
Exploiting Regularity for Low-Power Design

Renu Mehra and Jan Rabaey

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley, CA 94720

email: {renu, jan}@eecs.berkeley.edu

Abstract — Current day behavioral-synthesis techniques pro-
duce architectures that are power-inefficient in the intercon-
nect. Experiments have demonstrated that in synthesized
designs, about 10 to 40% of the total power may be dissipated
in buses, multiplexors, and drivers. We present a novel
approach targeted at the reduction of power dissipation in
interconnect elements — buses, multiplexors, and buffers. The
scheduling, assignment, and allocation techniques presented
in this paper exploit the regularity and common computa-
tional patterns in the algorithm to reduce the fan-outs and
fan-ins of the interconnect wires, resulting in reduced bus
capacitances and a simplified interconnect structure. Average
power savings of 47% and 49% in buses and multiplexors,
respectively, are demonstrated on a set of benchmark exam-
ples.

1. Introduction

In recent years, low power has become a primary design
concern. Among the different power consuming components
of a chip, the interconnect components — buses, multiplex-
ors, and buffers — are the focus of this work. The importance
of targeting interconnect power reduction at the architecture
level is highlighted by the following two facts — (i) intercon-
nect components may consume a large percentage of the total
power and (ii) their power consumption is highly dependent
on architecture-level design decisions [1].

We provide an scheduling, assignment, and allocation strat-
egy specifically aimed at reducing interconnect power. We
target ASIC implementations of datapath-intensive, real-time
DSP applications with fixed throughput constraints. The main
idea behind our approach is to exploit the regularity inherent
in the algorithm to derive a simplified interconnect structure
in the final implementation.

1.1 The impact of exploiting regularity

Regularity in an algorithm refers to the repeated occurrence
of computational patterns, e.g., multiply-add patterns in an
FIR filter and bi-quads in a cascade-form IIR filter. We exploit
the regularity of an algorithm by detecting repetitive patterns
in it and mapping them such that corresponding nodes in dif-
ferent instances of the pattern are mapped to the same hard-
ware unit. As a result, connections within a pattern are

instantiated only once and arereused in each instance of the
pattern. This leads to a simplified interconnect structure with
reduced fan-ins and fan-outs.

Fig. 1 shows two different assignments for a part of an
algorithm and the corresponding hardware netlists. In the
first case, all the instances of the add-mult pattern are
assigned to the same adder-multiplier pair (A1 and M1). As a
result, the connection from the adder to the multiplier needs
to be instantiated only once and can be reused without any
multiplexing overhead. The assignment of Fig. 1(b) does not
preserve regularity. Here the output of the adder A1 connects
to both M1 and S1 and requires more multiplexing. This
example shows that a regular assignment leads to less fan-
outs and fan-ins and lower multiplexing overhead.

Power reduction in a regular implementation stems from
two factors. Due to reduced fan-outs, the interconnect lines
can be kept short leading to lower switched capacitance.
These reduced fan-out buses are used often (for data trans-
fers in recurring patterns) giving the desirable combination
of reduced capacitance on the more active buses. Secondly,
since the fan-outs and fan-ins of hardware units are reduced,

(b)

Figure 1. Preserving regularity leads to a simplified interconnect
structure, (a) Regular assignment, (b)Non-regular assignment.

(a)

*+

*+

*+

>>+

>>+

+ +

* >>

+ +

* >>

mux mux

A1

A1

A1

A2

A2

M1

M1

M1

S1

S1

*+

*+

*+

>>+

>>+

A1

A2

A2

A1

A2

M1

M1

M1

S1

S1

A1 A2

M1 S1

A1 A2

M1 S1

Reprint fromProceedings of the International Conference on Computer-Aided Design, 1996

ICCAD ’96
1063-6757/96 $5.00 1996 ΙΕΕΕ

the multiplexing overhead in terms of the buffers and multi-
plexors required is decreased.

Note that, since a regular implementation is more con-
strained than a non-regular one, it may require more hardware
units and the power savings may come at the cost of increased
area.

1.2 Related work

Originally, most high-level systems focused on functional
unit optimizations. Recently, as research showed that the
interconnect has a first order effect on the quality of the over-
all design [2], there has been a growing interest in intercon-
nect optimization. Several high-level synthesis systems have
incorporated interconnect minimization as one of the primary
goals [3, 4]. However, none of these have targeted power
reduction — they reduce the number of buses but ignore the
cost of accessing them. Techniques for interconnect power
optimization by exploiting the locality of the algorithm are
presented in [1]. The approach in that work is complementary
to, and can potentially be used in combination with, the cur-
rent approach.

