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Abstract

We describe the design and VLSI implementation of a
unified synapse-neuron architecture for multi-layer neural
networks. A new hybrid building block proposed for this
purpose is formed by integrating a partial S-shape neural
nonlinearity within a Multiplying DAC synapse. MDAC
synapse contains modifications to simplify sign-bit
circuit. Small analog circuits generate a distributed S-shape
neural function by combining quadratic characteristics of
four MOS transistors. The proposed modular neural
network architecture features design simplicity and
scalability, area efficiency, reduced interconnection
problem, improved robustness and digital
programmability. Based on the proposed scheme, we have
considerably increased the synaptic density in the improved
version of a programmable optically-coupled neural
network.

1. Introduction

VLSI neural networks are becoming more popular because
of providing real-time solutions for many real world
problems. However, neural network VLSI designers face
many challenges, for instance, in implementing massively
interconnected networks, producing fully parallel input-
outputs and developing modular and scalable architectures
that can easily be adopted for different applications. Area
and power efficiency, speed, storage and calculation
accuracy are some other major issues. Compromise
solutions now lead to hybrid circuits: mixed analog and
digital, or even optoelectronics. We have been
investigating alternative hybrid architectures for flexible
and area-efficient, yet non-multiplexed implementation of
optically-coupled neural networks designed for real-time
applications [1], [2], [3].

Conventional electronic neural networks consist of two
types of building block: synapse and neuron. A (linear)
synapse performs multiplication while a neuron provides
summation and sigmoid (S-shape) transfer characteristics.
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If the output of synapse is a current, summation is
done for free by connecting the outputs of synapses
together (i.e. KCL). Moreover, a nonlinear resistive load
can perform S-shape I-to-V operation and complete the
neuron's task. A neuron of this type can be distributed
among all associated synaptic inputs generating a unified
synapse-neuron building block, also known as distributed
neuron-synapse. Reference [4] provides a discussion of the
subject and the details of an all-analog implementation. As
an alternative, here we present a hybrid digital-analog
distributed architecture and its basic building block. In
section 2 this architecture is described and in section 3 its
sub-blocks and circuit designs are introduced. The overall
characteristics of the unified synapse-neuron is presented in
section 4 and an application of the proposed architecture is
briefly mentioned in section 5. Section 6 is conclusion.

2. Hybrid Distributed Architecture

We present a digital-analog building block for modular
implementation of hybrid neural networks. The proposed
architecture and building block are then used in an
optically-coupled neural network designed for a process
control and pattern classification application. Our design
combines a Multiplying DAC synapse and a modified
distributed neuron, to generate a unified synapse-neuron
building block. This modular design integrates a partial S-
shape neural nonlinearity in each MDAC synapse cell. As
a result, it becomes the only block required, besides digital
weight memory, to build a complete multi-layer neural
network.

Parallel output connection of n such building blocks,
for instance, generates a neuron with n digitally-
programmable input synapses. Figure 1 shows 3 such
neurons each having 4 inputs, i.e. a {4, 3} neural network
built with 12 hybrid building blocks.

An {m, n, p} feed-forward network can be implemented
simply by interconnecting regular (m xn )and (n xp )
arrays of such building blocks. Figure 2 shows a typical
{4, 3, 2} neural network built with 4x3 + 3x2 =18
hybrid blocks. Such a regular structure is very attractive
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for VLSI implementation. Additional modules of the same
type can be used for neural threshold (bias) adjustment.
Threshold blocks need a constant non-zero analog input
voltage and their threshold value is a digital input to
MDAC from weight memory.

3. Components of Our Building Block

Two subcircuits of our design, namely MDAC and S-
shape distributed neuron, both contain new modification
and have been separately optimized through
extensive simulations. The overall performance of the
combined cell is then characterized in post-layout
simulations. Cadence 4.3 software tools have been used
from schematic .capture to layout and extraction level.
Simulations are performed using Spectre ™ in Analog
Artist ™ environment.

3.1. Multiplying DAC

Figure 3 shows the schematic and layout of our MDAC
synapse circuit. MDAC receives a 5-bit sign-magnitude
input from weight memory. The circuit consists of a set of
binary-weighted current mirrors and a sign-bit circuit at the
top. A layout technique known as " AW correction” is used
in binary-weighted current mirrors [8].
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Fig. 3: Schematic and layout of Multiplying DAC Synapse



We have modified the sign-bit circuit compared to the
circuit described in [5] such that it only needs D4 input
(instead of both D4 and D4"), saving an inverter or an extra
interconnection line per each synapse. Each saving related
to synaptic circuit counts because of the great number of
synaptic cells and interconnections that eventually occupy
a considerable amount of chip area. The sign circuit
consists of only 4 transistors, namely M16, M17, M18
and M19. They produce a bi-directional output current.
When D4 (sign-bit) is HIGH, M17, M18 and M19 are
OFF and only M16 is ON that sinks the binary-weighted
current from output terminal. When D4 is LOW, M16 is
OFF and the other three devices are ON that source the
binary-weighted current to Iy terminal.

