A Provably Good Moat Routing Algorithm

Joseph L. Ganley*!
Cadence Design Systems, Inc.
555 River Oaks Parkway
San Jose, California 95134

Abstract

Moat routing is the routing of nets between the in-
put/output pads and the core circuit. In this paper, it
is proved that moat routing is NP-complete under the
routing model in which there are no vertical conflicts
and doglegs are disallowed (i.e., every net is routed
within a single track). This contrasts with the fact that
channel routing is efficiently solvable under these re-
strictions. The paper then presents an approzimation
algorithm for moat routing that computes moat rout-
ing solutions that are guaranteed to use at most four
times the optimal number of tracks. Empirical results
are presented indicating that for a number of industrial
benchmarks, the algorithm produces solutions that are
near optimal and that use significantly fewer tracks
than previous moat routing strategies.

1 Introduction

The final stage in detailed routing is typically to route
the connections between the input/output pads and
the core circuit. The area between the core and
the pads is called the moat, and this routing task is
consequently called moat routing.

A moat routing instance consists of a number of
nets whose pins lie on either or both of the inside
perimeter of the padframe and the outside perimeter
of the core circuit area. The moat between the pads
and the core is divided into a number of concentric
tracks, similar to a channel routing instance except
that each track forms a circle rather than a line seg-
ment. A set of pads, a circuit core, and the moat
between them are illustrated in Figure 1.

In this paper we assume the use of a routing model
in which doglegs are not allowed, i.e., every net is
routed within a single track. Furthermore, we assume

*Partially supported by National Science Foundation grants
MIP-9107717 and CCR~2224789.
tPartially supported by a Virginia Space Grant Fellowship.

0-8186-7502-0/96 $5.00 © 1996 IEEE

86

James P. Cohoon*
Department of Computer Science
University of Virginia
Charlottesville, Virginia 22903

Figure 1: A moat routing instance.

that there are no vertical constraints (as Wang [11]
points out, the pins on the pads are typically spaced
sufficiently far apart that any vertical constraints can
be eliminated). We henceforth refer to this model
simply as the restricted routing model.

As in previous works [8, 11], we use a 2-layer model
in which the tracks lie in one layer and the radial con-
nections between the core or pad pins and the tracks
lie in the other layer.

The remainder of this paper is organized as fol-
lows. Section 2 describes some concepts regarding
intersection graphs and channel routing algorithms. In
Section 3, it is proved that under the restricted rout-
ing model, moat routing is NP-complete (whereas the
restricted routing model renders channel routing effi-
ciently solvable). Section 4 describes a technique for
determining a lower bound on the number of tracks
required for a given moat routing instance. Section 5
then describes an approximation algorithm that com-
putes a moat routing that uses at most four times
the optimal number of tracks. In Section 6, empiri-
cal evidence is provided indicating that for a number

of industrial benchmarks, the approximation algo-
rithm performs well with respect to lower bounds and
previous moat routing strategies. Finally, Section 7
concludes with some ongoing work.

2 Terminology

The graph K-colorability problem is defined as fol-
lows: given a graph, is it possible to assign a color
to each vertex such that at most K colors are used
and such that the endpoints of every edge are colored
differently?

An interval graph is a graph in which the vertices
correspond to intervals on a line and in which there is
an edge between every pair of vertices whose intervals
intersect'. Under the restricted routing model, the
channel routing problem corresponds directly to the
problem of coloring an interval graph. Each interval
corresponds to a net, and its endpoints are the mini-
mum and maximum z coordinates of the pins in the
net (assuming without loss of generality that the chan-
nel is horizontal). A K-coloring of this interval graph
corresponds directly to a channel routing solution us-
ing K tracks. Each color corresponds to a track, and
since no pair of intervals of the same color intersect,
all intervals of like color can be routed within a sin-
gle track. The K-coloring problem can be efficiently
solved in an interval graph, and thus a channel routing
solution that is optimal within the restricted routing
model can be efficiently computed.

One classic algorithm that does so is the left-edge
algorithm of Hashimoto and Stevens [7]. The left-edge
algorithm proceeds as follows: sort the intervals ac-
cording to the z coordinates of their left endpoints.
Then process the nets in this sorted order, inserting
intervals into tracks in a greedy fashion: each interval
is inserted into the first track in which it fits, or if it
fits in none of the current tracks, then it is inserted
into a new track.

The density of a channel routing instance is the
maximum number of intervals that intersect any ver-
tical line, i.e., the size of a maximum clique in the
corresponding interval graph. Clearly the density of
an instance is a lower bound on the number of tracks
required to route the instance. In fact, interval graphs
are perfect graphs, meaning that the maximum clique
size is equal to the minimum number of colors re-
quired to color the graph. Thus, the optimal number
of tracks is precisely equal to the density, and the left-

1 All graph-theoretical concepts discussed here are described
in Golumbic [5}.

87

edge algorithm computes an optimal channel routing
solution.

