
ICCAD ’96
1063-6757/96 $5.00  1996 IEEE

Basic Concepts for an HDL Reverse Engineering Tool-Set

Gunther Lehmann, Bernhard Wunder, Klaus D. M�uller-Glaser

Institute for Information Processing Technology (ITIV)
University of Karlsruhe, D-76128 Karlsruhe, Germany

fleh, wun, kmgg@itiv.etec.uni-karlsruhe.de
http://www-itiv.etec.uni-karlsruhe.de/

Abstract

Designer's productivity has become the key-factor
of the development of electronic systems. An increas-
ing application of design data reuse is widely recog-
nized as a promising technique to master future design
complexities. Since the intellectual property of a de-
sign is more and more kept in software-like hardware
description languages (HDL), successful reuse depends
on the availability of suitable HDL reverse engineering
tools. This paper introduces new concepts for an inte-
grated HDL reverse engineering tool-set and presents
an implemented evaluation prototype for VHDL de-
signs. Starting from an arbitrary collection of HDL
source code �les, several graphical and textual views
on the design description are automatically generated.
The tool-set provides novel hypertext techniques, ex-
pressive graphical code representations, a user-de�ned
level of abstraction, and interactive con�guration mech-
anisms in order to facilitate the analysis, adoption and
upgrade of existing HDL designs.

1. Motivation

The current electronic system design process is
in
uenced by two contradictory trends. On the one
hand, the progress of semiconductor technology leads
to a steadily increasing functional complexity. On the
other hand, product development cycles must become
smaller due to decreasing time to market periods. This
contradiction can not be solved by an enlarged design
team because the portion of the communication over-
head will rise together with the head count. There-
fore, only a distinct increase of designer's productivity
(#transistors/man month) will remain as a reasonable
solution. The necessity of this increase is e.g. stated by
[14] who predicts an enlarging productivity gap. Ac-
cording to a SEMATECH study, the system complexity
rose 58% in 1995 whereas design productivity was left
behind with 21% increase [9].

Besides the reduction of tool execution times,
the currently proposed solutions of this productivity
dilemma focus on techniques which will reduce the
amount of functional speci�cation that has to be gener-
ated by the design team. This may be achieved by more
abstract speci�cations based on the current HDLs, by
novel graphical speci�cation methods, or by the reuse
of existing design data and design knowledge. Since the
�rst two approaches mainly depend on e�cient trans-
formation tools which have not reached a wide com-
mercial availability, the reuse approach will remain as
an instantly available and cost-e�ective technique to
overcome the productivity dilemma.

2. From hardware to software reuse

Reuse is not new to electronic system design. Since
the early commercial applications of digital electronics,
standardized components and interfaces (e.g. 74xx-ICs,
TTL voltage levels) were utilized in order to reduce de-
velopment and manufacturing costs. At that time, the
application-speci�c functionality resulted from a struc-
tural con�guration of standardized hardware compo-
nents on a printed circuit board.

Today, electronic system design is dominated by
complex programmable components (e.g. CPLDs, FP-
GAs) and the usage of synthesis tools which automat-
ically transform a technology-independent HDL speci-
�cation into a low-level implementation [6]. Therefore,
most of the functional properties of a design (and the
design-speci�c intellectual property) are not kept in a
structural hardware con�guration but in a software-like
HDL description ("software chips").

In general, the major advantage of software-based
reuse is the reduced design time which results from less
coding e�ort but also from savings during the speci�-
cation, documentation, and test phases. The reduced
design time will directly lead to smaller development
costs. Former empirical studies in the area of software
development have shown that consequent reuse may
decrease design expenses from 32% up to 85% [8].

Additionally, the reuse of existing models will im-
prove the predictability of design e�orts, thus design
risks are minimized. This bene�t is also supported
by an increased quality, because reused models have
been "tested" several times by di�erent users. Last but
not least, reuse can disburden engineers from repetitive
tasks thus improving their motivation.

In order to bene�t from these reuse advantages, it
is necessary that a design with reuse process is assisted
by computer-aided reverse engineering tools which ease
understandability of existing designs and facilitate an
adaption process. According to [3] the costs of modi-
fying 20% of an external software module are nearly
the same as developing the module from scratch, if
no reverse engineering tools are applied. These tools
may also enlarge the con�dence of a designer into the
quali�cation of external source code modules. This
means that analysis tools can ease the psychological
con
icts ("not invented here syndrome") which usually
occur during a reuse process. The following section will
demonstrate why reverse engineering tools are of par-
ticular importance in the case of VHDL "software".

