
ICCAD ’96
1063-6757/96 $5.00  1996 IEEE

CTL Model Checking Based on Forward State Traversal

Hiroaki Iwashita Tsuneo Nakata Fumiyasu Hirose
Fujitsu Laboratories Ltd.

1-1 Kamikodanaka 4-chome, Nakahara-ku, Kawasaki 211-88, Japan
hiroaki@flab.fujitsu.co.jp

Abstract

We present a CTL model checking algorithm based mainly
on forward state traversal, which can check many realis-
tic CTL properties without doing backward state traversal.
This algorithm is effective in many situations where back-
ward state traversal is more expensive than forward state
traversal. We combine it with BDD-based state traversal
techniques using partitioned transition relations. Experi-
mental results show that our method can verify actual CTL
properties of large industrial models which cannot be han-
dled by conventional model checkers.

1 Introduction

Formal verification techniques are starting to become stan-
dard industrial hardware verification methods, since peo-
ple know that design complexity continues to grow and
that they cannot keep up using only conventional verifi-
cation methods, such as logic simulation. For sequential
systems, one of the most popular and feasible approaches
to formal verification is CTL model checking [1, 2, 3]. It is
a method for verifying that a sequential system satisfies a
property where the system is modeled as a finite state ma-
chine (FSM) and the property is expressed in a temporal
logic called Computation Tree Logic (CTL) [1].

Rapid progress has been made in model checking tech-
niques since binary decision diagrams (BDDs) [4] were in-
corporated into them [5, 6]. It has been shown that these
techniques, called symbolic model checking, can poten-
tially verify large FSMs with more than 1020 states. The ef-
fectiveness of symbolic model checking, however, heavily
depends on the model’s structure and BDD variable order-
ing. In practice, symbolic model checking of a complicated
system can only be accomplished by a few experts who can
fine tune the model based on their knowledge of both the
target system and the symbolic model checker.

Some techniques using partitioned transition relations
have been proposed to verify larger FSMs [7, 8]. Memory
usage is reduced by making the partition size smaller, in
general. We often observe, however, CPU time for back-
ward state traversal becomes much larger when we make
the partition size smaller. We cannot always find a good

partitioning for backward state traversal that satisfies both
memory and time limitations. On the other hand, we also
observe that CPU time for forward state traversal is not af-
fected by the partition size so much. We can use partitioned
transition relations composed of individual latch transition
functions to reduce memories, without great loss of execu-
tion speed.

In the symbolic model checking paradigm, CTL for-
mulas have been evaluated with backward state traver-
sal [2]. We describe, in this paper, an algorithm to accom-
plish CTL model checking in the opposite direction. It is
effective in many situations where backward state traver-
sal is more expensive than forward state traversal. Af-
ter preliminaries in Section 2, Section 3 characterizes for-
ward state traversal and backward state traversal using par-
titioned transition relations. Section 4 presents our new
procedure for evaluating CTL properties with forward state
traversal. We report the results in Section 5.

2 Preliminaries

2.1 Transition relations

An FSM is a 6-tuple,(S; I; O; �; �; s0), whereS is the set
of states,I is the set of input values,O is the set of output
values,� : S�I ! S is the next state function,� : S�I !
O is the output function, ands0 2 S is the initial state. In
what follows, letB = f0; 1g.

The transition relationof an FSM is the functionT :
S � I � S ! B; T (x; i; y) = 1 iff y = �(x; i). In the
basic symbolic technique, a single BDD is built for repre-
senting the transition relationT . For a large FSM, how-
ever, we often fail to construct the BDD forT because of
a BDD size explosion.Partitioned transition relations[8]
are popular representation to reduce the BDD size. When
the state is expressed by a vector ofn Boolean state vari-
ables (latches) and the transition function of thek-th latch
is given by�k(~x;~i), we can make a conjunctive partitioned
transition relation as follows:

T (~x;~i; ~y) = T1(~x;~i; y1) ^ : : : ^ Tn(~x;~i; yn)

Tk(~x;~i; yk) =
�
yk � �k(~x;~i)

�

Latch transition relationsT1; : : : ; Tn are represented byn
BDDs, which are much smaller than the BDD forT in gen-
eral.