A circular arc graph is similar to an interval graph
except that the vertices correspond to arcs on a cir-
cle rather than intervals on a line. Unlike interval
graphs, circular arc graphs are not perfect, meaning
that the minimum number of colors required to color
a circular arc graph is not necessarily equal to its den-
sity (though density is still clearly a lower bound).
One might suspect that moat routing is analogous
to coloring a circular arc graph in the same manner
that channel routing is analogous to coloring an in-
terval graph. In the next section, we prove that a
moat routing algorithm can indeed be used to solve
the K-colorability problem in a circular arc graph.
Unfortunately, since circular arc graph coloring is NP-
complete [4], this reduction implies that moat routing
under the restricted routing model is NP-complete as
well. This contrasts with the fact that channel routing
is efficiently solvable.

3 Computational Complexity

In this section, we prove that a moat routing algorithm
can be used to solve the K-coloring problem in a cir-
cular arc graph. Since coloring a circular arc graph is
NP-complete [4], moat routing is NP-complete as well.

Theorem 1 Moal routing is NP-complete under the
restricted routing model.

Proof: Inclusion in NP is obvious. NP-completeness
is shown by a reduction from circular arc graph
coloring.

An instance of the coloring problem for circular arc
graphs is a circular arc graph G and an integer K.
The question is whether G can be colored using K or
fewer colors.

Assume without loss of generality that the end-
points of the arcs that comprise G are all distinct [6].
Sort the endpoints of the n arcs in clockwise order,
and call them p1,p2,...,p2n. We now build a moat
routing instance that mirrors the structure of G.

All pins in the moat routing instance lie on the
perimeter of the core. They are arranged in 2n groups,
each of which contains at most n pins. The groups are
arranged around the core perimeter in the same order
as the corresponding points on the circle. Let ¢;; de-
note the j*! pin in the i** group of pins. A net R;
is built for each arc a; = (pL,pr) in G, in which the
pins are t;; for all py < ¢ < pr (index arithmetic is

performed modulo 2n, i.e., ¢ < b is understood to im-
ply that a is counterclockwise of b). This construction
is illustrated in Figure 2.

§
i

3

i
{
]
]

(b)

Figure 2: (a) A 3-colorable circular arc graph and (b) a
corresponding 3-track moat routing instance.

We claim that a K-track moat routing solution to
the construction described above exists if and only if G
is colorable using K colors.

(=) If G is colorable using K colors, then a K-track
solution exists for the moat routing instance con-
structed as described above. For each set of arcs
given the same color, route the corresponding nets
within a single track. Such a routing is valid since
no two arcs with the same color intersect.

(<) If a K-track solution exists for the moat routing
instance constructed as described above, then G is

88

colorable using K colors. The routing for each net
is an entire track minus the section between two
adjacent pins. If the missing section lies between
pins ¢;; and t;4,; such that pr <#; < ;415 <
PR, then the net must intersect the routing of ev-
ery other net, and thus it is routed within its own
distinct track. Thus, any net whose routing does
not correspond to the circular arc from which it
was constructed can be rerouted so that it does
correspond to its circular arc without increasing
the number of colors required. Therefore, we
can transform any K-track moat routing solution
into a K-track solution in which the routing of
each net corresponds directly with the circular arc
from which it was constructed. Each arc is then
given a color corresponding to the track in which
its corresponding net is routed, and the resulting
coloring is a valid K-coloring of G.

This transformation is performed in O(n?) time.
Since the circular arc graph coloring problem is NP-
complete [4] and is reducible in polynomial time to
the moat routing problem, the moat routing problem
is NP-complete. |

4 Lower bounds

Due to the circular nature of the moat, many ideas
from the channel routing literature cannot be applied
directly. In a (horizontal) channel, a routing algorithm
must assign a track to each net, but the horizontal
span of the routing is determined by the instance, i.e.
there is only one possible horizontal span for each net.
For moat routing, the circular moat creates a possibil-
ity of many different routing paths, independent of the
assignment of nets to tracks. Specifically, a net with m
pins can be routed in m different ways, each corre-
sponding to a complete track with the span between
two adjacent pins removed.

Since nets in a moat routing instance can be routed
in multiple ways, the notion of density as it applies to
channel routing cannot be directly generalized to moat
routing. However, we derive a slightly different lower
bound by considering pairs of points around the moat.
Consider a pair of lines, each of which extends from
the core circuit area perpendicular to its border. Each
such pair separates the moat into two channels.