3. VHDL and reverse engineering

Hardware description languages usually incorpo-
rate syntactical constructs which allow the develop-
ment of widely applicable modules (e.g. defparam in
Verilog). Especially during the conception of VHDL,
reusability was recognized as a major topic because
VHDL should overcome typical upgrade problems dur-
ing the maintenance of complex electronic systems.

VHDL adopts reuse techniques which were derived
from PCB design techniques. Language constructs
like port map, con�guration, library, or open support
a
exible structural module selection and wiring [7].
Additionally, VHDL backs reuse concepts originating
from software development (functional parametriza-
tion). For example, the functional adaptability of a
VHDL design is supported by generics (module param-
eters), generate (conditional compilation), or uncon-
strained types. In [16] it is shown that even complex
components like DRAM controllers, microprocessor in-
terfaces or CRC1 generators can be implemented as
universal VHDL modules.

Unfortunately, the capabilities of VHDL lead to
the following analysis problems which will aggravate
the reverse engineering of existing VHDL designs:

Syntactical Complexity: In order to support
algorithmic modeling, VHDL o�ers mostly all lan-
guage constructs incorporated in common sequential
programming languages, like C or PASCAL. Among
these constructs are branches (if, case), for and while
loops with exit and next statements, as well as struc-

1Cyclic Redundancy Code

turing capabilities (function, procedure). Additionally,
the language is strongly enriched by constructs which
serve for hardware-speci�c modeling, e.g. model seman-
tics depending on simulation time (signal, after), phys-
ical units, logical operators, or hardware-oriented port
modes (bu�er). Therefore, the VHDL grammar in-
cludes much more production rules and terminal sym-
bols than the grammar of C or PASCAL. A comple-
mentary language extension is caused by some redun-
dant modeling capabilities. For example, concurrent
signal assignments can be replaced by a functional
equivalent process statement. In summary, the exten-
sive language capabilities allow very di�erent coding
styles thus preventing a quick analysis of VHDL source
code.

Structuring Capabilities: Besides the com-
mon structuring capabilities via functions and pro-
cedures, VHDL o�ers additional structuring by �ve
design units and concurrent statement clustering via
block and generate statements. Considering also the
process statement, VHDL'93 has ten di�erent declar-
ative regions. These outstanding structuring capabili-
ties allow a modular, redundancy-free and reusable de-
scription of even very complex digital systems. Un-
fortunately, structuring and partitioning across many
design units will prevent from quickly analysing a sin-
gle model because related information is widely dis-
tributed. A small example taken from the ALU of the
DP32 processor [2] illustrates this restriction of reverse
engineering (Fig. 1). Additionally, the designer has to

configuration dp32_rtl_test ...
 use entity work.ALU_32(behaviour);
 ...

architecture behaviour ...
 result <= null after Tpd;

package dp32_types is
 constant unit_delay: Time := 1 ns;

entity ALU_32 is
 generic (Tpd: Time := unit_delay);

Figure 1. Distributed information

keep in mind the VHDL rules for scope and visibility
during the analysis process. Further di�culties result
from the fact that there is a one to many relation be-
tween a VHDL source code �le and the included VHDL
design units, and that the unit identi�ers are totally in-
dependent from �le names. Finally, the designer has to
regard the context of an overloaded subprogram call, if
he wants to identify its implementation.

Concurrent Statements: The behavior of a
VHDL model is determined by its concurrent state-
ments inside the VHDL architecture. During a man-
ually carried out reverse engineering analysis, the de-
signer will primarily have to identify the signal drivers

and triggering conditions (sensitivity sets) of all con-
current statements. Often, the sensitivity set must
be extracted from complex expressions inside multiple
wait statements which additionally might be hidden
inside some procedures. A further analysis problem
results from the fact that the concurrency is described
by a linear, one-dimensionalmedium (ASCII text �les).
Therefore, the designer has to move up and down inside
the source code during the analysis process (Fig. 2).
This procedure is tedious and error-prone (cf. goto pro-
gramming style).

