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Abstract

Timing macromodels for a CMOS inverter loaded by
a capacitor or by a series-resistor shunt-capacitor
circuit are derived and verified. The macromodel for
the capacitive load case is a simple analytical func-
tion of a single variable which combines input wave
shape, capacitive load, and transistor drive. The
model for the RC case is a combination of lookup
table and analytical function yielding excellent accu-
racy to within 5% of detailed circuit simulation.

1. Introduction

The timing analysis of CMOS circuits usually starts
with the derivation of a timing model for a CMOS inverter
[S51{7]E13]{15}. This approach is due to the simplicity of
the CMOS inverter, the insight gained by analyzing an
inverter circuit, and the fact that for timing purposes,
CMOS gates can be reduced to an equivalent inverter [4].
The majority of CMOS inverter timing models assume a
purely capacitive load at the output of the inverter
[3]1[51[13]. While this assumption is valid for inverters
driving other CMOS gates with short runs of metal inter-
connect, it is not valid for inverters driving large loads
with long runs of metal interconnect. The load model in
this case is a distributed RC line loaded by the input
capacitances of the load gates and other lumped capaci-
tances. According to [11] and [12], this load which con-
sists of distributed RC lines and lumped capacitors, can be
reduced, using moment matching methods, to a simpler
toad. The simplified load model consists of a few circuit
elements. The number and type of the elements depends
on how many moments of the open-circuit input admit-
tance of the RC load are matched. When the first moment
is matched, the reduced load model consists of a single
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capacitor, which, as shown in [12], is the sum of all line
and gate input capacitances. When two moments are
matched, the reduced load model consists of a series resis-
tor and shunt capacitor. The validity of these approxima-
tions has been verified in [11] and [12].
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Figure 1: Input Admittance Models for an RC
Interconnect Circuit
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In this paper, timing models for the above-mentionned
cases will be derived, namely for a CMOS inverter loaded
by a capacitor, or by a resistor-capacitor circuit (see Fig.
1). The macromodels will be derived using dimensional
analysis, which greatly reduces the complexity of macro-
modeling. The paper starts with background material on
dimensional analysis in Section 2. In Section 3, a model
for a capacitively loaded inverter will be derived. Section
4 presents the model for an RC-loaded inverter. Conclu-
sions are presented in Section 5.

2. Dimensional Analysis

Closed-form expressions for the delay of a CMOS
inverter cannot be obtained by direct solution of the device



and circuit equations [9]. The delay function can, and usu-
ally is, obtained from numerical solutions of the circuit
and device equations using circuit simulators such as
SPICE [10]. Less frequently, they are determined from
direct measurement on actual devices. In either case, "dis-
covering" the functional relation between delay and the
factors affecting it can be viewed as experimental model
building to which a variety of powerful analysis tech-
niques, such as dimensional analysis [2] and empirical
response surface methods [1], can be applied. Dimensional
analysis helps identify minimal dimensionless forms of the
desired functions; empirical response surface methods are
then applied to determine suitable implementations of
these functions using curve fitting, lookup tables, or both.

The Pi Theorem of dimensional analysis [2] states that
for a given set of n physical magnitudes, measured using
m independent fundamental units, the relationship among
the magnitudes can be written as a relationship involving
only n-m dimensionless quantities:
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Each of the n-m arguments of the function f in (1) is
called a IT number. To calculate the I'T numbers, we have
to compute the (n-m)Xm matrix o to satisfy the condition
that all TT numbers are dimensionless. The Pi Theorem,
thus, provides a convenient consistency check on pre-
sumed functional relations, and may lead to more econom-
ical forms of these relations involving fewer arguments.
We will make use of the Pi Theorem to simplify the delay

equations of C- and RC-loaded CMOS inverters.
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Figure 2: CMOS Inverter Circuit
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3. Capacitively-Loaded Inverters

Consider the CMOS inverter circuit shown in Fig. 2.
We are interested in calculating the propagation delay A of
a rising signal. Falling signals are treated similarly, since
the CMOS inverter has similar rise and fall characteristics.
It is appropriate to first define what is meant by gate delay.
Fig. 3 shows typical input and output waveforms for a
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Figure 3: Definitions of Threshoid Voltages
and Inverter Delay

CMOS inverter. The input thresholds at which the differ-
ential gain of the inverter is equal to -1 are referred to as
V. and V,y [6]. These two thresholds serve to define the
reference times on the input and output voltage waveforms
for measuring delay: f;; and t,; are the input time and cor-
responding output time at which V; and V,, cross Vi;; i1y
and 1y are the input time and corresponding output time
at which V; and V, cross V. Falling gate propagation
delay, A, is now defined as the time interval between #;;
and ty. The choice of the above thresholds for measuring
propagation delay, unlike other more commonly used
thresholds such as the 50% level of the logic swing insures
that A will always be positive.

