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Abstract

This paper investigates the sizes of symmetric variable
order based reduced binary decision diagrams for partially
symmetric Boolean functions. It gives exact bounds for the
maximum number of nonterminal vertices for the cases that
the set of symmetric variables is treated as block which is
located either at the front or at the back of the variable order.

1. Introduction

Binary Decision Diagrams (BDDs) as a data structure for
representation of Boolean functions were first introduced
by Lee [5] and further popularized by Akers [1] and Moret
[8]. In the restricted form of OBDDs they gained widespread
application, because OBDDs are a canonical representation
and allow efficient manipulations [2).

In this paper we concentrate on Boolean functions in
n variables which are partially symmetric in &k variables.
We derive exact equations and give upper bounds for the
maximuin number of nonterminal vertices for the case that
the block of symmetric variables are located at the top or
at the bottom of the OBDD. The results generalize the least
upper bounds on the size of OBDDs proven by Heap [3, 4]
and Wegener [10].

The upper bounds will give the possibility to compute
whether a partially symmetric Boolean function f in n vari-
ables can be represented by a fore or back symmetry ordered
OBDD for given size of main storage.

2. Preliminaries

We provide a short introduction to basic notions which
are important for the understanding of this paper. For the
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definition of reduced ordered BDDs (OBDDs) we refer to [2]
and [6].

2.1. Symmetric functions

Let f : {0,1}* — {0,1} be a completely specified
Boolean function and V,, = {z1,...,2,} be the corre-
sponding set of variables. The function f is said to be
symmetric with respect to a set A C V,, if f remains in-
variant under all permutations of the variables in X. For
completely specified functions symmetry is an equivalence
relation which partitions the set V,, into disjoint classes
A1, ..., A that will be named the symmetry sets. A func-
tion f is called partially symmetric if it has at least one
symmetry set A; with size |A;] > 1.

2.2. Symmetry Variable Orders

In this section, we introduce the new class of symme-
try variable orders introduced by Méller [7] and Panda [9].
OBBDs can be understood as partitioned into n levels la-
belled from the root to the leaves by 1 to n. We associate
with each OBDD an array 7 such that 7[i] denotes the variable
that corresponds to label ¢. The array 7 is called variable
order of the OBDD.

Definition 1 Let f be a partially symmetric function
with the set of symmetry sets § = {M,- ) A
variable order 7 is called a symmetry variable order if
for each symmetry set A\; € S there exists j so that

(xlilmli + 10, omi o+ ] = 1) = A

By this definition, the class of symmetry variable orders
consists of all variable orders where the variables of each
symmetry set are located side by side. The OBDDs that cor-
respond to symmetry orders are called symmetry ordered
OBDDs.



3. Bounds on the size

In the following we concentrate on Boolean functions in
n variables which are partially symmetric in k variables,
i.e., there are one symmetry set of size k and n — k sym-
metry sets of size 1. Let A denote the symmetry set of size
k. We prove upper bounds for symmetry ordered OBBDs
where X is located at the front positions and for symmetry
ordered OBDDs where ) is located at the back positions. We
call these orders fore symmetry order and back symmetry
order, respectively.

In the following we denote by W; the maximum number
of nonterminal vertices at the z;-level of the OBDD consid-
ered of any Boolean function f with the above property.

3.1. Fore symmetry ordered OBDDs

Assume w.lo.g. that the variable order is fixed to
Z1,T3,...,Zn and A = {z1,Z3, ..., Tx } holds.

Lemma 1 The maximum number Ryore(n, k) of non-
terminal vertices of an OBDD considered is given by
Y oreqy Wi with

o Wi < min{l, 2514927 _ 9" Y pr 1 <1<k

e Wy <min{l,2" " 2" Y for l=k+1

on—I+1

e Wi < min{27*" 1. Wi41,2 22ﬂ_'} fork+2 <

1< n.

Proof: We start with 1 < I < k. As f is partially
symmetric in 1, ..., Zi—1, there are [ — 1 + 1 cofactors
with respect to z1,...,Z;—1. Thus there are at most l ;-
vertices and W; < [ holds.

In order to prove W; < ok—1+2)2""% _ 92" e com-
pute the number of Boolean functions which are defined
on {zi,...,Tk,Tk+1,---,Tn} depending on variable z;
which is obviously an upper bound on W;. The num-
ber of different assignments of {Tgi1,...,Tn} is 27°%.
As {zi,...,zt} are contained in the same symmetry set,
there are k — [ + 2 “different’ assignments of the variables
{z1,...,z¢}. Thus, 9(k=1+2)2""* Boolean functions are
defined on {zy,...,Tn}. 22"™* of them do not depend
on i, ...,z and are not represented by z;-vertices. This
completes the proof of the first inequation of the lemma.