ARCHITECTURE ... BEGIN

END;

Figure 2. Non-sequential functional analysis

Simulation Semantics: The mentioned prob-
lems during a functional analysis are aggravated by
VHDL's complex execution semantics, which can not
be derived from commonprogramming languages. This
includes e.g. the delta cycle or the preemption mecha-
nism.

Future enrichments of the VHDL standard (e.g.
VHDL-AMS) will enlarge the reuse problems which
are imposed by VHDL's complexity. Thus, computer-
aided HDL reverse engineering tools will play a more
and more important role during the design process of
electronic systems. However, the application of these
tools need not to be restricted to pure reuse. They are
useful whenever complex HDL code has to be analysed
and modi�ed, e.g. system maintenance, code review,
error detection, large project management, design doc-
umentation.

4. A VHDL reverse engineering tool-set

4.1. Basic requirements

A VHDL reverse engineering tool-set has to sup-
port a designer during the functional and structrual
analysis of VHDL source code in order to ease the reuse
of design knowledge. Several conceptual requirements
must be met by such a tool-set:

Generality: To achieve a large reuse potential,
the tool-set should be able to handle any syntactical
correct VHDL code collection. An adoption towards
a speci�c modeling style, a VHDL subset, some spe-
cial formatting rules, or a distinct modeling domain
(e.g. �nite state machines) must be avoided.

Automatic Generation: The tool-set should en-
courage a designer to bene�t from former design activi-

ties. Therefore, the tool-set must provide the extracted
information fast and without manual interaction. This
means for example that the design hierarchy and com-
pilation dependencies must be derived automatically
from any arbitrary VHDL source code collection.

Complexity Management: In spite of VHDL's
complexity, the tool-set has to represent even large
VHDL designs in a compact and plausible manner.
This can be accomplished by hierarchically organized
code representations. Additionally, the tool-set has
to o�er
exible con�guration mechanisms which allow
to de�ne the amount of visualized code, the displayed
scope, and the degree of detail. Furthermore, the rep-
resentations should avoid redundancies. Finally, a su-
perior tool manager has to provide some navigational
aid.

Intuitive Representations: The derived VHDL
code representations must be comprehensible and non-
ambiguous. This requirement can be met by graphi-
cal symbols, which are similiar to those of well-known
graphical languages (e.g.
ow charts). Furthermore,
the graphical symbols should provide references to the
corresponding source code sections. An intuitive tex-
tual code representation may be obtained, if the inter-
face adopts usage concepts from tools which are famil-
iar to the designer (e.g. WWWbrowsers). On the other
hand, all notions inside the tool-set interfaces should
correlate to VHDL-speci�c terms.

Interactive Visualization: Interactivity will
motivate a designer to step into external VHDL source
code. Therefore, graphical and textual code represen-
tations have to include dynamic and user-controlled
displaying capabilities.

4.2. General structure

In the following, we present the concept of the
VHDL reverse engineering tool-set VYPER! (VYPER!
= Vhdl hYPERmedia) which ful�lls the above-
mentioned general requirements. The basic structure
of VYPER! is depicted in Fig. 4. A reverse engineering
process starts with a structural analysis of the VHDL
source code. After this, the VHDL design units are
compiled in the hierarchical correct order. Then the
user may select from �ve di�erent interface types to
analyse the VHDL code. The VHDL modeling domains
corresponding to the di�erent interface types are shown
in Fig. 3. On the top of the VHDL-speci�c hierarchy of
abstraction, the unit manager shows the composition
of an entire design by design units. Inside the archi-
tecture units, a process model graph (PMG) visualizes
the control
ow of the concurrent statements. Closest
to the source code is the VHDL Control Structure Dia-
gramm (VCSD) which depicts the control structure of
sequential descriptions. A more general role is covered
by the VHDL hypertext interface because it is applica-

ble for all VHDL design units. In contrast to common
hypertext interfaces inside some CASE software tools,
we provide an interactive and language-speci�c con�g-
uration of the underlying hyperlink web.

VHDL VYPER!

V
H

D
L

H
yp

e
rt

e
xt

Process Model

Control Structure

Entity Graphic
Unit Manager

Structure

Concurrent Behavior

Sequential Behavior

Figure 3. VHDL application domains of the VYPER!

interfaces

Most of the interfaces can invoke each other, as
it is indicated by the straight arrows in Fig. 4. Fur-
thermore, there are many, automatically inserted hy-
perlinks which bind together interrelated information
and avoid redundancies (curved arrows in Fig. 4).