Techniques to preserve and exploit regularity have been
gaining interest because many algorithms have repeated com-
putational patterns, especially in the DSP domain where a
large set of component applications — FIR and IIR filters,
Fourier and cosine transforms, etc., inherently have a high
degree of regularity. In high-level synthesis, the regularity
issue has been addressed for both speed and area before [4-8].
However, no work has been done to exploit regularity for low
power.

2. Overall approach

This section explains our overall approach. We first present
the targeted architecture model and relevant terminology.

2.1 Architecture model

We target the following architecture model. Each functional
unit has dedicated single-ported register files at its inputs to
store the variables it needs. A variable is written into the reg-
ister file when its producer operation is executed. The inter-
connect structure is multiplexor-based with no tri-state
buffers. Under this model, each functional unit has a dedi-
cated output bus which can fan out to one or more destina-
tions. Multiplexors are used at the inputs of the units to select
the appropriate input bus in different time-steps.

2.2 Terminology

The algorithm is represented as a data-flow graph where
nodes represent algorithm operations and edges represent data
transfers. We define anE-instance as a pair of nodes con-
nected by an edge, so named since it is derived from an edge

of the graph. E-instances are classified into types, orE-tem-
plates, based on the type of their input and output ports. The
coverage of an E-template is defined as the number of E-
instances of that type divided by the total number of edges in
the graph. It represents the degree of recurrence of the E-
template.

E-templates of a fourth-order cascade filter and the corre-
sponding coverages are shown in Fig. 2 (edges to the right
input ports are indicated with a dot). For example, the E-
template E1, from an add operation to the right input of an
add operation, occurs four times. Currently our implementa-
tion does not allow permutations of inputs to commutative
operations which would enable further exploration of the
design space and improve the results.

2.3 Using E-templates in synthesis

The main tasks in architecture synthesis are scheduling,
assignment, and allocation. For a given clock speed and
algorithm throughput, thescheduling process assigns each
operation in the data-flow graph to one or more time steps.
The goal is to minimize the total area while scheduling all
the operations within a given performance constraint. In our
approach, along with the cost of each hardware, a cost is
assigned to each E-template representing the cost of the con-
nection between the input and output nodes. The new sched-
uling algorithm minimizes the cost of the E-templates along
with the overall area. The aim here is to derive a schedule
thatenables a regular assignment of operations to hardware.

Theassignment task binds operations in the algorithm to
specific hardware units and theallocation task decides the
number of resources of each type to be used. In our method-
ology, the scheduling is performed first and then allocation
and assignment are done simultaneously.The main idea

Figure 2. Some E-templates in a fourth-order cascade filter.

+ +*

D

In

D

+ +

* + +*

D

D

+ +

*

Out

* *

E1 E1 E1 E1

E2 E2 E2 E2

E3 E3

E4 E4 E4

E-template Coverage

E1 (add→ add.right) 4/26

E2 (mult→ add.left) 4/26

E3 (mult→ add.right) 2/26

E4 (add→ add.left) 3/26

behind our assignment-allocation scheme is to assign E-tem-
plates as a whole in order to preserve the two-node regularity
of the algorithm. Thus the data transfers of E-instances
assigned to the same pair of hardware units can use the same
bus without any extra multiplexors or buffers, and without
increasing the fan-out of the bus. Consider the E-template E2
of the cascade filter shown in Fig. 2. If, instead of assigning
individual nodes, we assign the corresponding E-instances of
this template to a multiplier-adder pair, we ensure that the out-
put of the multiplier goes only to the left input of the corre-
sponding adder. Fan-outs of the buses from each multiplier is
kept low and each of these buses once instantiated can be
reused for the four data transfers without any multiplexing
overhead. A similar idea to reduce interconnections during
assignment for pipelined datapaths is given in [4] where the
authors consider assignment of paths (not E-templates) and
propose a technique different from ours.

Using E-templates as opposed to larger patterns for exploit-
ing regularity has the advantage that, while detecting and
matching generic patterns is NP-complete, these operations
take linear time for E-templates. Our results indicate that
large power savings can be achieved with the E-template
based approach. Sections 3 and 4 present the details of our
scheduling and assignment-allocation techniques based on
this approach.