Table 1 shows the device widths and lengths (W/L) in
MDAC synapse circuit. Figure 4 shows MDAC output
current simulation as binary weight increases successively
from -15 to 15. MDAC is operating, within £1% linearity
margin, as a weight-dependent current source with an
output current of -100pA to +100pA.

M1-M2: 3.2/2.0 M3: 2.4/24.
M4-M5-Me6: 25.6/12.0 M7-M8-M9: 12.8/2.0
M10-M11-M12: 6.4/2.0 M13-M14-M15:  3.2/2.0
M16: 6.0/2.0 M17: 14.0/2.0
M18-M19: 12.0/2.0

Table 1: MDAC device sizes (W/L} in pm
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3.2. Modified S-shape Distributed Neuron

An I-to-V neuron based on a nonlinear load is presented
in [4] where both lumped and distributed implementations
are discussed. Figure 5-a shows the schematic circuit of
this neuron. Nonlinear characteristic of this neuron circuit
is a combination of two quadratic curves (from M1 and

M?2) and a linear transition part corresponding to R. To
realize the resistor's task, some designs rely on existing
parasitic/leakage impedances while the others may use a
MOS device.

Here, a modified circuit is presented with 4 MOS
devices (and no R) that approximates a S-shape neural
function with 4 quadratic characteristics. Circuit diagram
and layout of the new circuit is shown in figure 5-b. With
a careful selection of the bias voltages (Vpgj,q1 and

Vgiasz) and device geometries, we have been able to use
only 2 common bias voltages for 4 MOS transistors.
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Fig. 5 b: Modified I-to-V Neuron (S-shape distributed
element)



In fact, two additional devices, M3 and M4, are replacing
R with a lightly S-shaped characteristic in the region
where M1 and M2 are both OFF. Cell layout is
36.4um x 19.4pum in 1.2u CMOS4S process. The overall
layout overhead of this design is not noticeable as each
transistor now requires a smaller width and besides, R has
been removed.

Simulation results comparing V-I characteristics of 4-
MOS nonlinear neuron with 2-MOS version is shown in
figure 6. In the absence of R, the circuit of figure 5-a
shows a stepwise transition while the new circuit (figure
5-b) performs a smoother transition. This circuit can be
designed to have a differentiable characteristic by slightly
overlapping the conduction regions of M3 and M4. In the
present example M3 and M4 are set just at the conduction
threshold at Vout=2.5V. Note that sub-threshold
conduction exists for both devices at this point, so the
slope of transfer characteristic is still limited. Table 2
specifies the conduction regions of each of the 4 devices.
Vo and Vrp are the threshold voltages of NMOS and

PMOS devices respectively. Device widths are adjusted to
reach 0 and 5V at x100pA input current.
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Fig. 6: Nonlinear characteristics of circuits in Fig. 5-a and
5-b
A Devices
Region Vout conducting
( I ) Vout < VBlasl - VTN M4, M2
(H) VBi851 - VTN < Vout < VBiasZ - VTN M4
(HI) VBiasl+ ]VTP‘< Vout< VBia52+ IVTP' M3
Iv) Vout > VBIaSZ + ‘VTP] M3, M1

Table 2: Device conduction regions

Now we investigate other properties of the modified
distributed neuron:
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3.2.1. Automatic Scaling of Neuron. In principle,
we have to re-design a neuron for different number of input
synapses, N, in order to scale the sigmoid function
properly. If each synapse generates an output current
between -I, and +l,, then N synapses can maximally
produce a current from -N.I, to N.I; . A sigmoid

nonlinearity suitable for one synapse or two, would look
like a hard-limiting function for moderate to large number
of input synapses (e.g. Nz5) because of large saturating
areas involved. A scaling scheme proportional to N [4] or

N (based on statistical analysis [6]) should be
considered.

A distributed neuron design, e.g. the present design,
provides a modular solution to scaling problem. N
building blocks (partial nonlinearities) in parallel,
automatically generate an stretched S-shape scaled by a
factor of N. Figure 7 depicts the auto-scaling property of
our neuron sub-block for N=5 compared to N=1. When
partial nonlinearities are distributed among MDAC

synapses, each synapse brings its own share and
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Fig. 7 a: Configuration of nonlinear neural elements
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incrementally adjusts the overall neural S-shape
characteristics. This greatly simplifies the design of a
network for different number of neurons and synapses.

3.2.2. Increased Robustness. Since the neuron is
distributed among N sub-blocks, there is an increased
robustness and fault-tolerance in this architecture. For
example, a VLSI defect would affect only 1/Nth of a
neuron instead of the whole.

In essence, the present circuit with S-shape
characteristics provides a modular and scalable I-to-V
neural function which is differentiable and well-defined in a
narrow range despite some process variations. This makes
the neuron transfer function suitable for in-loop training
using popular gradient-based algorithms. While it is used
as a distributed neuron element in our hybrid building
block, the present design can equally be used in all-analog
implementations. Morcover, a lumped neuron may be
built with the same circuitry but with different device
geometries.