Now, consider k + 2 < I < n. The inequation W; <
2l—k~1 . W, ., follows by the fact that each nonterminal
vertex has at most two children, so that W41 < 2W; holds
for any i. The inequation W; < 22"+ _ 92" pas been
proven in [4], Lemma 2, and gives the number of Boolean
functions which are defined on =y, . . . , T, which do depend
onx.
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The upper bound on W1 follows from the proofs of the
cases just discussed. qged.

In order to prove good upper bounds on Ryore(n, k) we
have to compute the term which determines W; for any [.
The different cases we have to consider are given by whether
the turnpoint with respect to the breadth of the OBDD is
located ahead of position k (case 4), at position k (case 1),
at position k + 1 (case 2) or behind position k£ + 1 (case 3).

Theorem 1 The following statements hold for n large
enough (n > 16).

112 — o T << 2T

—922"7" then

fl=1,...,k

!
Wi<{ pnm o
’—{22 o2 fl=k41,...,n

2. IF22 * 19 TRl < g < 92" 97T then
! ifl=1,...,k+1
Wiz { 2 fi—k42,..n
E IR |
3 I k<2 7 -1 92" "1 then
l ifl=1,... k+1
wi<d{ k+127%1 ifl=k+2,...,
9" _ o™ ifl=t+1,...,n
with t = n — |logy(n — k + log,(k + 1))] + € for some
e€ {0,1}.
4 Tk>2" 7" — 22" then
l fl=1,...,t
W< { G-t _ o uepo gy gk
g2 _g2n! fl=k+1,...,n

for some ¢t. We omit the exact determination of the
turnpoint £ in order to save space. The conclusions
drawn in Section 4 are independent of the exact value
of this turnpoint.

The proof is omitted and can be found in [6].

An upper bound on the maximum number of nonterminal
vertices in fore symmetry ordered OBDDs can be computed
by adding the upper bounds on the W;’s just proven. The
four cases of the lemma have to be distinguished. We only
concentrate on one of these cases which we apply in the
conclusions.

Casek < 22" *71=1 92" 7F %1

Rfore(n:k) =

k+1 t n

= ZWH- ‘Z Wi+ Z Wi
=1 I=k+2 I=t+1
k41 t n

< Yot Yy (k124 > (22"_'“ —22""')
=1 l=k+l I=t+1

= EHDEED L it -n+2 T o2



witht = n — |logy(n — k + log, (k + 1))} + € for some
ee {0,1}.

Note that the least upper bound on OBDD sizes proved by
Heap [4] is a special case of the upper bounds proved here.

3.2. Back symmetry ordered OBDDs

Assume w.lo.g. that the variable order is fixed to
ZT1,%2,...,Cp a0d A = {Tp_g41,...,2n}.

Lemma 2 The maximum number Rp,cr(n, k) of non-
terminal vertices of an OBDD considered is given by
S, Wi with
e For1<I<n-—k:
Wi < min{2i~1, 20+02"F 7T _ glenznmioly
e Forn—k+1<I<n:
Wi < min{2"*(l + k — n),2""1+2 ~ 2},

Proof: AsW;,; < 2W; foranyi > 1and W; = 2° hold,
W; < 281, Forl < n— k, the number of Boolean functions
which are defined on {z;,...,Zn—k, Tn—k+1,---,%n} is
2(k+12" 7T o which 2(6+1)2° ™! 4o not depend on z;
and are not represented by z;-vertices. This proves the first
inequation.

Forl > n — k + 1, the number of nonconstant Boolean
functions which are defined on {z, . .., z,} is 2" ~2 — 2.
On the other side, a Boolean function f with the property
considered has at most 2" ~*(I — n + k) different cofactors
with respect to {z1,...,z;—1}. This proves the second
inequation of the lemma. g.e.d.

The following lemma gives the term which determines
Wi.
Theorem 2 For 2 < n and k < n — 1 the following
statements hold
1. Ifn < 3k +2, W, is determined by 2! for 1 <1 <
n—k.
2. If n > 3k + 2, W; is determined by

I—1
ms{ 2

R
with h(l) = 2+D27FTHE _gGek2" R g for
some t. We omit the exact determination of the turn-
point ¢ in order to save space. The conclusions drawn
in Section 4 are independent of the exact value of this
turnpoint.