3. E-template-based scheduling

Our scheduling approach derives from the force-directed
scheduling technique first proposed by Paulin [9]. For a
detailed description of the algorithm we refer readers to that
paper, here we limit the discussion to its effect on assignment
regularity. Consider an example with two E-templates, E1 and
E2, with four and two instances, respectively, as shown in

Fig. 3(a). From the ASAP and ALAP times (marked next to
each node), it is clear that it is possible to map the multiply
operations of all multiply-add E-instances (E1) to the same
multiplier and similarly those of the multiply-shift E-
instances (E2). The initial distribution graph for multiplica-
tions (refered to in this work asfunctional-unit distribution-
graph or FDG) and their schedule obtained using the force-
directed algorithm are shown in Figs. 3(b) and 3(c), respec-
tively. In this schedule the height of the DG is minimized,
but it is not possible to map the multiply operations of the all
multiply-add E-instances to the same unit sinceb andc are
scheduled in the same time-step.

As shown in this example, a force-directed schedule may
preclude the preserving of regularity in a graph since it does
not consider the cost of connections. We propose a modifica-
tion that accounts for the cost of the connections and repre-
sents them asconnection distribution-graphs (CDGs).

Each E-template has two CDGs — one for its sources and
one for its destinations. These distribution graphs represent
the cost of the interconnect between the source and destina-
tion nodes. For a given E-template,Ek, the CDG for sources
is derived from the time distributions of the source nodes of
all instances of the E-template, while the CDG for destina-
tions is derived from distributions of the destination nodes.

The total force on any node is the weighted sum of the
forces from the FDG of the relevant functional unit, the
source CDGs of all the E-templates for which this node is
the source node and the destination CDGs of all the E-tem-
plates for which this node is the destination node. The
weight of an FDG is proportional to the cost of the unit
while the weight of each CDG is proportional to the cover-
age of the corresponding E-template. This weighting scheme
gives preference to connections that are repeated more often.

(a)

+*

+*

+*

+*

>>*

>>*

[1 - 2]

[2 - 3]

[3 - 4]

[4 - 5]

[1 - 2]

[3 - 4]

[2 - 3]

[3 -4]

[4 - 5]

[5 - 6]

[2 - 3]

[4 - 5]

a

b

c

d

e

f

E1:

E1:

E1:

E1:

E2:

E2:

a b

c

de f

1 2 3 4 5
(b) (c)

Time1 2 3 4 5 Time

2

1

a c

b d

d
e fM

ul
t

2

1M
ul

t

a cb d

e

f

1 2 3 4 5
(e)

Time
(f)

1 2 3 4 5 Time

2

1

a c
b d

d

S
ou

rc
es

 o
f E

1

1 2 3 4 5 Time

2

1

e f

S
ou

rc
es

 o
f E

2

M
ul

t

2

1
CDG

CDG

Figure 3. The effect of using connection distribution graphs, (a) Instances of two E-templates with their ASAP and ALAP times, (b) Initial
FDG for multiply operations, (c) Final distribution graph using only FDGs, (d, e) Initial source CDGs of the two E-templates, (f) Final dis-
tribution graphs using FDGs and CDGs.

FDG

(d)

This modified force-directed scheduling approach attempts to
aid the assigning of E-instances of the same E-template to the
same pair of hardware units while also minimizing the total
area.

Consider the example of Fig. 3 again. The initial source-
CDGs of the two E-templates are shown in Fig. 3(d, e) and
the final distribution graph that minimizes the weighted sum
of the FDG and CDGs are shown in Fig. 3(f). Notice that mul-
tiply operations of all multiply-add E-instances are scheduled
at different time slots since the scheduler minimizes the
height of its source-CDG along with that of the FDG, and
therefore, they can be mapped onto the same hardware unit.
Similarly the multiply operations of all multiply-shift E-
instances can be mapped to the same multiplier.

4. E-template based assignment and allocation

Our assignment and allocation strategy strongly hinges on
the concept of a conflict graph and its maximum independent
set which we first explain in Sections 4.1 and 4.2, respec-
tively. In Section 4.3, we describe the overall assignment and
allocation algorithm.