VYPER!
Entity Graphic

VHDL Code

VHDL
Compiler

Structural
Analysis

VCSD

Hypertext

Process Model

Unit Manager

Figure 4. VHDL reverse engineering tool-set VYPER!

The unit manager serves as entry point to model
analysis. It visualizes the complete hierarchy of a
VHDL design and gives some navigational aid , be-
cause it highlights the current position during the anal-
ysis process and marks up already analysed design
units. The entity graphic depicts the interface of each
VHDL entity (ports and generics). The other analy-
sis interfaces (VHDL Control Structure Diagram, Pro-
cess Model Graph, and VHDL Hypertext) o�er hierar-
chically organized code representations and are widely
user-con�gurable. They are aimed to attack the men-
tioned analysis problems which typically occur during

a VHDL reverse engineering process. These interfaces
will be discussed in detail in the following sections.

5. VHDL control structure diagram

The algorithmic descriptions of a VHDL design are
kept in processes and subprograms (functions and pro-
cedures). Inside these statements, the designer might
apply all usual syntactical constructs of common se-
quential programming languages. In general, the anal-
ysis of such algorithmic descriptions can be supported
by automatically generated diagrams which primarily
visualize the algorithmic structure. The following three
basic visualization techniques are well-known in the
area of software-engineering:

Box Technique: The di�erent language con-
structs are depicted by rectangular polygon symbols.
Nested polygons visualize a syntactical hierarchy. A
sequence of statements is shown by vertically aligned
polygons, whereas horizontal alignment illustrates al-
ternatives. The speci�c properties of each polygon are
indicated by fragments of source code inside the poly-
gons. Most of these box technique diagrams (e.g. Lind-
sey charts [11], [17]) are derived from the familiar
Nassi-Shneiderman diagrams [15], [13].

Box and Line Technique: This technique is
mostly known as
owchart diagram. It utilizes a few
expressive graphical symbols representing statements,
loops, branches, and subprogram calls. Their sequence
of execution is depicted by directed edges between the
symbols [4], [17].

Line Technique: The basic idea of this technique
is to emphasize the syntactical structure of a previously
formatted source code by simple brackets on the left
side of the code ("action diagrams", [12]). An ADA-
speci�c variant of this technique was introduced by [5]
(Fig. 5).

The �rst and second technique are typically ap-
plied during the initial software design. Unfortunately,
they are not suited for an automatic generation inside
a reverse engineering tool, because they will require
time-consuming drawing algorithms in order to gen-
erate compact diagrams for complex VHDL designs.
Additionally, these techniques show a weak relation to
the underlying source code because they transform the
linear (one-dimensional) code into a two-dimensional
representation. Furthermore, the graphical symbols do
not provide enough space for source code quotations.

Therefore, VYPER! visualizes sequential VHDL
code by a technique which is derived from the one-di-
mensional CSDs. The resulting VCSDs (VHDL Con-
trol Structure Diagrams) are enriched by the following
basic properties in order to meet the general require-
ments mentioned in section 4.1:

procedure SearchArray (A: in ArrayType;

Element: in ElementType;
Above,Below,EqualTo: out integer) is

begin
Above := 0;
Below := 0;
EqualTo:= 0;

for index in A'first..A'last loop
 if Element > A(index) then
 Below := Below + 1;

elsif Element < A(index) then
 Above := Above + 1;

else
 EqualTo := EqualTo + 1;

end if;
end loop;

end SearchArray;

.

.

Figure 5. Example of an ADA control structure diagram

� All language constructs are depicted by intuitive
and VHDL-speci�c graphical symbols (Fig. 6,
Fig. 7).

� VYPER! should avoid redundant representations
and should be able to handle any VHDL code
formatting. Therefore, the source code is not
completely inserted in a VCSD. Automatically
integrated hyperlinks are used instead. A hy-
perlink selection will exactly highlight the cor-
responding source code fragment (Fig. 8) inside
the VYPER! VHDL hypertext interface (section
7). Only the relevant expressions and identi�ers
are automatically extracted from the source code
to complement the graphical symbols inside the
VCSD (Fig. 9).

