
ICCAD ’96
1063-6757/96 $5.00 1996 IEEE

An Algorithm for Synthesis of System-Level Interface Circuits�

Ki-Seok Chung Rajesh K. Gupta C. L. Liu

Department of Computer Science

University of Illinois at Urbana-Champaign

Urbana, IL 61801

Abstract

We describe an algorithm for the synthesis and opti-

mization of interface circuits for embedded system com-

ponents such as microprocessors, memory ASIC, and

network subsystems with �xed interfaces. The algorithm

accepts the timing characteristics of two system com-

ponents as input, and generates a combinational inter-

face (glue logic) circuit. The algorithm consists of two

parts. In the �rst part, we determine the direct pin-to-

pin connections in the interface circuit employing a 0/1

ILP formulation to minimize wiring area and dynamic

power consumption. In the second part, we determine

logic subcircuits in the interface circuit, utilizing the tim-

ing diagrams of the system components. The proposed

algorithm has been implemented in a software package

SYNTERFACE. Experimental results are presented to

demonstrate the e�ectiveness of the algorithm.

1 Introduction
To reduce the complexity of system integration, pre-

designed components are used more and more often. Use
of predesigned o�-the-shelf components, such as micro-
processor, memory, and macro circuit block leads to re-
duction in cost and design time in complex systems.
However, these components often have di�erent inter-
face characteristics and require interface circuit to con-
nect them together. Depending on their interface tim-
ing characteristics, these components are connected to-
gether either directly, or through combinational, or se-
quential glue logic circuits. In this paper we address the
problem of automatic generation of an interface circuit
between two predesigned components.

The generation of control signals with the minimum
number of additional gates is a di�cult problem. Con-
sider the following example.

Example 1.1. Figure 1 shows an example on the design

of an interface circuit between a microprocessor and a SRAM

chip. Each pin on a chip has a �xed electrical characteristic.

It is either an input or an output pin depending on whether

it is driven by, or drives, an electrical signal, respectively.

�The work was partially supported by the National Science
Foundation under grant MIP-9222408 and NSF Career Award
MIP95-01615.

There are several ways to connect the two chips in Figure 1-
(a). We show two di�erent ways in Figure 1-(b) and 1-(c).

The costs of the interface circuits, however, are di�erent in

the two cases. One way to quantify the cost is to examine
the number of signal transitions as it is directly related to

power consumption in current technology.

Also in Figure 1-(c), we can see that the AS� signal is

used to drive three input pins. Such sharing of output signal

by as many input pins as possible typically results in area

minimization in the interface circuit, reducing the number of

wires from one chip to the other. Therefore, another good

design objective is to maximize pin sharing within the fanout

limitation while reducing the amount of glue logic. 2

ADDR

DATA

AS*

DS*

R/W*

DTACK*

ADDR

DATA

OE*

CS*

WE*

Microprocessor Memory

(a)

ADDR

DATA

AS*

DS*

R/W*

DTACK*

ADDR

DATA

OE*

CS*

WE*

GND

Microprocessor Memory

(b)

ADDR

DATA

AS*

DS*

R/W*

DTACK*

ADDR

DATA

OE*

CS*

WE*

Microprocessor Memory

(c)

Figure 1: Pin layout of components to be interfaced and
two di�erent designs of the interface circuit

The problem of interface design has been studied ear-
lier in the context of timing analysis and veri�cation.
In [2], methods to synthesize interface circuit based on
interface templates were presented. In [3], methods to
synthesize interface blocks that consist of logic circuits
and/or software routines as straight-line codes were pre-
sented. The design of interface circuit from a high-level
speci�cation, such as interface protocols, was studied in
[4, 5, 7, 8]. A set of interface co-synthesis techniques for
the synthesis of hardware/software interfaces was pre-
sented in [6].

Our work di�ers from previous works in two respects:
we present a procedure to synthesize (a) an optimal di-
rect pin-to-pin interconnect networks and (b) an optimal
combinational glue logic circuit.