2.2 Images and pre-images

Given an FSM(S; I; O; �; �; s0) and a set of statesA � S,
the imageof A is defined to be the set of statesf y j 9x 2
A; 9i 2 I; y = �(x; i) g, and thepre-imageof A is defined
by the set of statesfx j 9y 2 A; 9i 2 I; y = �(x; i) g.

A set of statesA � S can be represented by acharac-
teristic function�A : S ! B; �A(x) = 1 iff x 2 A. We
use a notationL (f) to express the set of states represented
by functionf , in this paper. The image and the pre-image
of L (f) are calculated by following symbolic operations:

Img(f) (~y)

= 9~x:9~i:
h
T (~x;~i; ~y) ^ f(~x)

i
= 9~x:9~i:

h
T1(~x;~i; y1) ^ : : : ^ Tn(~x;~i; yn) ^ f(~x)

i
Pre(f) (~x)

= 9~i:9~y:
h
T (~x;~i; ~y) ^ f(~y)

i
= 9~i:9~y:

h
T1(~x;~i; y1) ^ : : : ^ Tn(~x;~i; yn) ^ f(~y)

i
The image and the pre-image ofL (f) areL (Img(f)) and
L (Pre(f)) respectively. OperationsImg(f) andPre(f)
are similar ifT is given by a single BDD. When we use
conjunctive partitioned transition relations, early existen-
tial quantification can be done while calculating the con-
junction of all BDDs [7, 8]. Efficiency of the calculation
strongly depends on the order in which the BDDs are pro-
cessed. Strategies to find effective orders forImg(f) and
Pre(f) seem to be different, because those expressions
have different forms.

2.3 CTL model checking

Model checking is the process of determining whether a
model (FSM) satisfies its requirements (properties). A tem-
poral logic CTL [1] is commonly used to express prop-
erties about an FSM. CTL formulas are composed of
atomic propositions with usual logical operators and fol-
lowing temporal operators:

� EX f (AX f) which means thatf holds at some (ev-
ery) successor state of the current state.

� EF f (AF f) which means that for some (every) state
transition path, there exists a state on the path at which
f holds.

� EG f (AG f) which means that for some (every) state
transition path,f keeps holding forever on the path.

� E [gU f] (A [gU f]) which means that for some (ev-
ery) state transition path, there exists a state on the
path at whichf holds, andg holds at all the preceding
states.

A CTL property is expressed by a notation like “M; s j=
f .” It means that the CTL formulaf is true in states of
modelM . It is also written simply as “s j= f ” where the
model is not ambiguous.

CTL formula f can be interpreted as a set of states
L (f) = f s j s j= f g. EX f is then the same operation as
computing the pre-image ofL (f):

EX f = Pre(f)

E [gU f] andEG f can be characterized by the least and
greatest fix-point computation as follows:

E [gU f] = lfp Z [f _ (g ^ EX Z)]

EG f = gfpZ [f ^ EX Z]

The remaining operators are given by following rules:

EF f = E [trueU f]

AX f = :EX :f

AF f = :EG:f

AG f = :EF:f

A [gU f] = : (E [:f U:g ^ :f] _ EG:f)

A fairness constraintis a condition representing fair
state transition paths in which we are interested. CTL
model checking under fairness constraints is performed by
restricting state transition paths along which each fairness
constraint holds infinitely often. Fairness constraints are
given by a set of CTL formulasC. CTL formula EG f

under fairness constraints inC is computed as follows [2]:

ECG f = gfpZ

"
f ^ EX

^
c2C

E [Z UZ ^ c]

#

The set of states that are the start of some fair path under
fairness constraints inC is given byL (ECG true). Once
ECG true is evaluated,EX f andE [gU f] under fairness
constraints inC can be computed simply as follows:

ECX f = EX (f ^ ECG true)

EC [gU f] = E [gU (f ^ ECG true)]

3 Forward versus backward traversal

Conventional CTL model checkers evaluate CTL formu-
las with repeated pre-image computation,backward state
traversal. Propertiess0 j= EF f ands0 j= AG f are also

Model #Latches #States Depth Description

gigamax 16 1.2�102 8 An example in VIS distribution (originated in SMV).
atm sw 54 2.0�105 126 Abstracted processor core for an ATM-switch [9].
dh 1 46 4.0�103 21 Cache coherency protocol description focused on a multiprocessor BUS.
dh 2 66 7.9�106 17 Cache coherency protocol description focused on processor interaction.
vpp 101 2.4�1011 18 Abstracted VLIW microprocessor pipeline.
pipe s 35 2.9�108 11 Abstracted superscalar microprocessor pipeline; a simple version.
pipe d 73 5.7�1017 11 Abstracted superscalar microprocessor pipeline; a complicated version.

