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Abstract

Simulation-based techniques for dynamic compaction
of test sequences are proposed. The �rst technique
uses a fault simulator to remove test vectors from the
partially-speci�ed test sequence generated by a deter-
ministic test generator if the vectors are not needed to
detect the target fault, considering that the circuit state
may be known. The second technique uses genetic algo-
rithms to �ll the unspeci�ed bits in the partially-speci�ed
test sequence in order to increase the number of faults
detected by the sequence. Signi�cant reductions in test
set sizes were observed for all benchmark circuits stud-
ied. Fault coverages improved for many of the circuits,
and execution times often dropped as well, since fewer
faults had to be targeted by the computation-intensive
deterministic test generator.

1 Introduction
Deterministic test generators for single stuck-at

faults in sequential circuits typically target individual

faults, and once a test is generated, the test is fault

simulated to �nd all other faults detected. The number

of faults that must be speci�cally targeted by the test

generator is thus reduced, but the tests do not neces-

sarily detect a signi�cant number of additional faults.

Shorter tests sets are desirable in reducing test appli-

cation time, which is an important consideration, since

it directly impacts the testing cost. If shorter test sets

can be used that still obtain a given fault coverage,

more chips can be tested in a given time period, and

fewer testers are needed. Furthermore, testers have a

limited amount of memory for storing tests, so test sets

should be smaller than the test vector limit to avoid an

expensive memory reloading operation.

Heuristics have been proposed for static compaction

of test sets through merging of test sequences, and large

reductions in test set lengths were reported [1]. How-

ever, some faults incidentally detected by the original

test sets were no longer detected by the compacted test

sets, and additional passes of test generation and com-

paction were required to obtain the original fault cov-

erage, increasing the overall execution time. Another

static compaction approach was reported in [2] in which

a given test set is modi�ed through vector insertion,
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vector omission, and vector selection. Omission of un-

necessary vectors was found to provide very compact

test sets, but execution times were high due to the large

number of fault simulations performed.

In contrast to static compaction, dynamic com-

paction is performed concurrently with the test gen-

eration process. Various di�erent dynamic compaction

approaches for sequential circuits have been proposed.

In the �rst approach [3], test generation alternates be-

tween fault-independent and fault-oriented phases, and

vectors are added to the test set one-at-a-time to mini-

mize test set size. Very compact test sets were obtained

for the few circuits reported, but execution times were

not given. In the second approach [4, 5, 6], heuristics

are used for selection of secondary target faults after a

partially-speci�ed test sequence is obtained for a pri-
mary target fault. Attempts are made to extend the

test sequence generated for the primary fault to cover

secondary faults using assignments to unspeci�ed pri-

mary inputs (PIs) only. In the third approach [7], three

heuristics were used to obtain compact test sets. Se-

lecting the best of 64 random �llings for unspeci�ed

bits in a partially-speci�ed sequence was found to re-

duce test set sizes signi�cantly. In the fourth approach

[8], the static compaction techniques proposed in [2] are

used for dynamic compaction; test vectors are omitted

from the existing test set or inserted into the existing

test set so that the test set will be able to detect the

current fault being targeted. Multiple passes are neces-

sary, since faults previously covered by the test set may

not be covered after the modi�cations. In the last ap-

proach [9], a symbolic algorithm is used to �nd all test

sequences for each fault and to combine test sequences

into a compact test set that covers the testable faults.

This approach is suitable for control-dominant circuits

that can be managed using binary decisions diagrams.

We propose a di�erent approach to dynamic test se-

quence compaction that uses fault simulation and ge-

netic algorithms (GAs) to reduce the number of test

vectors in a generated test sequence and increase the

number of faults detected. Some of the test vectors

at the beginning and end of a partially-speci�ed test

sequence generated by a deterministic test generator

may not be needed to detect a target fault if the circuit

state is known. The test generator may assume that

the circuit starts from an unknown state, but a fault

simulator interfaced to the test generator can be used

to remove any unnecessary vectors. Furthermore, each



unspeci�ed bit in a partially-speci�ed test sequence is

typically �lled randomly with a one or zero. Instead,

we propose to use a GA to �nd a better �lling of un-

speci�ed bits that allows more faults to be detected.