4.1 Conflict graphs

The conflict graph,Ck, for an E-template,Ek, is derived in
the following way. Each unassigned E-instance (for which at
least one node — source or destination — is unassigned) of
typeEk is represented by a node in the conflict graph (conflict-
node). Two conflict-nodes are joined by an edge if the sources
or destinations of the corresponding E-instances cannot be
assigned to the same hardware unit. This occurs if any of the
following four conflicts exists between either the sources or
destinations of the corresponding E-instances.

Scheduling conflict — A scheduling conflict exists
between two nodes if there is an overlap in the time slots in
which they are scheduled (e.g., between nodesα andβ in Fig.
4(a)).

Register-bandwidth conflict — Due to the distributed, sin-
gle-ported nature of register files in our hardware model (Sec-
tion 2.1), there is a register-bandwidth conflict between two

+

*

+

*

>> >>

Figure 4. Types of conflicts, (a)Scheduling and register band-
width conflicts, (b)Assignment and assign-schedule conflicts.

+

*

+

*

A1

+

*

A1

(a) (b)

γ

δ

α β γ

δ ε

t1

t2

t3

t4

t5

t1

t2

t3

t4 β A2

α A1

nodes if the producers of their corresponding inputs are
scheduled in the same time slot. In Fig. 4(a), there is a regis-
ter bandwidth conflict between nodesγ andδ since nodeα
writes into the right port ofγ at the same time atβ writes into
the right port of nodeδ.

Assignment conflict — An assignment conflict is intro-
duced if the nodes are assigned to different functional units.
(e.g., between nodesα andβ in Fig. 4(b) since they are
assigned to different adders, A1 and A2).

Assign-schedule conflict — An assign-schedule conflict
is introduced if the one of the nodes is already assigned to a
hardware resource and the other has a scheduling or register-
bandwidth conflict with that hardware resource. A node is
said to have a scheduling or register-bandwidth conflict with
a hardware resource if it has a scheduling or register band-
width conflict, respectively, with any of the nodes that are
assigned to that resource. In Fig. 4(b), there is a assign-
schedule conflict between nodesγ andδ sinceδ has a sched-
uling conflict with A1, the hardware resource thatα is
assigned to.

4.2 Maximum independent set

The maximum independent set (MIS) of a graph is defined
as the largest subset of nodes of the graph, such that there
does not exist an edge between any pair of nodes in that sub-
set. The MIS of the conflict graph, is the maximum set of E-
instances with no conflict edges between them and therefore
represents the largest set of E-instances that can be assigned
to the same pair of hardware units.

We derive the maximum independent set using a popular
greedy heuristic that has been shown to give good results
[10]. This algorithm is modified to bias it towards choosing
the more favorable candidate in case of a tie.

4.3 E-template based assignment strategy

Our assignment-allocation scheme is divided into two
phases. We start by detecting all the E-templates in the given
graph and calculating their coverages.

The first phase of the algorithm iteratively assigns sets of
E-instances to pairs of hardware units. In each iteration, the
E-template with the highest coverage (in case of a tie, the
one with a higher MIS cardinality) is selected, the MIS of its
conflict graph is calculated, and the corresponding E-
instances are assigned. The sources of the E-instances are
assigned first. If any of the source nodes are already
assigned, all others are assigned to the same unit. Otherwise,
a new hardware unit is allocated and assigned to all the
source nodes. The destination nodes are then mapped in the
same way. Assigned E-instances are removed from the E-
template list and the coverage of the E-template is recalcu-
lated.

Notice that it is not possible for the source nodes (or the
destination nodes) of a pair of E-instances in the MIS to be
already assigned to different hardware units since this would
have caused an assignment conflict between them. Also, if
only one of them is assigned to a unit, the other node can also
be assigned to the same unit since there is no assign-schedule
conflict between them.

As more nodes get assigned, the number of E-instances
mapped in each iteration reduces due to reduced coverages
and increased assignment and assign-schedule conflicts. As a
result the advantages from the reuse of the dedicated connec-
tions between the corresponding hardware units — reduced
muxes and bus fan-outs — are decreased and the area over-
head is increased, reducing the benefits from E-template
based assignment. In each iteration, therefore, E-templates
whose coverages fall below a certain threshold are eliminated.

When all the E-templates are eliminated, the first phase ter-
minates and the remaining nodes are colored using a vertex
coloring technique [11]. A pseudo code for the assignment
and allocation algorithm is given in Fig. 5.