Table 1: Benchmark examples

Complete TR Partitioned TR
Model #Nodes Image Pre-image #Nodes Image Pre-image

gigamax 0.5K 0.0 0.0 1K 0.3 0.0
atm sw 1302K 8.9 21.8 1K 10.9 202.5
dh 1 3K 0.0 0.8 1K 0.3 1.3
dh 2 100K 13.8 75.4 35K 46.8 >10000
vpp N/A N/A N/A 60K 3.0 4135.1
pipe s 322K 10.7 14.8 3K 0.6 387.9
pipe d N/A N/A N/A 348K 200.4 >20000

Table 2: CPU seconds per image or pre-image computation

known to be verified by comparingL (f) and the reach-
able states. Reachable states are enumerated with repeated
image computation,forward state traversal.

Performance of the computation is very sensitive to
BDD variable ordering. It is difficult to find a good variable
order automatically, and ordinary users cannot always find
it manually. When we use conjunctive partitioned transi-
tion relations, the performance is also sensitive to the order
in which the BDDs are processed. In our experience of
industrial hardware verification, however,imagecompu-
tation with partitioned transition relation works relatively
fine even if the FSM is very large and the ordering is not
tuned so much.

Table 1 summarizes seven models that we use as
benchmark examples in this paper. Exceptinggigamax ,
the models and those properties are actual ones that we
have prepared for verifying real hardware products. For
each benchmark, we tried conventional model check-
ing procedure that checks reachability with forward state
traversal and evaluates CTL formulas with backward state
traversal. We used both a complete transition relation rep-
resented by a single BDD and a conjunctive partitioned
transition relation represented by a set of BDDs for latch
transition relations.

Table 2 shows average CPU time per image or pre-
image computation during each model checking process.
Total numbers of BDD nodes for complete/partitioned tran-
sition relations are also shown in the table. Complete tran-
sition relations for modelsvpp andpipe d could not be

made because of BDD size explosions. Pre-image compu-
tation with partitioned transition relation for modelsdh 2
andpipe d exceeded the CPU time limit of 24 hours. We
should not compare image computation time and pre-image
computation time directly, because they are solving differ-
ent problems. The results, however, show that the time ra-
tio of image computation and pre-image computation with
a partitioned transition relation is huge, while that with a
complete transition relation is relatively small.

4 Forward CTL model checking

As described in Section 3, there is a large CPU time differ-
ence between image computation and pre-image compu-
tation especially when a conjunctive partitioned transition
relation is used. We should traverse state space forward
when we can choose the direction. Although CTL model
checking has been based on backward state traversal, we
propose a new method for checking CTL properties using
forward state traversal in this section.

4.1 Rewriting property notations

A CTL property is given as a notation like “s0 j= f .” Con-
ventional model checking procedure matches the notation:
it evaluates CTL formulaf with backward state traversal,
and then checks if it holds at states0. We rewrite the no-
tation for the purpose of matching it with our method. We
translate the CTL property into a problem of comparing a
formula with the constant false. Lets0 be a state of the

FSM,p0 the characteristic function offs0g, andf an arbi-
trary CTL formula. Formulap0 is true only at states0, and
formulaf is true at states0 iff s0 j= f holds. Therefore,
the “j=” notation can be rewritten as follows:

s0 j= f () p0 ^ f 6= false (1)

s0 j= f () p0 ^ :f = false (2)

Some model checkers support models with multiple
initial states, while “j=” represents relation between a sin-
gle state and a CTL formula. Given a set of initial states
S0, we believe that interpretation of some extended nota-
tion like “S0 j= f ” is ambiguous. It should be written as
“9s 2 S0, s j= f ” or “8s 2 S0, s j= f ”. They can be
rewritten as “p0 ^ f 6= false” and “p0 ^ :f = false” re-
spectively wherep0 is the characteristic function ofS0.