The genetic approach has the advantage of being a

simulation-based approach in which processing occurs

in the forward direction only. Thus, constraints on the

test sequences generated are easily handled. The GA is

able to make use of the previous good and faulty circuit

states reached after all previous test vectors in the test

set have been applied, often improving the fault cover-

age. Increasing the number of faults covered by a given

test sequence reduces the number of faults that must

be speci�cally targeted by the deterministic test gen-

erator. Therefore, reductions in the overall execution

time can be expected as well. The approach is much

simpler than many of the previous approaches, more

scalable to larger circuits, and can easily be added to an

existing deterministic test generator. This work is dif-

ferent from our previous work on test application time

reduction for full scan and partial scan circuits in which

test application time was reduced by limiting the scan

operations, i.e., the number of test vectors for which


ip-
op values must be scanned in and out [10]. The

proposed technique is intended to be a simple addition

to any existing deterministic test generator.

2 Genetic Algorithms

The simple GA, as described by Goldberg [11], con-

tains a population of strings, or individuals. Each string
is an encoding of a solution to the problem at hand and

has an associated �tness, which depends on the applica-
tion. The population is initialized with random strings,

and the evolutionary processes of selection, crossover,
and mutation are used to generate an entirely new pop-

ulation from the existing population. This process is

repeated for several generations. To generate a new

population from the existing one, two individuals are

selected, with selection biased toward more highly �t

individuals. The two individuals are crossed to create

two entirely new individuals, and each character in a

new string is mutated with some small mutation prob-

ability. The two new individuals are then placed in the

new population, and this process continues until the

new generation is entirely �lled. In our work, we use

tournament selection without replacement and uniform

crossover. In tournament selection without replacement,
two individuals are randomly chosen and removed from

the population, and the best is selected; the two in-

dividuals are not replaced into the original population

until all other individuals have also been removed. In

uniform crossover, characters from the two parents are

swapped with probability 1/2 at each string position

in generating the two o�spring. The goal of the evo-

lutionary process is to improve the �tness of the best

individual in each successive generation by combining

the good portions of �t individuals from the preceding

generation. However the best individual may appear in

any generation, so we save the best individual found.

3 Overview

Deterministic sequential circuit test generators use

backtracing operations to excite a fault, propagate its

e�ects to a primary output, and justify the required

state. In the process, values are assigned to a subset of

the bit positions in the test vectors that make up the

test sequence generated. The remaining bits are un-

speci�ed. Often several additional faults are detected

by the same partially-speci�ed sequence, but for other

faults, particular values must be assigned to the un-

speci�ed bits if the faults are to be detected. In the

HITEC sequential circuit test generator [12], the un-

speci�ed bits are �lled randomly with ones and zeros

in an attempt to cover many of these faults. However,

more faults can often be detected if several alternative

random �llings are fault simulated and only the best

one is added to the test set. Even a greater number

of faults can sometimes be detected if a GA is used to

evolve the best �lling of ones and zeros.

Genetic �lling of unassigned values is illustrated in

Figure 1. A partially-speci�ed test sequence that de-

tects the primary target fault is generated by a de-

terministic test generator. The test sequence is then

sent to the dynamic compactor, which is a constrained

GA-based test generator. The objective of the dynamic

compactor is to �nd a �lling of ones and zeros in the un-

speci�ed bit positions that detects the greatest number

of secondary faults. All individuals in the GA popula-

tion are initialized with random values, and unspeci�ed

values in the test sequence are �lled using values in

successive bit positions from an individual in the GA

population. In the example shown in the �gure, two

unspeci�ed bits in the �rst vector of the test sequence

are �lled using the �rst two values in the GA individ-

ual, one unspeci�ed bit in the second vector is �lled

using the third value in the GA individual, and so on,

until all unspeci�ed bits are �lled. The fully-speci�ed

test sequence is then fault simulated to obtain its �t-

ness value; the �tness value measures the quality of the

corresponding solution, primarily in terms of fault cov-

erage. The same �tness evaluation procedure is used for

all individuals in the population, and then a new gener-

ation is evolved. Processing continues for a set number
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Figure 1: Genetic �lling of unspeci�ed bits.
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Figure 2: Test generation with dynamic compaction.

of generations, and the best test sequence found in any

generation is added to the test set.