This paper is organized as follows. In Section 2,
we present our problem formulation. In Section 3, we
present our synthesis algorithm. In Section 4, we present

experimental results. Section 5 concludes the paper.

2 Problem Statement
A signal on a pin may have four possible actions: (a)

transition from high to low, (b) transition from low to
high, (c) becoming valid, and (d) becoming invalid. The
last two actions are relevant in the case of multi-bit (or
data) pins. A signal action on a pin x is denoted x+ or
x�. x+ represents becoming valid or transition from low

to high and x� represents becoming invalid or transition
from high to low. An event refers to an instance of an
action with a time stamp. Let T (e) denote the time
at which event e takes place. A protocol is a partial
ordering relation over a set of events. A protocol is often
described by a protocol owchart. A communication

operation(which will also be referred to as \operation"
for brevity), such as a \memory read," is de�ned by a
protocol consisting of a sequence of events.

For our synthesis problem, the inputs are the data
sheets for the components(or chips) to be connected to-
gether and the protocol owcharts for the operations
between them. From the data sheet of a chip, we can
obtain information on (i) the pin description which spec-
i�es the operations in which each pin is involved and
whether the pin is an input pin or an output pin for
each of the operations, and (ii) timing diagram (with
a parameter table) which describes the timing relation-
ships between events in terms of order and max/min
separation. Also from the timing diagram, we can de-
termine, for each pin, the total number of transitions
for a given operation. The minimum timing separation
between two events e1 and e2 is denoted min sep(e1; e2),
which means T (e2) � T (e1) � min sep(e1; e2). The
maximum timing separation between the two events is
denoted max sep(e1; e2) which means T (e2) � T (e1) �
max sep(e1; e2). We assume that max sep(e1; e2) is al-
ways nonnegative which implies that event e1 occurs no
later than event e2.

There are two types of timing relationships in a proto-
col for each operation (such as data or control transfer).

� Speci�ed timing: It refers to the min/max timing
separation between two events where the timing re-
lation will always be met when the operation is per-
formed.

� Required timing: It refers to the min/max timing
separation (between two events) which is required
to happen in order to perform the operation cor-
rectly. Such timing relation is a required timing.

We address the problem of interface circuit design by
considering two components at a time. We can extend
our work to the design of interface circuits in a multichip
environment by carefully deciding the order in which two
of the several components are considered. Therefore,
the problem of interface synthesis is stated as follows:
Given an input description consisting of the tim-

ing diagram and protocol owchart of two chips,

synthesize an interconnect circuit between the

two chips such that the interface cost is mini-

mized.
The input information for our synthesis algorithm is

represented by signal transition graphs [1]. The ver-
tices in an STG represent actions on the pins. The
edges in an STG represent timing constraints. There
are two types of edges corresponding to minimum and
maximum timing constraint between actions. Figure 2
shows an example of a timing diagram and its corre-
sponding STG. The dotted arrows represent maximum

timing constraints, and the solid arrows represent mini-

mum timing constraints. The required and speci�ed tim-
ing replationships between events are expressed in two
separate STGs, namely the requirement STG and the
speci�cation STG. The causality relations obtained
from the protocol owchart is implicitly represented in
the STGs as minimum timing constraints.

min constraint

max constraint

z

y

x

start x- y- z+ x+ Y+

max 20

10

x-

min 10 min 50

max 100

max 20

min 10

x+y-

z+

50

start

100

20

10

20

y+

Figure 2: A timing diagram and an equivalent signal
transition graph

3 Modeling and Synthesis of System In-

terface
A combinational interface consists of three types of

connections:

� Type 1 Connection: A pin is connected to the power
supply(VDD) or ground(GND).

� Type 2 Connection: A direct connection between a
driving pin and a driven pin.

� Type 3 Connection: A connection which requires
logic gates between driving signal(s) and a driven
signal.