4.2 Forward EX evaluation

Let p andf be formulas. We can replace an outermostEX
evaluation with image computation as follows:

p ^ EX f 6= false () Img(p) ^ f 6= false (3)

Proof: Assumep^EX f holds at states. Thenp holds at
s andf holds at some successor state ofs, sayt. Img(p)
holds att sinceImg(p) holds at any successor state ofs 2
L (p). Thus,Img(p) ^ f holds att. Conversely, assume
Img(p) ^ f holds at statet. Thenf holds att andt is a
successor state of some states 2 L (p). EX f holds ats
sincet 2 L (f) is a successor state ofs. Thus,p ^ EX f

holds at states. 2

Notice that we have removed an operatorEX from f .
Using equation (3) again or using one of the equations de-
scribed later, it is possible to continue conversion of a back-
ward traversal operator inf into a forward traversal opera-
tor.

4.3 Forward EU evaluation

We define a state enumeration procedure under constraints
given by two formulasp andq:

FwdUntil(p; q) = lfp Z [p _ Img(Z ^ q)]

An element ofL (FwdUntil(p; q)) is a statet such that
there exists a path throught from some state at whichp
holds, andq holds at all states beforet on the path.

Using theFwdUntil() operator, we can replace an out-
ermostEU evaluation as follows:

p ^ E [qU f] 6= false

() FwdUntil(p; q) ^ f 6= false (4)

Proof: Assumep ^ E [qU f] holds at states. Then both
p andE [qU f] hold ats. It means that there exists a path

from s through some statet 2 L (f), andq holds at all
states beforet. Thus,FwdUntil(p; q) ^ f holds att. Con-
versely, assumeFwdUntil(p; q) ^ f holds at statet. Then
bothFwdUntil(p; q) andf holds att. There exists a path
throught from some states 2 L (p), andq holds at all
states beforet. Thus,p ^ E [qU f] holds ats. 2

Now the operatorEU have been removed fromf .
Thus, we have a chance again to convert a backward traver-
sal operator inf into a forward traversal operator, as in
equation (3).

4.4 Forward EG evaluation

We define an operator likeEG, except that pre-image com-
putation is replaced by image computation:

EH(p) = gfpZ [p ^ Img(Z)]

EH(p) is used to check whether there exists a state transi-
tion cycle inL (p). L (EH(p)) is the subset ofL (p) such
that every state is reachable from a cycle through states
only inL (p). We also define simple composite operators:

Reachable(p; q) = FwdUntil(p; q) ^ q

FwdGlobal(p; q) = EH(Reachable(p; q))

Reachable(p; q) computes the subset ofL (q) whose ele-
ments can be reached fromL (p ^ q) through states only in
L (q). FwdGlobal(p; q) checks whether there exists a state
transition cycle inL (q) that is reachable fromL (p ^ q)
through states only inL (q).

Using theFwdGlobal() operator, we can replace an
outermostEG evaluation as follows:

p ^ EG q 6= false

() FwdGlobal(p; q) 6= false (5)

Proof: Assumep^EG q holds at states. Then bothp and
EG q holds ats. It means that for some path froms, q keeps
holding forever on the path. In other words, there exists a
cycle inL (q) and it is reachable froms through states only
in L (q). L (Reachable(p; q)) includes the cycle, since it
includes all the states reachable froms 2 L (p ^ q) through
states only inL (q). Thus,EH(Reachable(p; q)) 6= false.
Conversely, assumeEH(Reachable(p; q)) 6= false. There
exists a cycle inL (Reachable(p; q)). It means that the
cycle is inL (q) and is reachable from some states 2 L (p)
through states only inL (q). Thus,p^EG q holds ats. 2

4.5 Forward fair EG evaluation

We also introduce fairness constraints into forward CTL
evaluation. The key is exactly like ordinary fair CTL eval-
uation, a procedure to find fair cycles. The procedure that

computeEH(p) under fairness constraintsC is given as
follows:

FairEH (p) = gfpZ

"
p ^ Img

 ^
c2C

Reachable(c; Z)

!#

We then modify theFwdGlobal() operator to handle fair-
ness constraints usingFairEH ():

FwdFairGlobal(p; q) = FairEH (Reachable(p; q))

Using theFwdFairGlobal() operator, we can replace an
outermostEG evaluation under fairness constraints as fol-
lows:

p ^ ECG q 6= false

() FwdFairGlobal(p; q) 6= false (6)

It is clear from the fact that both sides are the modified
version of equation (5) that restrict paths under the same
constraints.