Before the GA is used, unnecessary vectors at the be-

ginning and end of the partially-speci�ed test sequence

may be identi�ed and removed using a fault simulator.

These extra vectors are generated if the test generator

assumes that the initial circuit state is unknown. How-

ever, the fault simulator may have information about

the circuit state if any test vectors have been previ-

ously added to the test set. Thus, for a test sequence of

length N, fault simulations are performed for the target
fault in which the �rst k vectors are removed from the

test sequence, where k ranges between 1 and N minus

one. The shortest subsequence that detects the target

fault is selected. Then any vectors at the end of the

sequence that do not contribute to detecting the fault

are removed. Note that this technique is only useful for

test generators such as HITEC [12] which assume that

the circuit starts in an unknown state. Test genera-

tors such as FASTEST [13] that make use of the circuit

state would not bene�t from this procedure, although

they would bene�t from the genetic �lling of unspeci�ed

bits.

The overall algorithm for test generation with dy-

namic compaction is illustrated in Figure 2. The deter-

ministic test generator, HITEC [12], and the dynamic

compactor, GA-COMPACT, run independently, com-

municating through UNIX sockets. HITEC acts as a

client, and GA-COMPACT acts as a server. HITEC

makes several passes through the fault list, with in-

creasing time limits per fault for successive passes. The

next fault in the fault list is selected as the target fault,

and test generation is attempted. If a test is successfully

generated, it is sent to GA-COMPACT, which returns a

fully-speci�ed test sequence and a list of detected faults.

The detected faults are removed from the fault list, and

the process continues for the next fault in the fault

list. If the targeted fault is identi�ed as untestable,

this information is sent to GA-COMPACT. After each

pass through the fault list, the user is prompted about

whether to continue with the next pass. Processing ter-

minates when the user responds negatively.

GA-COMPACT receives messages from HITEC un-

til it receives a message indicating that processing is

�nished. When a test sequence is received, unnecessary

vectors at the beginning and end of the sequence are

�rst removed in an optional step if desired. The GA

is then initialized, and a fully-speci�ed test sequence

is evolved by the GA using a small fault sample. The

PROOFS sequential circuit fault simulator [14] is used

to identify the unnecessary vectors, to evaluate the �t-

ness of each candidate test sequence, and again to up-

date the state of the circuit after the best test sequence

is selected. Finally the fully-speci�ed test sequence is

sent back to HITEC, along with the list of detected

faults obtained through fault simulation using the full

fault list. If the message sent by HITEC is an untestable

fault identi�cation, the corresponding fault is marked as

untestable to avoid targeting it in future GA operations.

4 GAs for Dynamic Compaction
In applying GAs to dynamic compaction, we use

each string in the GA population to represent a can-

didate �lling of unspeci�ed bits in a partially-speci�ed

test sequence. A binary coding is used, and binary val-

ues to be substituted for successive unspeci�ed bits in



the test sequence are placed in adjacent positions along

the string. Strings are evolved over several generations,

with the �tness of each individual being a measure of

the number of faults detected by the corresponding test

sequence. Thus, fault simulation is required. Since

the original partially-speci�ed test sequence detects the

primary target fault, the fully-speci�ed test sequence

evolved is guaranteed to detect at least one fault.

The number of faults detected is the primary met-

ric in the �tness function, since the objective of the

GA is to maximize the number of faults detected by a

given test sequence, To di�erentiate test sequences that

detect the same number of faults, we include the num-

ber of fault e�ects propagated to 
ip-
ops in the �tness

function, since fault e�ects at the 
ip-
ops may be prop-

agated to the primary outputs in the next time frame.