We assume that aType 1 connection is least expensive
and a Type 3 connection is most expensive. To minimize
the interface cost we shall try to maximize the usage of
Type 1 and Type 2 connections. The overall design ow
is shown in Figure 3.

Generation of interface circuit is carried by examining
the compatibility of pins. We de�ne the notion of com-

patibility between a driving and a driven pin as follows.

De�nition 3.1 (Compatibility): For an operation, a
driving(output) pin is compatiblewith a driven(input)
pin if the driving pin can trigger the driven pin while
satisfying all required timing constraints.

Timing Diagram
&

Parameter Table
Protocol FlowChart

Signal Transition Graph
Specification & Requirement

Type 1 & Type 2
Connections

Discrete Representation/Composition
&

Type 3 Connections

Figure 3: Overview of the interface synthesis algorithm.

3.1 Determination of Type 1 and Type 2
Connections

To minimize the wiring area and dynamic power con-
sumption, our algorithm attempts to maximize the shar-
ing of output pins. If there are more than one compatible
output pins, we select the one with the least number of
transitions to reduce dynamic power consumption. The
algorithm for the determination of Type 1 and Type 2

connections is based on two di�erent STGs.(speci�cation
STG and requirement STG) A speci�cation STG is con-
structed for each operation on each chip. One require-
ment STG is de�ned for one operation. The determina-
tion of the Type 1 and Type 2 connections is done by the
following three steps.

STEP 1: Pin Compatibility Checking by Merg-

ing STGs

For a given operation, we inspect the timing diagram of
each driving pin to check whether there are any driven
pins that can be triggered by it.

For each operation, we merge the two speci�cation
STGs of the two chips as follows. The vertices corre-
sponding to an input pin in one STG are merged with
the vertices corresponding to an output pin in the other
STG. The merging is done with respect to every pair of
input pin and output pin in the two speci�cation STGs
to test the compatible connections. After merging of an
input and an output, the input pin will take on the same
timing characteristic as the output. Hence, the merged
graph of the two speci�cation STGs will represent the
timing characteristics of the two corresponding compo-
nents when the input pin is connected to the output
pin. A merged graph is not feasible, i.e. cannot be im-
plemented by any circuit, if it contains a positive cycle.

We check whether each of the required timing con-
straints is satis�ed using the merged STG and the re-
quirement STG. A minimum separation requirement

A
r
�! B is guaranteed to be satis�ed only when the

length of the longest path between A and B in the
merged speci�cation STG is greater than or equal to r.
A maximumseparation requirement can be handled sim-

ilarly since A
l

---> B is equivalent to B
�l
�! A. To test

whether a required timing can be satis�ed, we compute
the length of the longest path for all pairs of vertices in
the merged speci�cation STG using the Floyd-Warshall
algorithm. Since a connection between an input pin and
an output pin should guarantee none of the required tim-
ings is violated, we test one requirement at a time and
repeat the step until all the edges in the requirement
STG have been tested.

STEP 2: Operation Compatibility Using Inter-

face Graphs

For each operation, we build an interface graph. Inter-
face Graph GB(V1 [V2; E) is a bipartite graph where
V1 is a set of vertices corresponding to the driving pins,
and V2 is a set of vertices for corresponding driven pins.
There is an edge (u; v) in E if v is a driven pin which
can be triggered by u. An edge (u; v) is given a weight
which reects the e�ectiveness when v is triggered by u.
In the current implementation, we determine the weight
of each edge based on the total number of transitions in
the corresponding driving signal for all the operations.

After building the interface graph for each operation,
we construct a graph which is the intersection of all in-
terface graphs. We call this the intersection graph.
The intersection of two graphs is a graph that contains
only those edges that are in both graphs. The intersec-
tion graph is used to determine an interface circuit that
would support all operations.

