance deterioration allowed.

The nominal estimate of the parasitics and the maximum al-
lowed deviation are subsequently used to compute constraints
for the VCO layout generator. A maximum deviation of 50%
from a nominal estimate of 15 pF for the parasitics at the out-
puts of the differential gates were used. For the optimization,
only the critical device sizes, Wn; Ln;Wp; Lp were used as
parameters. The overall optimization problem for the VCO
can be expressed as:

min Power(V CO) (12)

s:t: Fmaxmin � FmaxV CO � Fmaxmax (13)

Fminmin � FminV CO � Fminmax (14)

∆�V COrms � ∆�max (15)�
SP

C

�T
� ∆Cmax � ∆Pmax (16)

The optimization problem was again solved using the sup-
porting hyperplane algorithm with the initial feasible point
provided externally. All constraints were evaluated using
SPICE simulations except for the timing jitter constraint that
was evaluated using equations [6]. The sensitivities were
evaluated using finite differences. The sizes obtained were
Wn = 2:6 �m;Ln = 4 �m;Wp = 36 �m;Lp = 1 �m.



beginf
for-each(Pj)

for each(Ri; Ci) calculate(
@Pj

@Ci
;
@Pj

@Ri
);

do f

calculate(Rimax;Cimax ); /* quadratic optimization*/
for-each(i) f
set Wi = Wimin andLi = Limin =) Ci = C0 Wmin Lmin ;

do f
evaluate Ri = �

Wi
Li

;

if (Ri < Rimax ) then exit;
else Wi =Wi + ∆W ;

g while (Ci < Cimax);
g while ((Ci > Cimax) or (Ri > Rimax));

gend

Figure 7: Layout Generation Algorithm

5 Physical Design

The constraints set in the optimization problem of Equa-
tions 12 - 16 were used in the layout generation. Moreover,
constraints for all other parasitics were generated using the
constraint generation techniques described in [7]. The sensi-
tivities of every performance parameter with respect to every
parasitic resistance and capacitance were calculated automat-
ically using finite differences and then, given a maximum al-
lowable performance deviation, bounds were imposed on ev-
ery parasitic using quadratic optimization maximizing layout
flexibility.

A parametric layout generator was written for the specific
VCO topology. It uses a fixed floor-plan and takes as pa-
rameters the number of delay cells, the device sizes and the
parasitic constraints. Additional parasitic constraints were
generated for the parasitics that were not accounted for in the
circuit optimization. The algorithm for the layout generation
is shown in Figure 7. ∆W is the minimum increment allowed
by the process design rules, Pj is the performance j and i is
the number of the parametric wires.

The final layout for the video driver system was synthesized
using automatic routing tools. Different analog and digital
supplies were used and special supplies were provided for the
VCO in order to avoid as much as possible supply-coupled
noise which can contribute to timing jitter.

6 Bottom-Up Verification

The value of behavioral modeling and simulation is apparent
in the verification phase of the PLL, which is an inherently
“stiff” system, often causing a full circuit simulation to be
impossible or unrealistic. Following the hierarchical verifi-
cation approach, first the performance parameters of the PLL
building blocks were extracted using SPICE. The VCO tim-
ing jitter was extracted using the non-Monte Carlo, nonlinear
noise simulator described in [8]. Then, behavioral simulation
was used to verify the performance of the whole system.

In Figure 8(a), the result of a flat circuit simulation is com-
pared to the result of the behavioral simulation. The waveform

simulated is the control voltage of the VCO when the PLL is
in acquisition mode and is done to detect stability in the worst
case divide ratio. The waveforms from both simulations are
almost identical. The behavioral simulation completed in 560
CPU seconds, while the full circuit simulation took 20 CPU
hours (using macro-models for the dividers). Both simula-
tions were performed in a DEC Alpha-Server 2100 5/250 with
256 Mb of memory and 4 CPU’s. Figure 8(b) shows the re-
sult of a behavioral simulation for the timing jitter using the
extracted parameters for Fout = 100 MHz. The plot shows
the square of the PLL and VCO rms timing jitter as a function
of the distance from the reference transition. As expected, the
open loop VCO jitter accumulates linearly to infinity, since
there is no correction from the PLL loop while the PLL jit-
ter converges to a final value. The projected performance is
based only on the calculation of the thermal jitter of the VCO,
which sets the fundamental performance bound. Still, the per-
formance of the actual system is expected to be close to the
one predicted since care has been taken to reduce as much as
possible all other jitter sources.
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7 Experimental Results

The chip was fabricated on a MOSIS HP 1:0�m technology. A
die photo is shown in Figure 9. The 17,000 transistor system
occupies an area of 3.4 mm x 3.9 mm= 13.26 mm

2. A

Figure 9: Video Driver System Die Photo
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Figure 11: Jitter Histogram

printed circuit board was designed and manufactured in order
to measure the performance of the chip. Experimental results
show that the D/A INL and DNL performance is 0.16 LSB and
0.05 LSB respectively and that the settling speed requirements
are also met (Tset = 6 nsec). Figure 10 shows experimental
INL data from six D/A converters as a function of the input
code.

The PLL frequency generator meets the specifications for
generating frequencies from 25 MHz to 130 MHz. Figure 12
shows the output waveform at 130 MHz. A small deviation
from the expected speed in the upper edge of the specifications
is due to an error in the parameters file used in the synthesis
phase. Detailed timing jitter measurements were done using
a Tektronix 11801B high bandwidth digitizing oscilloscope
with the same waveform feeding the signal and the trigger
inputs. Figure 11 shows an output waveform at 100 MHz and
the corresponding jitter histogram at a transition edge 7 �s

from the reference, so that the accumulated jitter converges
to its final value. The rms jitter at 100 MHz is 65 ps (0.65
%), which is close to the specifications. The results are in
agreement with predictions within 30 % for the worst case chip.
Component process variations affecting the PLL bandwidth,
simplified noise models for the devices, power supply and
substrate coupling can cause the measured value to deviate
from our predicted value. Also reflections and coupling from
the testing board can significantly affect the measurements.
For this reason, the agreement between results and predictions
is quite satisfactory.

Figure 12: Frequency Synthesizer Output

8 Conclusions

A complete design flow for a video driver system has been
presented, based on the top-down, constraint-driven paradigm.
Experimental results verify the validity of the design method-
ology. Fundamental to the approach was the use of behavioral
simulation and optimization for hierarchical constraint propa-
gation. Combined with the tools used, this methodology can
have a significant impact on the design of similar systems
by reducing over-design, design times and costly fabrication
iterations.
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