However, the number of fault e�ects propagated is o�-

set by the number of faults simulated and the number

of 
ip-
ops to ensure that the number of faults detected

is the dominant factor in the �tness function:

fitness = # faults detected

+
# faults propagated to flip flops

(# faults simulated)(# flip flops)

While an accurate �tness function is essential in

achieving a good solution, the high computational cost

of fault simulation may be prohibitive, especially for

large circuits. To avoid excessive computations, we can

approximate the �tness of a candidate test by using a

small random sample of faults. In this work, we use a

sample size of about 100 faults if the number of faults

remaining in the fault list is greater than 100. Target-

ing untestable faults is a waste of time and can pre-

vent the evolution of good test sequences in circuits

having a large number of untestable faults. There-

fore, the deterministic test generator sends information

about untestable faults once they are identi�ed. GA-

COMPACT marks these faults as untestable and does

not include them in the fault samples, but untestable

faults are still included in the full fault list simulated

after the fully-speci�ed test sequence is evolved.

Several GA parameters are important in achieving

good results. Small population sizes ranging between

8 and 64 are used, and the number of generations is

limited to eight to minimize execution time. A binary

coding is used in which each character in a string rep-

resents the value to be applied to a PI at a particular

time frame. Thus, mutation is done by 
ipping a bit.

Nonoverlapping generations and crossover and muta-

tion probabilities of 1 and 1/64 are used.

5 Results
A simulation-based dynamic compactor, GA-COM-

PACT, was implemented using the existing PROOFS

[14] source code and 1650 additional lines of C++ code.

The sockets interface in the HITEC deterministic test

generator [12] was also updated with 140 lines of C++

code for communicating with GA-COMPACT. Tests

were generated for several of the ISCAS89 sequential

benchmark circuits [15] and several synthesized circuits

on an HP 9000 J200 with 256 MB memory. In the �rst

two sets of experiments, results of which are shown in

Tables 1 and 2, the e�ects of the genetic �lling of un-

speci�ed bits in the partially-speci�ed sequences were

studied. Thus, unnecessary vectors at the beginnings

and ends of the test sequences were not removed be-

fore the GA was invoked. Instead, the fully-speci�ed

test sequences evolved by the GA were fault simulated

with the entire fault list, and noncontributing vectors

at the ends of the sequences were removed before the

sequences were sent back to the deterministic test gen-

erator. Results of GA-COMPACT using HITEC are

shown in Table 1 for a GA having a population size

of 8 and 8 generations (HITEC + GA-COMPACT
[8x8]). Results for HITEC alone and for HITEC using

the best �lling from a random sample of 64 (HITEC +
RANDOM [64x1]) are shown for comparison. GA-

COMPACT was used to �nd the best of 64 random �ll-

ings by setting the population size to 64 and the num-

ber of generations to one. Three passes through the

fault list were made by HITEC for all circuits except

pcont2, for which only two passes were used to reduce

the execution time. Time limits for the three passes

were 0.5, 5, and 50 seconds per fault. For each circuit,

the number of faults detected (Det), the number of

test vectors generated (Vec), the execution time, and

the number of untestable faults identi�ed (Unt) using
HITEC with and without GA-COMPACT are shown.

Execution times for HITEC and for GA-COMPACT

are separated in columns 4 and 12.