STEP 3: Signal Selection

The selection of a driving pin is made according to two
criteria. The �rst is to maximize the sharing of a driving
signal. Maximizing the sharing of a driving signal under
fanout constraints will most likely lead to a minimiza-
tion of the wiring area. The second is to minimize the
dynamic power consumption by selecting a driving pin
so that the pair of driving and driven pins have the least
total number of transitions. We formulate this as a 0/1
ILP problem.

0/1 ILP Formulation
Let Vout be a set of vertices each of which represents a

driving(output) pin in the intersection graph, and let Vin be

a set of vertices each of which represents a driven(input) pin
which has at least one incident edge in the intersection graph.

Let si be a decision variable corresponding to vi 2 Vout. Let

cij be a decision variable corresponding to each edge between
vi 2 Vout and vj 2 Vin in the intersection graph. Let W be a

set of weights each of which is de�ned for each vi 2 Vout. In

a solution to 0/1 ILP, si = 1 means that vi will be used to

drive input pins in the interface. Otherwise, it will be 0. The

cij = 1 means that vi will drive vj. Otherwise, it will be 0.
Thus, si = 1 only if there exists at least one cij = 1 for some

j. Let w(vi) denote the weight for vi 2 Vout. Let E denote

the set of edges in the intersection graph. Let Ni denote the
number of edges incident with the output vertex vi in the

intersection graph. The objective function consists of two

weighted sums. The �rst sum is a measure of the wiring area
weighted by the number of transitions in the driving signal

and the second sum is used to ensure that a connection is

unique while considering the additional switching activity
due to multiple fanout. Thus, the objective function to be

minimized is:

Cost = � �
X

vi2Vout

w(vi) � si + � �
X

(vi;vj)2E

w(vi) � cij

where � and � are user de�ned weighting factors.
The constraints are:

8vj 2 Vin;
X

vi2Vout;(vi;vj)2E

cij = 1

8vi 2 Vout; si �
1

Ni

�

X

vj2Vin;(vi;vj)2E

cij � 0

3.2 Synthesis of Type 3 Connections

After deciding allType 1 and Type 2 connections, each
unconnected pin is considered for a Type 3 connection.

3.2.1 Discrete Representation of Signals

A discrete representation for a signal is obtained by dis-
cretizing its waveform. A clock cycle is sub-divided into
micro-timesteps. We assume that the size of a micro-
timestep is small enough to enable us to capture all the
transitions of a waveform in a clock cycle, but large
enough so that the waveform will not be changed by
the possible additional delay due to the introduction of
gates. With the min/max constraints, a driving signal
can be represented by a sequence of 0's, 1's, and u's.
u stands for \unknown" which means that a transition
may occur in the micro-timestep. A required signal is
represented by a sequence of 0's, 1's, and d's.(d stands
for \don't care".) Let DS denote the discrete represen-
tation of signal S. Figure 4 shows an example of discrete
representations of driving signals. The upper time limit
of the representation is the maximum number of micro-
timesteps within which all the relevant signal actions
have occurred for a given set of communication opera-
tions. The upper time limit of the timestep is usually
available from the datasheet. To synthesize a driving
signal for a Type 3 connection from available driving
signals, we need to generate the 0's and 1's properly in
the required signal, and need not pay attention to the
d's.

Suppose DTACK is a pin for which we want to �nd
a Type 3 connection and there are four available signals,

A

B

C

min(start,A+)=30

max(start,B+)=20

Start (0) 20 30 50
Upper Time

 Limit (70)

0 0 0 U U U U

0 0 0 U U 1 1

 0 10 20 30 40 50 60

D

D

DA

B

C

min(start,C+)=30

max(start,C+)=50

U U 1 1 1 1 1

Figure 4: Discrete representations of driving signals

AV (Address Valid), AS, DS, and R= �W as in Exam-
ple 1.1. For the READ and the WRITE operations, the
discrete representations of signals are shown in Table 1.