4. Characteristics of Unified Synapse-
Neuron

We have integrated our modified (4-MOS) S-shape
nonlinearity within each MDAC synapse cell described
earlier. The result is a unified synapse-neuron (USN)
which is the basic building block of our neural network
architecture. The layout of the unified synapse-neuron cell
is 126um x 42pm based on standard 1.2pm CMOS4S
technology.

To store digital synaptic weights on chip, we have used
compact Read/Write registers. This will make the network
programmable after different training sessions. A 5-bit
custom-designed memory register operating with double-
phased clocks is used in conjunction with each USN
building block. Figure 8 shows the post-layout simulation
of a unified synapse-ncuron output voltage versus
successive synaptic weights at Vin=4.5 V.
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Unified synapse-neuron block inherits the properties
mentioned earlier for distributed neuron, e.g. automatic
scaling. Moreover, there is a new property to be mentioned
here which is obtained from parallel configuration of
MDAC cells:

4.1, Automatic Fan-out Increase

In many practical applications considerable number of
neurons exist in each layer of a multi-layer network. Each
neuron must be able to drive all of the outgoing synapses
to the next layer. Total load includes interconnection lines
and input impedances of all synapses. Circuit techniques,
especially the use of high-drive buffer amplifiers, have
been proposed in this context to resolve the fan-out
problem [7].

A neuron in our architecture is a "more-fan-in more-fan-
out" entity:r a neuron with a higher number of input
synapses inherently consists of a higher number of parallel
transistors from MDAC output and S-shape circuit. This
is equivalent to output transistors with proportionally
increased width and hence higher drive. Therefore, with
more input synapses a neuron becomes potentially capable
of driving more synaptic outputs to the next stage, if
required.

5. Optically-Coupled Neural Network
Application

We have been involved in the design and test of CMOS
photosensor arrays and optically-coupled neural networks
[1], [2], [3]. Our specific application requires the design
and VLSI implementation of a smart photosensor that can
be used in process control to determine the position or
classify the surface geometry of an object whose image is
captured on chip using LASERs or beam-steering
methods. The sensor architecture is a mixed analog-digital
CMOS VLSI realization of a multi-layer artificial neural
network with an integrated photosensitive array. Light-
sensitive elements are based on parasitic BIT
shototransistors of CMOS technology [3], [9]. An
integrated array of such photoreceptors act as the input.
nodes to a programmable neural network classifier.

The latest design of optically-coupled neural network
(sensor) is based on the proposed unified synapse-neuron
building block approach that results in a highly modular
and scalable VILST architecture. A chip containing an array
of photosensitive elements and a fully-connected
programmable neural network classifier with input, hidden
and output neurons has been designed for fabrication in
1.2n CMOS4S technology (details will be reported
elsewhere). Weights will be programmed on chip after an
off-board training session. In actual recall operation an
object would be “imaged” onto the photosensitive array
and the states of the neurons in the output layer would
then define a control vector for on-line control based on a
non-contact measurement.



Using the modular design approach mentioned in this
paper, we have effectively doubled the number of synapses
per die area in comparison with the previous version of our
programmable neural-based sensor reported in [1]. Also
interconnection problem has been greatly reduced.
Therefore, we have been able to increase the dimensions
(resolution) of on-chip photoreceptor array as well as the
size of neural network itself. The total density of synapses
in our new chip is increased by more than 100% compared
to the previous design.

6. Conclusion

A hybrid analog-digital distributed architecture has been
developed and proposed for VLSI implementation of neural
networks. Basic building block of this architecture
combines a linear Multiplying DAC synapse and a
modified distributed S-shape neuron, hence providing a
unified synapse-neuron hybrid block. This module is the
only block required, together with digital weight memory,
to build a complete hybrid multi-layer neural network. A
properly interconnected m x n array of this building block
implements a two-layer {m, n} neural network. Additional
arrays can simply be added for multi-layer
implementations. Regularity of this architecture well suits
it for VLSI realization.

A test chip containing our basic subcircuits, cells and
test networks has been fabricated in 1.2u cMos!
technology. Preliminary test results have been satisfactory.
To show the potential improvement, we have used the
unified synapse-neuron cells in a larger design targeted for
a real application. This is an optically-coupled neural
network that can be used in process control and pattern
classification applications. Using a modular and scalable
approach, we have designed a sensor chip for fabrication in
1.2u CMOS which contains a photosensitive input array
integrated with a multi-layer neural network. The synaptic
density in the new design has been increased by more than
100% compared to [1] which is designed and fabricated
based on conventional architectures.

Modularity is the main feature of the present hybrid
design. A neural network built with the proposed synapse-
neuron architecture: a) can easily be designed or re-designed
for different applications requiring various number of
layers and/or number of neurons per layers, b) has a highly
regular VLSI architecture hence the interconnection
problem and inter-cell area is reduced, ¢) is more robust and
fault-tolerant compared to conventional architectures and d)
is digitally programmable.

1 All fabrications are in CMOS4S, a 1.2um double-metal N-well
CMOS process, through Northern Telecom fabrication facilities.
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