4.6 The conversion procedure

Using conversion rules (3), (4), (5), and (6), we can replace
EX, EU, EG, andECG with forward traversal operators.
An original property notation should be rewritten using ei-
ther positive form (1) or negative form (2) so that the for-
mula matches one of the rules. The problem of compar-
ing a disjunctive expression with the constant false, such as
“f _ g 6= false”, can be divided into sub-problems, such as
“f 6= false” and “g 6= false”. We can check each term sep-
arately, and if one or more terms are not the constant false,
the entire expression is not the constant false. We do not
need to convert all CTL temporal operators into forward
traversal operators. Remaining operators can be evaluated
in usual manner, with backward state traversal. Hence, all
CTL formulas can be handled with our method. The con-
version procedure is shown below:

1. Rewrite the CTL formula only in temporal operators
EX, EU, EG, andECG.

2. Translate “j=” notation into an expression comparing
a formula with the constant false, using equation (1)
or (2).

3. Arrange outermost logical operations in disjunctive
form, and divide the problem into a set of sub-
problems comparing each product term with the con-
stant false.

4. For each sub-problem, convert a backward operator to
a forward operator using one of equations (3), (4), (5),
and (6), if applicable.

5. For each newly updated sub-problems, call the proce-
dure recursively from step 3.

Although steps 2 and 4 have choice, it is easy to find good
conversion for actual CTL properties. Many properties that
we examined can be fully converted to forward state traver-
sal problems, as shown in the next section.

Example Here is an example of converting one of the
most common properties, “whenever a request is made, ac-
knowledgment will return in the future,” wherereq means
the request,ack means the acknowledgment,s0 is the ini-
tial state, andp0 is the characteristic function offs0g:

s0 j= AG (req! AF ack)

() s0 j= :E [trueU (req^ EG:ack)]

() p0 ^ E [trueU (req^ EG:ack)] = false

() FwdUntil(p0; true) ^ (req^ EG:ack) = false

() (FwdUntil(p0; true) ^ req) ^ EG:ack= false

() FwdGlobal((FwdUntil(p0; true) ^ req);:ack) = false:

5 Experimental results

5.1 Applicability to actual CTL properties

Our method becomes effective when many temporal op-
erators in a CTL formula are converted into our forward
traversal operators. We investigated examples in two exist-
ing symbolic model checkers SMV [2] and VIS [10], and
also examined our own property examples.

We found that 90% of the properties can be rewritten
using only the forward traversal operators: 18 properties
out of 20 in the SMV examples, 47 properties out of 55 in
the VIS examples, and all of our 13 properties. The rest of
the properties are classified into three types:

s0 j= AG EF a

() FwdUntil(p0; true) ^ :EF a = false

s0 j= AG (a! EG b)

() FwdUntil(p0; true) ^ a ^ :EG b = false

s0 j= AG ((a! EX b) ^ (b! EX a))

()

�
FwdUntil(p0; true) ^ a ^ :EX b = false
FwdUntil(p0; true) ^ b ^ :EX a = false

wherea andb are atomic propositions. Both forward and
backward traversal are used to check these properties. They
are, in fact, the same as conventional methods that can un-
fold only outermostAG operators.

5.2 Performance of CTL model checking

We measured execution speed and memory usage of our
model checker, named BINGO. We also executed SMV

BINGO
Model SMV VIS Bwd Fwd

gigamax
3.6sec
1.6MB

21.3sec
4.9MB

9.3sec
3.7MB

9.1sec
3.7MB

atm sw
1734sec

8.3MB
space

9447sec
27.1MB

1158sec
23.1MB

dh 1 —
138.7sec

6.8MB
29.6sec
3.7MB

20.3sec
3.8MB

dh 2 — space time
1357sec
31.5MB

vpp time* space
45569sec

17.5MB
223.3sec
13.2MB

pipe s
23715sec

60.2MB
51.7sec
6.1MB

12429sec
5.5MB

64.6sec
4.9MB

pipe d — space time
8979sec

249.7MB

‘ time’ exceeded 24 hours in CPU time.
‘space’ exceeded 300 megabytes of memory.
‘*’ failed while building a transition relation.