The combined approach, HITEC + GA-COMPACT,

was successful in reducing the test set size for all cir-

cuits except s526, Am2910, and pcont2, but for these

circuits the fault coverages increased. Fault coverages

can drop if HITEC is unsuccessful in generating tests

for hard-to-test faults, eg., s344 and mult16. However,

in most cases, the fault coverage increases in the �rst

two passes through the fault list, and a higher fault

coverage is sometimes observed after the third pass,

eg., s1423, s35932, div16, and pcont2. Comparing re-

sults for the genetic and random �llings of unspeci�ed

bits, the genetic approach outperforms the random ap-

proach for a majority of the circuits, even though the

same number of �llings are simulated for each partially-

speci�ed test sequence. These results demonstrate the

power of genetic algorithms. However, the random ap-

proach sometimes provides more compact test sets or

higher fault coverages. Either approach is a signi�cant

improvement over the current practice of using a single

random �lling. When GA-COMPACT is used, more

faults are typically covered by the test sequences gen-

erated by the computation-intensive deterministic test

generator, and fewer faults have to be targeted. Con-

sequently, the execution time for HITEC often drops

when GA-COMPACT is used in conjunction. Because

small fault samples are used by GA-COMPACT, exe-

cution times for the GA are minimal. Therefore, execu-

tion times for GA-COMPACT are usually signi�cantly



Table 1: Genetic Compaction Results

HITEC + GA-COMPACT [8x8] HITEC HITEC + RANDOM [64x1]

Circuit Det Vec Time Unt Det Vec Time Unt Det Vec Time Unt

s298 265 207 16.5m+14.2s 26 265 322 16.2m 26 265 225 16.5m+12.7s 26

s344 321 80 10.7m+6.70s 11 324 115 8.07m 11 324 77 7.56m+6.16s 11

s349 332 51 5.37m+4.56s 13 332 128 7.73m 13 331 56 6.19m+4.95s 13

s382 301 1193 1.51h+1.95m 9 301 1463 1.52h 9 301 1193 1.51h+1.91m 9

s386 314 237 7.86s+9.06s 70 314 286 7.25s 70 314 218 6.57s+6.76s 70

s400 341 1367 1.20h+2.06m 17 341 1845 1.21h 17 341 1594 1.19h+2.00m 17

s444 373 1532 1.70h+2.23m 24 373 1761 1.49h 25 373 1733 1.49h+2.40m 25

s526 329 678 5.55h+51.9s 23 316 436 5.79h 23 337 678 5.44h+51.7s 23

s641 404 103 4.61s+11.4s 63 404 209 4.84s 63 404 116 4.70s+12.4s 63

s713 476 86 6.99s+9.99s 105 476 173 6.71s 105 476 109 7.15s+12.4s 105

s820 814 842 3.68m+1.29m 36 813 1115 3.50m 37 814 905 3.71m+1.36m 36

s832 818 860 5.33m+1.13m 51 817 1137 5.75m 53 818 814 5.39m+61.8s 51

s1196 1239 268 3.73s+34.2s 3 1239 435 5.50s 3 1239 280 3.82s+34.3s 3

s1238 1283 293 6.50s+36.9s 72 1283 475 8.23s 72 1283 475 6.73s+38.2s 72

s1423 931 140 12.1h+30.1s 14 723 150 13.9h 14 1023 153 11.4h+32.5s 14

s1488 1444 831 17.6m+2.79m 41 1444 1170 16.5m 41 1444 821 15.2m+2.54m 41

s1494 1453 812 10.2m+2.73m 52 1453 1245 9.59m 52 1453 845 9.07m+3.01m 52

s3271 3237 582 42.3m+2.66m 4 3227 641 39.4m 5 3236 542 36.5m+2.52m 4

s3330 2108 386 10.5h+1.67m 121 2097 551 10.6h 124 2110 483 10.5h+1.99m 121

s3384 3028 113 5.52h+48.6s 1 2996 161 6.06h 1 3026 101 5.54h+43.8s 1

s4863 4629 293 2.25h+2.27m 18 4621 477 2.38h 25 4629 302 2.28h+2.21m 19

s5378 3240 568 18.2h+3.54s 218 3231 912 18.4h 217 3238 589 18.3h+2.93m 224

s6669 6664 150 25.1m+1.81m 0 6655 319 33.3m 0 6670 183 19.3m+2.21m 0

s35932 34925 341 4.28h+20.3m 3984 34901 496 4.73h 3984 34910 402 4.42h+21.3m 3984