� The VCSD can be interactively con�gured by the
user to support the analysis of complex designs.
Sequential statements like if, case, or loop state-
ments, which might contain further statements
can be expanded or collapsed interactively and
independently (Fig. 10). Beyond this, the user
can select between a single or multi windowmode
and can interactively hide or activate all textual
information inside the VCSD. Furthermore, the
number of hierarchical levels which are displayed
inside one VCSD is adjustable. A larger number
will cause the creation of a new diagram ("de-
tail view"). Finally, the VCSD of a procedure
can be simply invoked by a hyperlink inside the
procedure call symbol.

� Zoom and scroll sliders as well as a back/forward

functionality also support the handling of large
designs. The latter allows to walk through the
history of already analysed diagrams.

� In order to ease the analysis of algorithmic de-
scriptions based on nested loops, the destination
of a next or exit statement is indicated by a hor-
izontal arrow (Fig. 9, right side of Fig. 10). The
existance of one or more exit and next statements
is visualized, even if they are hidden inside col-
lapsed symbols (left side of Fig. 10).

Procedure Call

P Identifier

Condition

L

Loop Statement

If Statement

Case Statement Declarative Region

Detail View

D

I Condition

Condition

C Expression

Choice 1

OTHERS

Figure 6. Non-terminal VHDL symbols inside VCSD

<=

Signal Assignment

W

Wait

Further Statements

Next

N Condition

Exit

E Condition

Return

Value

Single Statement 1 to n Statements

Figure 7. Terminal VHDL symbols inside VCSD

Fig. 9 shows the implementation of the VCSD
interface. Via two short cut buttons named "Open
Flaps" and "Close Flaps", a diagram can be fully ex-
panded or collapsed instantly. The depicted fully ex-
panded example was generated from the badly format-
ted code fragment shown in Fig. 8. The VCSD quickly
clari�es that the last signal assignment is located in-
side the outer loop. Additionally, the corresponding

Figure 8. Automatic highlight of statements inside the

VYPER! VHDL hypertext

Figure 9. VHDL Control Structure Diagram VCSD

loops of the exit and next statements are easily identi-
�ed within the VCSD. The highlight function allows to
exactly detect the source code fragment of a language
construct. Fig. 8 shows the highlighted fragment inside
the VHDL hypertext module, if the second I rhomb is
selected.

6. VHDL process model graph

Besides the VCSD module, the reverse engineering
tool-set comprises an interface which illustrates the dy-
namic behavior of the concurrent statements. This is
realized by an automatic translation of each VHDL ar-

chitecture into a comprehensible process model graph2

(PMG). The nodes of the graph represent the concur-
rent statements. Di�erent kinds of statements (e.g. sig-
nal assignment, process, or procedure call) are distin-
guishable by di�erent outline colours. Fig. 11 depicts
the PMG which has been extracted from the VHDL
architecture shown in Fig. 13.

Condition

IL I Condition

Condition

E

Condition

L

expand

collapse

Figure 10. Visualization of a hidden EXIT statement

The edges attached to the nodes depict signals
which may activate concurrent statements and which
are driven by other statements. Statements which
might invoke themselves via one or more signals (or
inout ports) are marked by a loop (e.g. port signal
data in Fig. 11). A loop without any signal identi-
�er represents a concurrent statement that has no trig-
ger conditions (e.g. node xor 2 in Fig. 11). Nodes like
this one simply indicate that no other concurrent state-
ment will have a chance to execute. In contrast to this,
a node without any arriving edge depicts a concurrent
statement which is invoked only once during the ini-
tialization phase. Furthermore, redundant signals are
eliminated from the PMG. This happens e.g. if signals
inside a sensitivity set have no signal driver (e.g. sig-
nal clk, see VHDL source code example in Fig. 13).
Therefore, the PMG is also valuable during the debug-
ging phase of a VHDL design process.

A connection to the VHDL hypertext module is
provided by automatically attached hyperlinks which
point from each identi�er inside the PMG (port, signal,
label) to the corresponding declaration or statement
inside the VHDL source code. If the node represents
a process or a concurrent procedure call statement, it
is also possible to directly activate the VCSD of this
statement.