To model the delay of the CMOS inverter, the follow-
ing two assumptions are made: First, the model of the
MOSFETs corresponds to the LEVEL-1 model in SPICE.
Second, the input waveform is assumed to be character-
ized by a single characteristic time. We will further assume
the input waveform to be an exponential function of time,
rising from O to Vpp with a time constant (the characteris-
tic time) equal to T;. The results that will be derived are
valid for more advanced MOSFET models, including
short-channel! (alpha-power law) models, and for any input
wave shape, as long as it is characterized, similar to an
exponential function, by a single characteristic time [9].



The parameters affecting the delay of the CMOS
inverter are the capacitance C;, the supply voltage Vpp,
the transconductances of the N and P-channel MOSFETS
(K and Kp, respectively), the N- and P-channel threshold
voltages, Vpy and Vpp respectively, the thresholds at
which the delay is being measured, and the time constant
of the input waveform 7,. The delay function can therefore

be written as:
A= f(CL’ VDD’ KN’ KP’ VTN’ V’[‘P’ VIL’ VIH’ Ti) 2
Applying the Pi Theorem to the delay function with
Vpp. Ky, and 1; as primary quantities yields the following

reduced function:
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For a given process and supply voltage, Vyn/Vpp and
VrplVpp are constants. Moreover, since CMOS inverters
are designed so that they have symmetrical rise and fall
characteristics, Kp/Ky, Vi /Vpp, and Viy/Vpp are con-
stants. Therefore, the delay function can be simplified to a
function of a single independent variable C;/(KyVppt)
that combines the effects of capacitive loading, input time
constant, and transistor drive capability:

C
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Dimensional analysis has thus simplified the function
to a single-argument one. The exact form of the function
cannot be determined by dimensional analysis alone.

Experiments to determine the function f were con-
ducted by running circuit simulations on inverter circuits
with varying capacitive load, input time constant, and N-
channel MOSFET transconductance. The values of Cp
were randomly chosen between 0.01 and 1 pF, the values
of 1; were randomly chosen between 0.01 and 1ns, and the
values of the width of the NMOS transistor Wy were ran-
domly chosen between 10 and 150 pm. The channel
lengths of the MOSFETs were fixed at Ly = Lp = 2 pm.
The values of the remaining parameters which do not

T.
{

change in the simulations were as follows:

Vpp=5V

Ty = 2k'p = 30 HA/V?
Viw=-Vyp=01V
Ay =hp=005 V"
V, =1963V
Viy=3.037V

The width of the PMOS transistor was chosen to be

twice that of the NMOS transistor, in order to obtain sym-
metrical rise and fall characteristics. The values of V; and
V;y were calculated from a DC analysis of such a symmet-
rical CMOS inverter.
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Figure 4: Delay of a Capacitively-
Loaded CMOS Inverter

The data obtained from the simulation was plotted as
shown in Fig. 4. The plot clearly shows that there is no
scattering in the data, even though the parameters Cy, T,
and Wy were chosen randomly from the ranges listed
above. After experminentation with different fitting func-
tions in Mathematica [14], the following functions pro-
vided excellent curve fits:

2
a0+ a{x-%-azx

L&) = ——) (5)
by+bx+b,x
and
| 2x2 + a3«/;c (6)
For the particular technology parameters used in the
simulation, the following fitting functions were obtained:

fz(x) =agtaxta

1.72700%% + 5.75587x + 0.744851
f() = 5 ™
0.00148851x° + 3.77134x + 2.85585

and



£, (x) = 0.150868 + 0.296945x +
®
0.00147497 x> + 0.773175

The quality of the fit in both cases is excellent and both
functions provide exceptionally accurate fits to the delay
of a capacitively-loaded CMOS inverter. For 1500 test cir-
cuits, the predictions of (7) and (8) were compared with
circuit simulation data. The relative errors (defined as
(Acircuit simulation ~ Z“equa(ion)/ Acircuit simulation) in the case of
(7) were normally distributed with a mean of 0.066735
and a standard deviation of 1.5968. In the case of (8) the
mean was 0.17343 and the standard deviation 1.0516. In
both cases the errors are within 5%. We chose to use (7)
since it involves simple arithmetic operations, while (8)
includes a square root term, which is computationally an
expensive operation.