Am2910 2175 1006 58.8m+4.58m 173 2171 871 56.4m 173 2190 594 37.0m+2.69m 173

div16 1683 183 4.98h+43.0s 136 1667 228 5.35h 136 1679 177 5.04h+42.0s 136

mult16 1560 73 2.10h+25.3s 22 1582 111 1.90h 23 1571 85 1.91h+25.1s 23

pcont2 4343 7 8.22h+19.3s 2773 3514 7 9.58h 2773 4270 7 8.31h+20.3s 2773

8x8: GA population size = 8, number of generations = 8 64x1: GA population size = 64, number of generations = 1

Table 2: Genetic Compaction Results for Various GA Population Sizes

HITEC + GA-COMPACT

Total Population Size = 16 Population Size = 32 Population Size = 64

Circuit Faults Det Vec Time Det Vec Time Det Vec Time

s298 308 265 207 16.5m+27.3s 265 190 16.1m+41.0s 265 243 16.4m+1.72m

s344 342 328 52 3.49m+9.64s 324 56 7.82m+17.5s 324 80 7.70m+44.6s

s349 350 332 73 5.41m+12.1s 332 59 5.40m+21.0s 332 67 5.37m+34.8s

s382 399 301 1195 1.51h+3.76m 301 1192 1.51h+7.51m 301 1577 1.49h+15.8m

s386 384 314 226 7.64s+16.5s 314 228 7.67s+32.5s 314 227 6.56s+52.1s

s400 426 341 1366 1.20h+4.00m 341 1367 1.20h+7.63m 341 1366 1.20h+15.8m

s444 474 373 1370 1.68h+4.28m 373 1370 1.68h+8.95m 373 1367 1.68h+15.6m

s526 555 316 434 5.76h+1.21m 323 678 5.64h+3.09m 323 434 5.66h+5.85m

s641 467 404 87 4.13s+19.1s 404 88 4.17s+38.0s 404 81 3.92s+1.13m

s713 581 476 78 6.85s+17.0s 476 85 6.92s+36.8s 476 78 6.89s+1.11m

s820 850 814 927 3.62m+2.60m 814 857 3.59m+5.09m 814 820 3.65m+9.13m

s832 870 817 792 6.60m+2.10m 818 819 5.15m+4.13m 818 791 5.94m+8.33m

s1196 1242 1239 254 3.43s+57.9s 1239 245 3.33s+1.80m 1239 226 3.21s+3.39m

s1238 1355 1283 269 6.08s+1.06m 1283 262 6.04s+2.00m 1283 246 6.02s+3.74m

s1423 1515 977 141 11.1h+58.4s 1018 150 10.2h+1.99m 900 125 11.9h+2.89m

s1488 1486 1444 804 17.6m+5.31m 1444 788 17.2m+9.76m 1444 764 17.2m+18.9m

s1494 1506 1453 845 10.0m+5.82m 1453 746 10.1m+9.55m 1453 802 10.1m+21.1m

s3271 3270 3244 617 34.5m+4.83m 3249 562 25.4m+10.0m 3251 545 23.9m+20.0m

s3330 2870 2114 403 10.3h+2.98m 2112 396 10.4h+6.16m 2115 422 10.4h+13.5m

s3384 3380 3045 97 5.24h+1.22m 3069 111 4.85h+3.14m 3043 99 5.26h+5.72m

s4863 4764 4634 269 2.06h+3.72m 4632 263 2.15h+7.29m 4636 285 2.04h+15.7m

s5378 4603 3239 549 18.2h+5.69m 3241 583 18.2h+11.0m 3236 510 18.3h+21.8m

s6669 6684 6672 144 20.2m+3.08m 6668 146 18.8m+6.53m 6669 148 18.3m+12.8m

s35932 39094 34923 386 4.12h+37.3m 34929 328 3.95h+1.43h 34925 319 4.11h+1.85h

Am2910 2391 2181 859 45.2m+6.74m 2183 852 52.4m+15.0m 2187 983 40.7m+31.2m

div16 2147 1681 169 5.01h+1.20m 1681 151 5.00h+2.31m 1672 149 5.28h+4.13m

mult16 1708 1567 63 1.98h+38.0s 1558 67 2.13h+1.57m 1565 77 2.00h+3.30m

pcont2 11300 4425 7 8.19h+25.1s 4178 7 8.59h+43.0s 4306 7 8.25h+59.3s



smaller than the HITEC test generation times, and the