Table 3: Performance of CTL model checking

(version 2.2.4, released in 1994) and VIS (version 1.0, re-
leased in 1995) as references. BINGO makes a conjunc-
tive partitioned transition relation composed of individual
latch transition functions. Nondeterministic relations are
translated into deterministic functions by adding uncon-
strained pseudo inputs. SMV makes a complete transition
relation [2]. VIS makes a conjunctive partitioned transi-
tion relation by clustering several transition functions to-
gether [10].

We tried all models shown in Table 1 on BINGO
and VIS. We also triedgigamax , atm sw, vpp , and
pipe s on SMV. Thegigamax description for SMV has
a slightly different construction from that for others. Ex-
ceptinggigamax , we ran the experiments for all model
checkers with the same BDD variable order, which is de-
fined statically according to the original model description.
We also tested dynamic variable reordering on VIS; essen-
tial improvement could not be observed, however. Tran-
sition relation clustering in VIS is left unchanged from its
default. The results are shown in Table 3. CPU times and
memories were measured on a 50MHz SPARCstation10.
We set a CPU time limit of 24 hours and a memory limit of
300 megabytes. BINGO is executed in two modes: the con-
ventional model checking mode that unfolds only an outer-
mostAG or EF operator (labeled “Bwd”), and the forward
traversal mode that uses the algorithm presented in this pa-
per (labeled “Fwd”).

The results indicate that a fully partitioned transition
relation and forward CTL model checking made a success-
ful combination in BINGO. Some large models cannot be
verified without using fully partitioned transition relations.

Execution speed of forward CTL model checking is the
fastest or nearly the fastest of the methods. It is remark-
able that “Fwd” is extremely faster than “Bwd” in the large
models that require fully partitioned transition relations.

6 Conclusion

In this paper, we have presented techniques for verify-
ing CTL properties using forward state traversal. They
can be mixed with conventional backward CTL evaluation
techniques, and are applicable to arbitrary CTL properties.
Most realistic properties can be converted to use only for-
ward state traversal, while the class of such properties is
still uncertain. When our method is combined with BDD-
based state traversal techniques using partitioned transition
relations, it becomes a very practical method for verifying
large FSMs.

References

[1] E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic
Verification of Finite-State Concurrent Systems Using Tem-
poral Logic Specifications,” inACM Transitions on Program-
ming Languages and Systems, 8(2), pp. 244–263, 1986.

[2] K. L. McMillan, Symbolic Model Checking, Kluwer Aca-
demic Publishers, 1993.

[3] E. M. Clarke, O. Grumberg, K. L. McMillan, and X. Zhao,
“Efficient Generation of Counterexamples and Witness in
Symbolic Model Checking,” inProc. 32nd DAC, pp. 427–
432, 1995.

[4] R. E. Bryant, “Graph Based Algorithm for Boolean Function
Manipulation,” inIEEE Transactions on Computers, C-35(8),
pp. 677–691, 1986.

[5] J. R. Burch, E. M. Clarke, K. L. McMillan, and D. L.
Dill, “Sequential Circuit Verification Using Symbolic Model
Checking,”Proc. 27th DAC, pp. 46–51, 1990.

[6] O. Coudert and J. C. Madre, “A Unified Framework for the
Formal Verification of Sequential Circuits,” inProc. ICCAD-
90, pp. 126–129, 1990.

[7] H. J. Touati, H. Savoj, B. Lin, R. K. Brayton, and A.
Sangiovanni-Vincentelli, “Implicit State Enumeration of Fi-
nite State Machines using BDD’s,” inProc. ICCAD-90,
pp. 130–133, 1990.

[8] J. R. Burch, E. M. Clarke, and D. E. Long, “Representing
Circuits More Efficiently in Symbolic Model Checking,” in
Proc. 28th DAC, pp. 403–407, 1991.

[9] B. Chen, M. Yamazaki, and M. Fujita, “Bug Identification of
a Real Chip Design by Symbolic Model Checking,” inProc.
European Design and Test Conference, pp. 132–136, 1994.

[10] The VIS Group, “VIS: A System for Verification and Syn-
thesis,” inProc. Conference on Computer Aided Verification,
1996.

	CDROM Home Page
	1996 Home Page
	ICCAD 96
	Front Matter
	Table of Contents
	Session Index
	Author Index