READ (time scale: 10, micro-timestep size: 3)

TIME(ns) 0 3 6 9 12 15 18 21 24 27 30

DAV u u u 1 1 1 1 1 1 u u
DAS 1 1 u u 0 0 u u u u 1
DDS 1 1 u u u u 0 0 u u 1
D
R= �W u 1 1 1 1 1 1 1 1 1 1

DDTACK 1 1 d d d 0 0 d d d 1

(a)

WRITE (time scale: 10, micro-timestep size: 3)

TIME(ns) 0 3 6 9 12 15 18 21 24 27 30

DAV u u 1 1 1 1 1 1 u u u
DAS 1 u u u 0 0 0 u u u 1
DDS 1 1 1 1 1 u u 0 0 u 1
D
R= �W 1 u u u 0 0 0 0 0 0 u

DDTACK 1 d d d d d d 0 0 d 1

(b)

Table 1: Signals for synthesizing DTACK for (a) READ
and (b) WRITE

3.2.2 Signal Composition

Available driving signals can be combined to yield \com-
posite" driving signals. We are looking for a composite
driving which matches the required signal in all the 0's
and 1's.(The d's are ignored.) A driving signal that con-
tains some u's cannot be used by itself to synthesize the
driving signal since we do not know the exact value of
the signal at the micro-timesteps containing the u's.

Thus we try to eliminate the u's as much as possible
in order to maximize the number of available signals. We
present an algorithm based on signal compositions. The
following composition rules are used for the composition
of driving signals containing u's.

� Conjunctive(AND) composition with u:
u � 0 = 0; u � 1 = u; u � u = u

� Disjunctive(OR) composition with u:
u+ 1 = 1; u+ 0 = u; u+ u = u

� Complementive(NOT) composition of u:
:u = u

We call a (composite) signal valid if it does not con-
tain any u. And we call a composition valid if the re-
sulting signal of the composition is valid.

3.2.3 A Heuristic Algorithm for Determination

of Valid Composite Signal Set

An exhaustive search of all possible compositions of a
pair of signals to �nd all possible valid composite sig-
nals leads to an exponentially large number of compos-
ite signals. Therefore, we suggest a heuristic algorithm
for �nding a set of valid signals from a given signal set.
First we de�ne the following concept.

De�nition 3.2 (Null-Representation): A representa-
tion DA that contains only u and 1, or only u and 0, is
called a null-representation.

Using the concept, we present a heuristic algorithm
as shown below. Let D be the set of original representa-
tions of all available signals. The algorithm takes D as
the input, and returns D0 which is the new set of valid
signals which are obtained from the D through NOT,
AND and OR compositions.

Procedure Generate Valid Signals(D)
InitializeD0 to D
While 9 a new signal to consider
For each pair (DA;DB) which hasn't been considered yet
Generate Composite Signals(DA; DB)
Discard all null representations
Remove all duplicated signals
Check the equivalence to all the existing signals
Update D0 by adding/deleting representations

endFor

endWhile

Eliminate all the invalid representations from D0

return D0

endProcedure

Procedure Genrerate Composite Signals(DA; DB)

micro-timestepwise inspects occurring patterns between
two representations and generates only the minimum set
of useful compositions.

3.2.4 Finding a Common Expression

Since there will be, in general, di�erent driving signals
in the same driving pin for di�erent operations, we need
to �nd a composition of signals that is common to all
operations. For example, from Table 1-(a), the set of
valid signals for READ is fDAS �DDS ; DAV � :(DAS �

DDS); DR= �W � :(DAS � DDS)g. From Table 1-(b),
the set of valid signals for WRITE is fDDS ; DAS �

DDS ; DR= �W +DDSg. The intersection of the two sets
is fDAS � DDSg. Thus, we can build a truth table for
both operations as shown in Table 2. And we can deter-
mine whether there is a common expression or not. In
this case, DAS �DDS is the expression for DDTACK .