overall time for HITEC + GA-COMPACT is smaller

than the execution time for HITEC alone for many of

the circuits.

Genetic compaction results are shown in Table 2 for

GA population sizes of 16, 32, and 64; the number of

generations was set to 8 for all experiments. The total

number of collapsed faults targeted is also given. The

number of faults found to be untestable was about the

same as that for the GA population size of 8 shown in

Table 1. The most compact test set sizes are shown

in bold in Tables 1 and 2 for experiments in which the

fault coverage is maximal. Results that are nearly as

good are italicized. A larger population can be expected

to provide a better �lling for a given partially-speci�ed

test sequence, which may lead to higher fault cover-

ages and more compact test sets. For many of the cir-

cuits, the highest population size did in fact provide the

most compact test sets at the maximum fault coverage

achieved in any of the experiments. For many of the cir-

cuits, the smaller population sizes gave better results,

and for four circuits { s386, s526, s1423, and Am2910 {

the best of 64 random �llings provided the best results.

The original HITEC algorithm with a single random

�lling gave the best results for one circuit only, mult16.

These results highlight the fault-order dependency of

an algorithm such as HITEC. Many of the faults are

incidentally detected by the test sequences generated,

and HITEC is not able to generate sequences for some

of these faults. A population size of 32 gave good re-

sults for the largest number of circuits, but population

sizes of 16 and 8 provided good results as well.

Experiments were carried out to determine if remov-

ing unnecessary vectors at the beginning and end of

a partially-speci�ed test sequence before the GA is in-

voked is e�ective in reducing the test set size. Results

are shown in Table 3 for a GA having a population size

of 32 and 8 generations. Test set sizes are shown in

bold if they are smaller than those for any of the previ-

ous experiments and the fault coverage is at or near the

maximum value obtained. Results are italicized if they

are nearly as good as the best. Signi�cant reductions

in test set size occurred for many of the circuits, es-

pecially for the highly-sequential circuits such as s382.

Test sequences of 60 vectors or more were often reduced

to less than 5 vectors. In addition, fault coverages for

four of the circuits were highest when this procedure

was used: s400, s444, s35932, and mult16. For most of

the remaining circuits, test set sizes were very close to

the minimal obtained by GA-COMPACT.