4. RC-Loaded Inverters

The inclusion of a series resistor in the model of the
load that the CMOS inverter is driving introduces an extra
argument to the delay function (2). By applying the Pi
Theorem and going through the same steps as we did for
the case of the simple capacitive load, the following delay
function is obtained:

A, < KKV
T KyWppt NP

For convenience, we will write this equation as y=f(x,z)
where y= Aft;, x= C/(KyVppty, and z=RK V.

By simulating the RC-loaded CMOS inverter circuit at
different values of z, it was observed that the dependence
of y on x can always be fitted using a function of the form
(5), irrespective of the value of z. Therefore, by making
the fitting coefficients in (5) functions of z, we can model
the effect of the variable 7, and therefore the resistance R.
The same functional form for the fitting function is thus

used:

®

a, (z) + a, (z) x+a, (2) x2

fi(x2) = (10)

by (2) + b, (2)x+by (2) X

Since the fitting coefficients are now functions of z, it is
possible to, in turn, fit the coefficients to analytical func-
tions of z. However, it was found more appropriate to use a
piecewise linear table approximation whereby, as shown
in Table 1, the dependence of y on x is shown analytically
at different values of z, referred to as the table breakpoints.
For values of z not equal to the breakpoints, linear interpo-
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lation is used to calculate y. The breakpoints were calcu-

z Fitting Function y=f{x)
0.000 (44534 X° + 1386.52 x + 181.634) /
(% +946.58 x + 682.558)
0.412 (8.71469 x° + 48.4878 x + 5.32391) /
(0 +44.6299 x + 22.266)
0.506 (3.04974 X% + 10.4998 x + 0.855126) /
(% +11.8931 x + 3.94394)
0.594 (1.91101 x% + 5.4393 x + 0.510691) /
(% +6.58459 x + 2.16766)
0.678 (1.43542 5% + 2.80722 x + 0.241223) /
(% +3.96105 x + 1.05665)
0.852 (1.00928 x2 + 1.04772 x + 0.0623994) /
% + 1.80399 x + 0.296028)
1.040 (0.803398 x? + 0.656349 x + 0.0450723) /
(o + 1.2446 x + 0.195619)
1.490 (0.58082 x° + 1.82153 x + 0.129707) /
(% + 3.4201 x + 0.581748)
2.000 (0.46531 % + 2.03778 x + 0.106296) /
( + 4.55336 x + 0.500317)

Table 1: interpolation Table for the Delay of an
RC-Loaded CMOS Inverter

lated using the procedure described in [8]. This procedure
ensures that the maximum error due to the linear interpola-
tion is always less than a certain preset error limit. The
breakpoints shown in Table Icorrespond to a maximum
linear interpolation error of 5%. For a maximum interpola-
tion error of 10%, the size of the table is reduced, and only
the following breakpoints are included: 0.000, 0412,
0.500, 0.678, 1.040, 2.000.

The quality of the delay macromodel for RC-loaded
CMOS inverters is illustrated by the error scatter plot in
Fig. 5. For 1500 randomly-generated test circuits, the rela-
tive error is always within 5%. The errors in this case are
not normally distributed, due to the piecewise linear func-
tion approximation.

5. Conclusions

We have derived delay macromodels for CMOS invert-
ers driving either a capacitor or a series-resistor, shunt-
capacitor circuit. We showed the delay of the capacitively-
loaded CMOS inverter to be a function of a single variable
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Figure 5: Scatter Plot for Relative Errors in
Delay Model of the RC-Loaded CMOS
Inverter.

which combines capacitive load, inverter drive capability,
and input wave shape. A rational function provided an
excellent fit to simulation data with a maximum relative
error of 5%. For the case of RC-loaded CMOS inverters,
the delay function depends on an extra variable, which
varies with the resistance value. A combination of table
lookup and analytical function fit provides an excellent fit
in this case. The errors in the case of the RC load are also
within 5% of circuit simulation.
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