3.3 Interface Algorithm Implementation
Our algorithm for interface synthesis is shown by pro-

cedure SYNTERFACE. The algorithm takes as input SA,
SB and R which are the set of speci�cation STGs of chip
A, the set of speci�cation STGs of chip B, and the set of
all the requirement STGs, respectively. Let SAi be the
speci�cation STG of chip A for the ith operation(SBi is

Truth Table for DDTACK

DAS �DDS DDTACK for READ DDTACK for WRITE

0 0 0
1 1 1

Table 2: Finding a common expression for a signal
DTACK

de�ned similarly.), and let Ri be the requirement STG
for the ith operation. Also the interface graph for ith
operation is denoted Ii.

Procedure SYNTERFACE(SA,SB,R)

/* PART 1 */

For each operation i
For each driving/driven pairs of SA

i
and SB

i

M merge Graph for a pair of input and output pins
For each edge of Ri

Test M satis�es the requirement edge
endFor

If M satis�es all the requirements

Draw an edge on Ii between the pins considered
endIf

endFor

endFor /* At every iteration, construct Ii */
Obtain I

Formulate and Solve a 0/1 ILP to determine connections
for Type 1 & 2

/* PART 2 */

Determine the size of the microtime step �
For each pin for Type 3 connection

For each operation
Encoding signals and obtain composite signals
Finding valid boolean expressions

endFor

Determine a Type 3 connection by �nding a common

expression
endFor

endProcedure

4 Experimental Results
The interface synthesis algorithm was implemented

in approximately 3000 lines of C++ code. Experiments
were performed on a Sun Sparc10. We use MPOS1 to
solve the 0/1 ILP problem. We tested our algorithm on
several commercial chips. We present here some exam-
ples and Table 3 summarizes the results.

1. MC68000 and MC6850 ACIA
The MC6850 [11] Asynchronous Communication In-

terface Adaptor (ACIA) is a general purpose interface
device which provides the data formatting and control
functions to interface serial asynchronous communica-
tion between a microprocessor and an external system.
In this example, we only consider the interface circuit be-
tween the microprocessor MC68000 and MC6850 ACIA.
As mentioned previously, our design algorithm focuses

1Multi-Purpose Optimization System(MPOS) is a program
from Northwestern University for solution of linear, integer and
quadratic programs.

Experiment Com. Spec. Req. T1 T2 T3 NC
Op. Con. Con.

MC68000/ RD 19 17
MC6850 WR 25 19 0 5 1 0
(8MHz) AVI 11 3

8085AH-2/ S/R 16 10
8231A(4MHz) S/W 15 7 1 4 1 0

80186/ RD 42 14
82530 WR 36 15 2 3 2 2
(4MHz) INT 35 9

Table 3: Summary of the experimental results

on the control glue logic for proper communication be-
tween two chips, and some necessary decoding logic or
priority encoding chips are assumed to have been pro-
vided.

2. Intel 8085AH-2 and Intel 8231 Arithmetic

Processing Unit
In this experiment an 8 bit microprocessor, Intel

8085AH-2 [9] is interfaced to an Arithmetic Processing
Unit, Intel 8231A [10]. The APU provides high perfor-
mance oating-point computation.

3. Intel 80186 and Intel 82530 Serial Communi-

cations Controller
The Intel 82530 Serial Communications Con-

troller [12] is a dual-channel, multiprotocol data com-
munications peripheral. In this experiment, we consider
the interface between an 8 Mhz 80186 and a 6 Mhz 82530
when they are clocked at 4 Mhz for READ, WRITE, and
INTERRUPT operations.

SYNTERFACE has automatically generated combi-
national interface circuits for the above experiments.
Table 3 and Figure 5 summarize the input informations
and the result for the above experiments. Com.Op. lists
operations that the resulting interface circuit supports.
Spec.Con. and Req.Con. are the number of speci�ed tim-
ings and required timings, respectively. T1, T2, and T3

show the number of Type 1, Type 2, and Type 3 connec-
tions in the resulting interface circuits. NC is the number
of input pins for which SYNTERFACE could not synthe-
size a proper driving signal. In Experiment 3, we found
that the two pins, INTA� and WR�(on 68530) could
not be connected properly. We would have to introduce
delay elements.