The algorithm greedily selects E-templates that are repeated
very often since the aim is not to reduce the total number of
fanouts but rather to reduce fanouts (and hence capacitance)
of buses that are accessed often.

4.4 Example

In this section we demonstrate the operation of the algo-
rithm on a small example. Consider the reverse symmetric
FIR filter shown in Fig. 6(a). The numbers next to the nodes
in show the time steps each node is scheduled in. Fig. 6(b)
shows the E-templates and their coverages. The coverage
threshold is set at 2/16.

Phase1, Iteration 1 — E-template E0 is selected for assign-
ment. The selected MIS of E-instances isa-b, b-c, c-d (sched-

ETemplateList = MakeETemplates(OriginalGraph)

CalculateCoverage(ETemplateList)

RemoveETemplatesWithCoverageBelowThreshold(ETemplateList)

Best_ETemplate = SelectBestETemplate(ETemplatesList)

while (Best_ETemplate != NULL) {

ConflictGraph = CreateConflictGraph(Best_E-Template->List)

MIS_List = MaxIndependentSet(ConflictGraph)

Allocate_and_AssignList(MIS_List)

UpdateETemplates(ETemplateList)

CalculateCoverage(ETemplateList)

RemoveETemplatesBelowThreshold(ETemplateList)

BestTemplate = SelectBestETemplate(ETemplateList)

}

ResidualList = MakeListOfUnassignedNodes(OriginalGraph)

VertexColoring(ResidualList)

Figure 5. Pseudo-code of the assignment and allocation algo-

uling conflict between their destination nodes ofa-b andd-
e)1. A delay unit, T1, is allocated and the source nodes,a, b,
andc are assigned to it. As a result of this, some destination
nodes get assigned to T1 and therefore, the rest are also
assigned to T1. Since the coverage of E0 falls below the
threshold, it is removed from the E-template list.

Iteration 2 — E-templates E2 (c-h, d-g, e-f) and E3 (f-i, g-
j, h-k) have the highest coverage and their MIS cardinalities
are 1 (assignment conflicts betweenc & e, andd & e; and

1This is a special case not discussed here for brevity. Since the
source and destination nodes are of the same type, two conflict
graphs are generated — one that allows sharing between sources
and destinations and one that does not — and the one with higher
MIS cardinality is selected.

D D D D D

+
+

+

* * *

+ +

In

Out

a b c d e

f

g h

i j k

l m

11

2

2
23

34

241 2 3

Iteration 1

Iteration 2

Iteration 3

D D D D D

+
+

+

* * *

+ +

In

Out

T1 T1 T1 T1 T2

A1

A1

M1 M1 M2

A2 A2

A3

)
(a)

(c)

Figure 6. Effect of E-template based assignment on, fifth-order
reverse-symmetric IIR filter, (a) E-templates assigned in each iter-
ation, (b) E-templates and their coverages, (c) Final assignment.

E-template name Description Coverage

E0 D → D 4/16

E1 D → add.left 2/16

E2 D → add.right 3/16

E3 add→ mult.left 3/16

E4 mult → add.left 2/16

(b)

scheduling conflict betweeng & h) and 2 (scheduling conflict
betweeng & h), respectively. E3 is selected and sources and
destinations of its MIS (f-i, g-j) are assigned to multiplier M1
and adder A1, respectively. The coverages of unassigned
instances of E1, E2, and E3 drop below the threshold and they
are eliminated.

Iteration 3 — E-template E4 is selected and both its
instances are assigned to the multiplier, M1, and adder, A2,
pair.

Since all E-templates are now eliminated, the remaining
nodes are assigned using vertex coloring. The E-instances
assigned in each iteration is shown in Fig. 6(a) and the final
assignment obtained is shown in Fig. 6(c).

5. Interconnect models

The power savings in our synthesis strategy stem from the
reduction of power consumed in buses and multiplexors and it
is important to estimate the power consumed by these compo-
nents in order to validate our synthesis strategy. We usedSPA,
an architectural power analysis tool [12], for our estimations.
The power consumed by buses depends on the length of buses
which is difficult to estimate before placement and routing. In
order to analyze the effect of the synthesis technique on
power, we first present a model for the estimating bus lengths.
The model has been validated using layouts.