3. If 2k < n~1, W; is determined by 2"**? — 2 for
n—k+1<I<n.

4. If 2k > n — 1, W} is determined by
Wzs{ 2 *l-n+k) , fl=n—k+1,...,¢

on-it2 _ 9 , ifl=t+1,...,n
with t = k — [log,(2k —n+1)] + € for some € € {1, 2}.

ifl=1,...,t
ifl=t+1,...,n—k

Proof:

1. g1(1) := 27! is strictly increasing and go(l)
(k12" _o(k+1)2" " i trictly decreasing in

[.Itholdsgi(n — k) < ga(n—k) <= n<3k+2.

2. Letn > 3k+2,1 < n—k, g1(1), g2(1) defined as above,
andt = maz{l; 1 <! <n-kand g (!) < g2(1)}.
Asgi(n—k) > ga(n— k) and g4 (1) < g2(1), t exists
and is unique.

3. h1(!) := 2 *(l — n + k) is increasing and hy(l) :=
27—1+2 _ 2 js decreasing in l. Itholds he(n—k+1) <
hin—k+1) <= 2k<n-1.

4. Let2k >n—1,1 >n—k+1, hi(l), ha(l) defined as
above,andt = maz{l; n—k+1 <l <nand b ([) <
ho()}. As hg(n —k+1) > hy(n — k + 1) and
ha(n) < hi(n) for n > 2, t exists and is unique.

For I = k — |logy(x)] 4+ 1 it can be proven that
ha(l) > hi(l) holds. hqi(l) > ha(l) holds for
I =k — |log,(z)] + 3. This completes our proof.

q.e.d.

More details about this proof can be found in [6].

An upper bound on the maximum number of nonterminal
vertices in back symmetry ordered OBDDs can be computed
by adding the upper bounds on the W;’s just proven. Here,
we only concentrate on the case which will be investigated
further in the conclusions.

Case 2k > n — 1. Note, that it implies n < 3k + 2, too.

n—k t n
Rback(",k)=ZWl+ E Wi+ Z Wi

=1 I=n-k-+1 I=t+1

n—k t
Y2t 3 2 Fi-n+k)
I==1

I=n—k-1

£y oy

l==t4-1
2 14 m Pl n k)t —n+k+1)
—2(n—t)+2""t? 4
2" F L Rl k)t —n+k+1)
—2(n—t)+2"" 2 _5

<

2)
fort =k — |logy(2k —n + 1)] + € for some € € {1,2}.

4. Conclusions

We conjecture that the upper bounds proven are (not
only) asymptotically tight. Working on this conjecture the
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Figure 1. Relative difference of R;,..(n, k) and
Rback (na k)

bounds set the trend where to locate the symmetric variables.
Consider, e.g., k = 3n/4 with n large enough. The upper
bound on the size of fore symmetry ordered OBDD is given
by Equation 1 witht = n— |log,(n/4+1og,(3n/4+1)) | +e€
for some € € {0,1}

Rfore(n,3n/4) =

o n2™/4 o(n/4+loga(3n/4+1))27 "¢
n +log,(n)
n2n/4 27T g
Y A be
n + log,(n)
= 0(n2"*)

with s = logy(n/4 + log,(3n/4 + 1)) — |logy(n/4 +
log,(3n/4 + 1)), i.e., 0 < s < 1. The last equation holds
because s + ¢ > 0.

The upper bound on the size of back symmetry ordered
OBDD is given by Equation 2 with t = 3n/4 — |logy(n/2 +
1)] + e for some € € {1,2}

Ryack(n,3n/4) =
e (271/4 + n22n/4 + n2n/4)
= 0 (n22"/ 4) .

This set the trend to use fore symmetry ordered 0BDDs for
k=3n/4.

To obtain an idea on the sizes of Ryore(n,k) and
Ryacr(n, k) and where to locate the symmetry set of size k
we have evaluated the formulas Ry,r(n, k) and Ryack (1, k)
for 3 < n < 100 by applying Lemma 1 and 2. Figure 1
shows the difference Rpocr (1, k) — Rsore(n, k) with respect
t0 Rfore(n, k). For k < n/2, this value is small, sometimes
positive, sometimes negative. For k > n/2, the difference
is always positive which set the trend to use fore symmetry
ordered oBDDs. The largest difference appears for k about
3n/4.
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Results concerning upper bounds on the size of symmetry
ordered OBDDs where the block of symmetric variables are
located at any position of the variable order are under work.
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