5 Conclusion and Future Work
We present in this paper an algorithm to synthesize

a combinational interface circuit between two compo-
nents. The algorithm consists of two parts. In the �rst
part, direct pin-to-pin connections are determined us-
ing interface graphs and a 0/1 ILP formulation to yield
an optimal interface circuit. The resultant interface is
optimal in terms of wiring area and dynamic power con-
sumption.

For interface circuits that require logic gates they

RxD

RxCLK

TxD

TxCLK

RTS

CTS

MC68000

ADDR

DATA

E

R/W*

VMA*

DS*

FC*

DATA

RS

IRQ*

WE*

ADDR DECODER

FCODE DECODER

IPL* PRIORITY ENCODER

VPA*

AS*

To Processor Side

(0-2)

(0-2)

CS

EA

MC6850 ACIA

(a)

ADDR

DATA

IO/M*

ALE

S0

RDY

INTEL 8085AH-2

RD*

WR*

Ao

WR*

DATA

CS*

 READY

RD*

VDD

S1

INTEL 8231A

(b)

ADDR

DATA

INT

INTA*

PCS*

RD*

WR*

DEN*

DT/R*

SRDY

INTEL 80186

VDD

A/B*

DATA

INTA

WR*

RD*

CS*

*

IEI

IEO

RDY

INT*

?

?

INTEL 82530

(c)

Figure 5: Interfaces generated by SYNTERFACE for
(a) MC6850 ACIA & MC68000 (b) INTEL 8085AH-2 &
INTEL 8231 (c) INTEL 80186 & INTEL 82530.

are synthesized using the discrete representation. This
method relies on representation of a timing waveform
using 0/1/u discrete values such that group of driving
signals can be considered together to generate a desired
waveform.

Our algorithm can be extended to consider an inter-
face among multiple chips. However, this technique is
limited to synthesize combinational glue logic circuits.
Therefore, our future plan is to address the problem of
interface synthesis that requires the use of sequential de-
lay elements such as bu�ers and ip-ops.

References
[1] Teresa Meng, \Synchronization Design for Digital Sys-

tems", Kluwer Academic Publishers, 1991.
[2] Gaetano Borriello, \A New Interface Speci�cation

Methodology and its Application to Transducer Syn-
thesis", PhD thesis, University of California, May 1988.

Report No. UCB/CSD 88/430.
[3] P. Chou, R. Ortega and G. Borriello, \Synthesis of the

Hardware/Software Interface in Microcontroller-Based
Systems", In International Conference on Computer-

Aided Design, pages 488-495, 1992.
[4] S. Narayan and D. Gajski, \Interfacing Incompatible

Protocols using Interface Process Generation", In De-

sign Automation Conference, pages 468-473, 1995.
[5] E. Walkup and G. Borriello, \Interface Timing Veri�-

cation with Application to Synthesis", In Design Au-

tomation Conference, pages 106-112, 1994.

[6] P. Chou, R. Ortega and G. Borriello, \Interface Co-
Synthesis Techniques for Embedded Systems", In Inter-

national Conference on Computer-Aided Design, pages

280-287, 1995.
[7] J. Sun and R.W. Brodersen. \Design of System

Interface Modules", In International Conference on

Computer-Aided Design, pages 478-481, 1992.
[8] B. Lin and S. Vercauteren, \Synthesis of Concurrent

System Interface Modules with Automatic Protocol

Conversion Generation", In International Conference

on Computer-Aided Design, pages 101-108, 1994.

[9] Embedded Microcontrollers and Processors Vol. I & II,
Intel,1993

[10] Peripheral Components, Intel, 1993.
[11] M68000 Family Reference, Motorola, 1990.
[12] Connectivity, Intel, 1993

	CDROM Home Page
	1996 Home Page
	ICCAD 96
	Front Matter
	Table of Contents
	Session Index
	Author Index