At the gate level, wire lengths are modeled as being directly
proportional to the fan-out of the wire [13] but this effect is
largely ignored in architecture-level models [14, 15]. Examin-
ing several designs we found that the linear relationship holds
even at the high level. The length of any bus,i, is estimated as
Lpp times its fan-out,Fi, as given in Equation 1.Lpp repre-
sents the length of a bus with single fan-out and is constant
over all buses for a given design.

(1)

The length,Lpp, of the a bus with a single fan-out is
assumed to be proportional to the square root of the area of
the chip [14, 16].

(2)

The chip area is found using the model presented in [14].
The constant in the model,γ, was found empirically from
designs obtained from both the Hyper [17] and the E-template
based synthesis systems. It was determined to be 0.72, 0.80,
0.81, 0.88, 0.80, and 0.68 for the six chip-layouts generated.
The mean value ofγ, 0.78, was selected for our model.

Besides the capacitance of the wire itself, the capacitive
load on it is switched when the bus is accessed. We used a
fixed capacitive load (50fF in our 1.2 micron technology) on
each fan-out. The above models were implemented inSPA.

Li FiLpp=

Lpp γ Achip=

6. Results

This section compares the quality of results obtained from
the E-template based synthesis methodology with two other
scheduling/assignment paradigms — the Hyper synthesis
scheme [17] and a force-directed scheduling followed by
vertex-coloring assignment (FDS-VC). A set of 15 exam-
ples, consisting of different structures of FIR filters, IIR fil-
ters and transforms were selected for experimentation. All

Figure 7. Percentage power savings with respect to the Hyper and
FDS-VC schemes, (a) Buses, (b)Multiplexors, (c) Total.

0.0

20.0

40.0

60.0

80.0

100.0

-50.0

0.0

50.0

100.0

w.r.t Hyper
w.r.t FDS-VC

0.0

20.0

40.0

60.0

80.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(a)

(b)

(c)

w.r.t Hyper
w.r.t FDS-VC

w.r.t Hyper
w.r.t FDS-VC

Example number

Example number

Example number

M
ux

 p
ow

er
 r

ed
uc

tio
n

(%
)

B
us

 p
ow

er
 r

ed
uc

tio
n

(%
)

T
ot

al
 p

ow
er

 r
ed

uc
tio

n
(%

)

algorithms were in their original forms (not transformed) and
were evaluated for maximum throughput implementations
(total time available equal to critical path). We usedSPAwith
uniform white noise models to decouple the power savings
due to regularity exploitation from those due to changes in
signal correlations.

The graphs in Fig. 7 show the percentage improvements in
bus, multiplexor, and total power compared with the Hyper
and the FDS-VC implementations. As compared to Hyper, an
average of 47% and 49% power savings were obtained for
buses and multiplexors, respectively, while compared to FDS-
VC, the average reductions in these components was 39% and
49%, respectively. Overall average power reductions of 28%
and 17% were obtained with respect to the Hyper and FDS-
VC synthesis schemes, respectively. We also expect to obtain
power savings in buffers since smaller buffers can be used to
drive the low fan-out, short buses. However, since our auto-
mated architecture-netlist generation tool uses minimum
sized buffers for all data transfers, irrespective of the length of
the bus being driven, we are not able to demonstrate these
savings.

Fig. 8 shows the percentage change in the total chip area
with respect to the Hyper and FDS-VC implementations. A
positive change represents an increase in area using the E-
template based scheme. On average, due to the reduction in
wirelengths, 14% and 47% decrease in area was observed
with respect to the FDS-VC and Hyper schemes, respectively.
In some examples (such as #2, #10) , it was seen that the area
increased but the power reduced.

7. Conclusion

We have presented a new approach to architecture synthesis
that targets interconnect (bus, multiplexor, and buffer) power
reduction by exploiting the regularity inherent in the algo-
rithm. First, a simple and efficient E-template based assign-
ment and allocation algorithm has been proposed to exploit
regularity. Secondly, a modified force-directed scheduling
algorithm is used to produce a schedule favorable for regular

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15-100

-50.0

0.0

50.0

w.r.t. Hyper
w.r.t. FDS-VC

Figure 8. Percentage change in the total chip area.

P
er

ce
nt

ag
e

ch
an

ge
 in

 to
ta

l a
re

a

Example number

assignment. Thirdly, a new model is proposed for intercon-
nect length estimation that accounts for the effect of fan-outs
on bus lengths.