The hierarchical "clustering" of concurrent state-
ments inside a generate or block statement is visualized
by dynamically generated, hierarchical diagrams in sin-
gle or multi window mode. Renaming of signals via
port maps or bus splitting via some variables of the
generation scheme [7] are taken into account. Please
note in Fig. 11 that the signal guard which is implic-

2A more data
ow oriented diagramwith identical namingwas
introduced by [1].

start

state
en

q

data

CondSig_1xor_2

ready

logic
ready

data

b1

GuardExpr

guard
a1 a2 c

q

ready
 b

start

Figure 11. Hierarchical process model graph PMG

itly declared by the guard expression (block statement
in Fig. 13) has been made visible to the user. In order
to handle complex designs, the user can again con�gure
the displaying properties interactively. For example, it
is possible to solely visualize the control
ow of the
non-structural parts of a VHDL architecture (i.e. com-
ponent instantiation nodes are hidden).

7. VHDL hypertext interface

In order to overcome the mentioned problems
caused by VHDL's structuring capabilities, VYPER!
includes a module realizing a novel VHDL hypertext
concept. It enables the user to simply explore dis-
tributed information inside a VHDL design by mouse
clicks ("VHDL sur�ng"). For that, hyperlinks are au-
tomatically attached to all identi�ers inside the VHDL
source code. The hyperlinks point to the declaration
of each identi�er (Fig. 12). Since every identi�er can
be used many times, a directed many to one relation
is introduced for each identi�er declaration. The ref-
erenced declaration and the corresponding design unit
may of course contain again many hyperlinks, which
point to further declarations, and so on.

declaration a

 identifier b

identifier a

identifier a

Hypertext

identifier a
Graphic

Hypertext

declaration b
Hypertext

...

...

m:1

Figure 12. VHDL hypertext concept

Since the hyperlinks are only attached dynamically
on user's request, we are able to implement a hyperlink

web which is interactively con�gured by the user. This
means that the user is not confused by an unwieldy
amount of hyperlinks because he can activate particu-
lar link types by VHDL-speci�c criteria (e.g. links to
signal declarations, links to port declarations). A solely
markup of port links e.g. will enable the user to quickly
detect if and where ports are used inside an algorith-
mic VHDL description. After the link activation, a
simple mouse click will immediately open the design
unit where the identi�er is declared. The correspond-
ing declarative statement will be highlighted (like clk
in Fig. 13).

Figure 13. VHDL hypertext interface

The implementation of the VHDL hypertext in-
terface is shown in Fig. 13. To facilitate the usage,
we partly adopt the design and functionality of WWW
browsers. For example, the user can navigate along
an already selected link path through di�erent VHDL
design units by back and forward functions. The hyper-
links are directly embedded into the source code (bold-
faced identi�ers in Fig. 13) and are marked, if they
have been selected (here: underlining). The VHDL-
speci�c selection of hyperlink classes is realized via the
select bar on the right side. An additional class of links
named "Sequential part" is aimed to provide an easy
hyperlink access to the VCSD of processes and subpro-
grams.

8. Experimental results

The presented reverse engineering concepts have
been realized by a fully functional evaluation protoype

based on TCL/TK and a commercial VHDL com-
piler (an optimized object-oriented VHDL compiler is
under development [10]). The execution times on a
SunSparc10 workstation are in an acceptable range
(see processor benchmarks in Table 1). Merely the
small generation performance of approximately 100
links/sec. leads to larger response periods inside the
hypertext interface, if lengthy VHDL models are anal-
ysed.

Processor model DLX DP32 R6502

Lines of code 9630 1413 4921
No. of design units 72 31 59

Initial compilation of en-
tire design

9,9 2,5 7,4

Creating unit manager 2 < 1 1
Activation of hyperlinks
inside ALU

4 4 2

Creating other graphical
interfaces for ALU

< 1 < 1 < 1

Table 1. Performance data of VYPER! in CPU sec.

In order to evaluate the analysis capabilities of
VYPER!, we have passed a set of questions on unkown
VHDL designs to di�erent users (e.g. "Identify the se-
quence of controller states during the execution of com-
mand xyz", "Double the delay time of the processsor's
ALU" (cf. Fig. 1)). In nearly all cases, the questions
have been answered substantially faster if VYPER! was
applied (up to 15 times). This speed-up mostly results
from the automatic structural analysis, the abstract-
ing views on the code, and the immediate access to the
relevant VHDL code fragments via the hierarchically
organized graphical interfaces.