Find a pair of such lines such that the number of
nets with pins in both channels is maximum. We say
that these nets are cut by the pair of lines, and denote
the maximum number of cut nets as N. Each cut net
must use a track that intersects one of the lines, so

the minimum number of tracks required for the moat
routing is at least [N/2].

5 An Approximation Algorithm

Further exploration of the ideas in the previous sec-
tion leads to an approximation algorithm for the moat
routing problem. As in Section 4, find a pair of lines
that cuts a maximum number of nets. These lines di-
vide the moat into a pair of channels; call them the left
and right channels. We now prove that if N nets are
cut by the maximum cut, then the remaining uncut
nets can be routed using at most N tracks.

Lemma 1 If N nets are cut by the mazimum cut,
then the uncut nets can be routed using at most N
tracks.

Proof: Suppose to the contrary that N nets are
cut by a maximum cut but the uncut nets cannot
be routed using N tracks. Since the nets in the left
channel and the nets in the right channel do not inter-
sect, it must be the case that either the right or left
channel cannot be routed using N tracks. Suppose
without loss of generality that the left channel cannot
be routed using N tracks. As mentioned in Section 2,
if the density of a channel (the maximum number of
nets that span any point in the channel) is D, then
the channel can be routed using D tracks. Therefore,
by our assumptions, the density of the left channel ex-
ceeds N. However, the line in the left channel that
cuts more than N nets and another line anywhere in
the right channel form a cut that cuts more than N
nets, contradicting the fact that N nets are cut by the
maximum cut. [m]

Each of the two sets of uncut nets forms a channel
routing instance, so by Lemma 1, the uncut nets can
be routed in at most N tracks using, for example, the
left-edge algorithm described in Section 2. Suppose
the cut nets are routed arbitrarily; since there are N
of them, they can be routed in at most N tracks. Thus,
the moat routing computed by the algorithm uses at
most 2N tracks. As discussed in Section 4, the min-
imum number of tracks required to route an instance
is [N/2]. Thus, the algorithm computes a solution
that uses at most 2N/[N/2] < 4 times the optimal
number of tracks?.

2 Ag an aside, a similar approach results in a 2-approximation
algorithm for coloring a circular arc graph G. Find a maximum
clique C in G, and color it using |C| colors. Color the inter-
val graph G — C' optimally, which requires at most |C| colors.
Thius, & coloring using at most 2|C| colors is computed, and the
optimal coloring requires at least {C| colors.

89

Suppose there are n nets containing a total of m
pins. A maximum cut is found in O(m?) time. The
nets are then routed in at most O(n logn) time. Thus,
the total time complexity is O(m?+nlogn) = O(m?).

Though an arbitrary routing of the cut nets is suf-
ficient to satisfy the approximation bound, in practice
one would like to compute a good routing. We turn
once again to circular arc graphs to devise an effective
heuristic for routing the cut nets.

Construct a circular arc graph G containing at
most nm arcs as follows: For each net R;, denote
the pins in R; as to,%1,...,%|R;|-1, in clockwise or-
der. For each R;, add to G the arcs [t(j41)mod|Ri» ;]
for all 0 < j < |Ri|. Note that each arc includes all
the pins in R;. Note also that if |R;| > 2, then the
arcs constructed from R; are all pairwise intersecting.

Now find a mazimum independent set (MIS) in G.
This is accomplished in O((nm)?) time, since there are
at most nm arcs in G [6]. Since all intervals in a net
with 3 or more vertices are pairwise intersecting, the
MIS cannot contain more than one arc from a net R;
unless |R;| = 2. If it contains both arcs from a net R;
with |R;| = 2, then the size of the MIS is 2, and an
MIS that does not contain two arcs from the same net
can be found exhaustively in O(n?) time. Thus, an
MIS that does not contain 2 arcs from the same net is
computed in O((nm)?) time.

Once the MIS has been computed, route each net
for which there is an arc in the MIS according to that
arc. Remove all arcs that were constructed from nets
thus routed, and repeat the process until no arcs re-
main. We call this heuristic the sterated mazimum
independent set (IMIS) heuristic. Since each pass
requires O((nm)?) time, and at most O(n) passes
are performed, the IMIS heuristic runs in O(n(nm)?)
time.

In order to better use the space among the uncut
nets, we have implemented the algorithm as follows: G
contains at least one arc for every net. For a cut
net, G contains the arcs corresponding to every pos-
sible routing path, as described above. For an uncut
net, G contains only the single arc corresponding to
its routing within the left or right channel.

Using the IMIS heuristic to route the nets in the ap-
proximation algorithm increases the time complexity
of the approximation algorithm to O(m? +n(nm)?) =

O(n(nm)?).

6 Experimental Results

We have implemented our approximation algorithm
in order to compare its performance in practice with

	Main Page
	GLSVLSI96
	Front Matter
	Table of Contents
	Author Index