Our results show that there is a high potential for intercon-
nect power improvements by exploiting regularity inherent
in the algorithm. Also, our simple approach is able to cap-
ture a large amount of the regularity and results in significant
reductions in bus and multiplexor power compared to both
the Hyper and the FDS-VC schemes. Reductions are
obtained in the total power for all examples and in the over-
all area for some examples.

8. References
 1. R. Mehra, L. M. Guerra, and J. M. Rabaey, “Low Power Architectural

Synthesis and the Impact of Exploiting Locality”,Journal of VLSI Sig-
nal Processing, 1996.

 2. M. C. McFarland, “Re-evaluating the Design Space for Register-Trans-
fer Level Hardware Synthesis,”Proc. of the Int’l Conf. on CAD, Nov.
1987, pp. 262-265.

 3. L. Stok, “Interconnect Optimization for Multiprocessor Architectures,”
Proc. of the IEEE Int’l Conf. on Computer Systems and Software Engg,
May 1990. pp. 461-465.

 4. N. Park and F. J. Kurdahi, “Module Assignment and Interconnect Shar-
ing of Pipelined datapaths,”Proc. of the Int’l Conf. on CAD, Nov.
1989, pp. 16-19.

 5. D.S. Rao and F.J. Kurdahi, "An Approach to Scheduling and Allocation
using Regularity Extraction",Proc. of the European DAC, 1993, pp.
557-561.

 6. M. Corazao, M. Khalaf, L. M. Guerra, M. Potkonjak, and J. M. Rabaey,
“Instruction set mapping for performance optimization,”Proc. of the
Int’l Conf. on CAD, Nov. 1993, pp. 518-521.

 7. W. Geurtz, “Synthesis of Accelerator Data Paths for High-Throughput
Signal Processing Applications,”Ph. D. Thesis, Katholieke Univer-
siteit Leuven, Belgium, Mar. 1995.

 8. L. Guerra, M. Potkonjak, and J. Rabaey, “System-level Design Guid-
ance using Algorithm Properties”,Proc. of the VLSI Signal Processing
Workshop, Oct. 1994, pp. 73-82.

 9. P. G. Paulin and J. P. Knight, "Force-Directed Scheduling for Behavioral
Synthesis of ASIC's,"IEEE Trans. on CAD, Vol. 8, No. 6, June 1989,
pp. 661-679.

 10. M. M. Halldorsson and J. Radhakrishnan, “Greed is Good: Approxi-
mating Independent Sets in Sparse and Bounded-Degree Graphs,”
Proc. of the ACM Symp. on the Theory of Computing,May 1994, pp.
439-448.

 11. D. Springer and D. E. Thomas, “New Methods for Coloring and Clique
Partitioning in Data Path Allocation,”Integration, The VLSI Journal,
Dec. 1991, Vol.12, No.3, pp. 267-292.

 12. P. E. Landman and J. M. Rabaey, "Architectural Power Analysis: The
Dual Bit Type Method,"IEEE Trans. on VLSI Systems, Vol.3, No.2,
June 1995, pp. 173-87.

 13. A. Masaki, “Possibilities of deep-submicrometer CMOS for very-high-
speed computer logic,”Proc. of the IEEE, Vol. 81, No. 9, Sept. 1993,
pp. 1311-1324.

 14. R. Mehra and J. M. Rabaey, "Behavioral Level Power Estimation and
Exploration,"Proc. of the Int’l Workshop on Low-Power Design, April
1994, pp. 197-202.

 15. F. J. Kurdahi and C. Ramachandran, "Evaluating Layout Area Trade-
offs for high level synthesis applications",IEEE Trans. on VLSI sys-
tems, Vol. 1, No. 1, pp. 46-55, Mar. 1993.

 16. G. Sorkin, "Asymtotically Trivial Global Routing: A Stochastic Analy-
sis," IEEE Trans. on CAD, Vol. CAD-6, No. 5, Sep. 1987, pp. 820-827.

 17. J. M. Rabaey, C. Chu, P. Hoang, and M. Potkonjak, “Fast Prototyping
of Datapath-Intensive Architectures,” IEEE Design & Test of Comput-
ers, June 1991, pp. 40-51

	CDROM Home Page
	1996 Home Page
	ICCAD 96
	Front Matter
	Table of Contents
	Session Index
	Author Index