In the case of very small models we observed that
the usage of UNIX tools like grep and texteditors (in-
cluding a VHDL-speci�c color-highlight mode) might
outperform VYPER!. This is especially true, it the
models follow a few basic rules of design for reuse, like
indentations, meaningful identi�er names and reason-
able comments. However, the use VYPER! has avoided
some VHDL misinterpretations even in these cases.

9. Conclusions

This paper has presented basic concepts for the re-
verse engineering of HDL designs. Especially, the im-
mediate access to interrelated design data and the ab-
stracting graphical representations facilitate the anal-
ysis of HDL code thus promoting the reuse of former
design activities. Furthermore, the analysis capabili-
ties ease the error detection during model development.
This contributes to the quality of a VHDL design which
enhances its applicability for future reusage. Of course,
the presented tool-set can not cover all reuse aspects of
electronic design (e.g. layout macros) because it targets
only HDL based design data.

In the future, we plan to integrate edit and search
features into the hypertext interface. An extended de-
sign elaboration will enable the user of the tool-set to
quickly answer not only analysis questions like "where
is it declared?" but also "where is it used?". Finally,
a more e�cient practical usage of the tool-set may be
achieved by integrating it into a HDL simulator in or-
der to avoid extra compilation times.

References

[1] J. R. Armstrong. Chip-level Modeling with VHDL.
Prentice-Hall, Englewood Cli�s, NJ, USA, 1989.

[2] P. J. Ashenden. The VHDL Cookbook. University of
Adelaide, Australia, 1990.

[3] B. W. Boehm. Keynote speech. In ACM Computer

Science Conference, Phoenix, AZ, USA, 1994.
[4] N. Chapin. New Format for Flowcharts. Software -

Practice and Experience, (4), Oct. 1974.
[5] J. H. Cross. Reverse Engineering Control Structure

Diagrams. In IEEE Working Conference on Reverse
Engineering, Baltimore, MD, USA, 1993.

[6] E. Girczyc and S. Carlson. Increasing Design Quality
and Engineering Productivity through Design Reuse.
In 30th ACM/IEEE Design Automation Conference,
Dallas, TX, USA, 1993.

[7] IEEE Std 1076-1993. Institute of Electrical and Elec-
tronics Engineers, Inc., New York, NY, USA, 1994.

[8] R. G. Lanergan and C. A. Grasso. Software Engineer-
ing with Reusable Designs and Code. In IEEE Tu-

torial: Software Reusability. IEEE Computer Society
Press, Washington, D.C., USA, 1987.

[9] G. W. Ledenbach. Panel: A Common Standards
Roadmap. In 33rd ACM/IEEE Design Automation
Conference, Las Vegas, NV, USA, 1996.

[10] G. Lehmann, B. Wunder, and K. D. M�uller-Glaser. A
VHDL Reuse Workbench. In EURO-VHDL, Geneva,
Switzerland, 1996.

[11] C. H. Lindsey. Structure Charts - A Structured Alter-
native to Flowcharts. ACM SIGPLAN Notices, (11),
Nov. 1977.

[12] J. Martin and C. McClure. Action Diagrams: Clearly
Structured Program Design. Prentice-Hall, Englewood
Cli�s, NJ, USA, 1985.

[13] J. Martin and C. McClure. Diagramming Techniques
for Analysts and Programmers. Prentice-Hall, Engle-
wood Cli�s, NJ, USA, 1985.

[14] F. Musa. VHDL and Verilog: Who Needs Them?
In VHDL International Users' Forum, Newton, MA,
USA, Oct. 1995.

[15] I. Nassi and B. Shneiderman. Flowchart Techniques
for Structured Programming. ACM SIGPLAN No-
tices, (8), Aug. 1973.

[16] V. Preis, R. Henftling, S. M�arz-R�ossel, and M. Sch�utz.
A Reuse Scenario for the VHDL-Based Hardware De-
sign Flow. In EURO-VHDL, Brighton, UK, 1995.

[17] L. L. Tripp. A Survey of Graphical Notations for Pro-
gram Design - An Update. ACM SIGSOFT, 13(4),
Oct. 1988.

	CDROM Home Page
	1996 Home Page
	ICCAD 96
	Front Matter
	Table of Contents
	Session Index
	Author Index