For a few circuits, including s526, s1423, and pcont2,

the results are not as good as in some of the previous

experiments, but this is due to a drop in fault coverage

rather than a failure in compaction. HITEC is unable

to generate tests for many of the faults in these circuits

when they are speci�cally targeted. A simulation-based

test generator such as GATEST [16] is more capable of

generating tests for them. Thus, to handle these cir-

cuits, we added an extra phase at the end of each pass

Table 3: HITEC + GA-COMPACT with Removal of Un-

necessary Vectors

Circuit Det Vec Time Unt

s298 265 145 16.3m+28.2s 26

s344 326 54 5.31m+15.2s 11

s349 332 61 5.53m+17.3s 13

s382 323 272 1.17h+1.65m 9

s386 314 182 7.25s+23.0s 70

s400 364 389 51.3m+2.35m 17

s444 374 228 1.59h+1.51m 24

s526 275 76 6.18h+35.3s 23

s641 404 83 4.18s+33.8s 63

s713 476 60 6.09s+27.5s 105

s820 814 567 2.75m+2.75m 36

s832 817 561 4.42m+2.50m 53

s1196 1239 232 4.62s+1.85m 3

s1238 1283 248 7.25s+2.10m 72

s1423 963 119 11.6h+1.64m 14

s1488 1444 475 14.3m+5.76m 41

s1494 1453 502 8.52m+6.51m 52

s3271 3242 593 35.4m+8.35m 5

s3330 2104 246 10.5h+4.08m 124

s3384 3047 85 5.21h+2.30m 1

s4863 4626 263 2.18h+7.48m 21

s5378 3239 189 18.2h+5.82m 223

s6669 6666 129 21.4m+5.60m 0

s35932 35051 160 2.04h+34.3m 3984

Am2910 2184 531 49.5m+9.96m 173

div16 1678 151 5.17h+2.61m 136

mult16 1594 82 1.77h+1.79m 22

pcont2 2847 3 10.5h+44.0s 2773

through the fault list in which completely-unspeci�ed

sequences are passed to GA-COMPACT, and sequences

are generated until no more faults are detected. Unnec-

essary vectors at the ends of the sequences are removed

using fault simulation with the full fault list before the

fully-speci�ed sequences are returned to HITEC. Test

sequence lengths of x, 2x, and 4x are used in the �rst,

second, and third passes through the fault list, respec-

tively, where x is equal to half the structural sequential
depth of the circuit (or the next larger integer). Re-

sults are shown in Table 4. Again, a GA population

size of 32 was used. Fault coverages increased to their

highest values for four of the �ve circuits (shown in

bold), and the fault coverage for the �fth circuit, s526

(shown italicized), was almost as high as the best of

Table 4: HITEC + GA-COMPACT with GATEST Phase

Circuit Det Vec Time Unt

s526 325 92 3.44h+47.5s 23

s1423 1050 201 7.85h+3.10m 14

s3271 3259 714 29.9m+11.9m 4

s6669 6675 197 10.2m+9.71m 0

pcont2 6813 71 4.76h+6.07m 2770



the previous experiments. Furthermore, test generation

times dropped signi�cantly, since faults were detected

much earlier in the test generation process, and test

sets remained reasonably compact, since the GATEST

approach tends to produce compact test sets [16].

Test sets generated by HITEC/GA-COMPACT were

more compact than those generated in [3] for two

of �ve circuits, and for one of the two circuits, the

HITEC/GA-COMPACT fault coverage was higher. Re-

sults of the approach described in [3] were not reported

for the larger circuits. The HITEC/GA-COMPACT

test sets were signi�cantly smaller than any reported in

[4, 5, 6] for comparable fault coverages. The best of 64

random �llings implemented using the FASTEST [13]

test generator gave similar test set sizes for four circuits

{ s641, s713, s1196, and s1238 { although execution

times were signi�cant for the FASTEST/RANDOM

combination since the full fault lists were used in evalu-

ating the random �llings [7]. Finally, the HITEC/GA-

COMPACT test sets were smaller than those reported

in [8] for four of the six circuits having comparable

fault coverages. Further compaction may be possible

by performing the static compaction techniques of [2]

in a postprocessing step.

6 Conclusions
High test application time can be a problem for se-

quential circuits, and therefore, compact test sets are

desirable. However, the compaction techniques devel-

oped for combinational circuits are not directly appli-

cable to sequential circuits. In our approach to dy-

namic compaction for sequential circuits, we use fault

simulation and GAs to compact the sequences gener-

ated by a deterministic test generator and increase the

number of faults detected by the sequences. Signi�-

cant reductions in test set sizes were observed for all

of the benchmark circuits studied, corresponding to re-

ductions in test application time. Fault coverages some-

times improved, and execution times dropped for many

of the circuits. Further improvements in fault coverage

were obtained for a few of the circuits by adding an ex-

tra phase of simulation-based test generation after each

pass through the fault list. Test sets generated using

these techniques were about as compact as the most

compact test sets reported, yet the execution times are

considerably smaller. The proposed techniques can eas-

ily be added to existing commercial test generators with

little or no detrimental e�ect on performance and are

expected to provide a signi�cant improvement in the

quality of the test sets generated.
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