DPGA Utilization and Application

André DeHon
andre@mit.edu
MIT Artificial Intelligence Laboratory
NE43-791, 545 Technology Sg., Cambridge, MA 02139

Phone: (617) 253-5868

Abstract

Dynamically Programmable Gate Arrays (DPGAs) are pro-
grammable arrays which allow the strategic reuse of limited re-
sources. In so doing, DPGASs promise greater capacity, andin some
cases higher performance, than conventional programmable device
architectures where all array resources are dedicated to a single
function for an entire operational epoch. This paper examines sev-
eral usagepatternsfor DPGAsincluding temporal pipelining, utility
functions, multiple function accommodation, and state-dependent
logic. In the process, it offers insight into the application and
technology space where DPGA-style reuse techniques are most
beneficial.

1 Introduction

FPGA capacity is conventionally metered in terms of “gates’ as-
signed to a problem. This notion of gate utilization is, however,
a purely spatial metric which ignores the temporal aspect of gate
usage. Thatis, it saysnothing about how often each gateis actually
used. A gate may only perform useful work for a small fraction of
the time it is employed. Taking the temporal usage of a gate into
account, we recognize that each gate has a capacity defined by its
bandwidth. Exploiting thistemporal aspectof capacity is necessary
to extract the most performance out of reconfigurable devices.

To first order, conventional FPGAs maximally exploit their po-
tential gate capacity only when fully pipelined to solveasingletask
with data processing rates that occupy the entire array at its maxi-
mum clock frequency (e.g. Figure 1). Astask requirements move
away from this extreme, gates are used at a fraction of their po-
tential capacity and FPGA utilization efficiency drops. Away from
this heavily pipelined extreme, multiple context devices, such as
DPGAs, provide higher efficiency by allowing limited interconnect
and logic element resources to be reused in time. These devices
allow the temporal component of device capacity to be deployed

FAX: (617) 253-5060

to increase total device functionality rather than simply increasing
throughput for fixed functionality.

In this paper we examine several, stylized usage patterns for
DPGAs focusing on the resource reuse they enable. We start by
identifying capacity and utilization metrics for programmable de-
vices (Section 2). We examine afew characteristics of application
and technology trends (Section 3) to understand why resourcereuse
isimportant. In Section 4 we briefly review DPGA characteristics
and look at the costsfor supporting resource reuse. The heart of the
paper then focuses on four broad styles for resource reuse:

1 Multiple, Independent Functions (Section 5)

2 Utility Functions (Section 6)

3 Temporal Pipelining (Section 7)

4 Finite State Machines (Section 8)
Section 9 reviews the themes introduced and summarizes the do-
main of application where DPGASs are most efficient.

2 Capacity and Utilization

An FPGA is composed of a number of programmable gates inter-
connected by wires and programmabl e switches. Each gate, switch,
and wire has a limited bandwidth (fy,«) — or time between uses
(tmin = fmlaz) necessary for correct operation. In a unit of time
T, we could, theoretically, get a maximum of

T
Fgate = X Ngate
tmingate

gate evaluations. We can calculate Fiyire and Feyitcn inasimilar
manner. Each gate, switch, and wire has an inherent propagation
latency (tpq) aswell.

For simplicity, let us model an FPGA as having a single, mini-
mum reusetime, ¢,min_cycie, Whichisthe minimum reusetimefor a
gate evaluation and local interconnect. We will assumet,nipn_cycie
captures both the bandwidth and the propagation delay limitations.
The flip-flop toggle rate which was often quoted by vendors as
a measure of device performance [13], provides a rough approx-
imation of ¢,nin_cycie fOr commercial devices (i.e. tmin_cycie =
Fcl —). Throughout, we assumet s s _sctup, tcik—q << tmin_cycle
to alfow simple time discretization and comparison.

The peak operational capacity of our FPGA is thus:

Nreeource
Cpeak = 1 (1)
min_cycle

=|=i= Lt
- ||-= LUT

Figure 1: Full Pipeliningto Achieve Peak FPGA Utilization

Nresource May be any of the potentially limited device resources
such as gates, wires, or switches. This peak capacity is achieved
when the FPGA isclocked at fnq» = ———— and every gateis

tmin_cycle

utilized. In our conventional model, that means every gate registers
its output, and there is at most one logic block between every pair
of flip flops (See Figure 1). Thisistrue evenwhentheregister over-
head time is not small comparedto ¢,,iy_cyc1e, but the computation
latency may be increased notably in such a case.

When we run at aslower clock rate to handle deeper logic paths,
or the device goes unused for aperiod of time, we get less capacity
out of our FPGA. RUNNING Ny ccources_useq @ aclock rate ¢c;, we
utilize a capacity:

U= Nresoures_used (2)
teik

As tex > tmin_cycle and Nresources_used < Nresource, the uti-
lization is below capacity. For example, if the path delay be-
tween registers is four gate-interconnect delays such that ¢.;x =
4 X tmin_cycie, €ven if all the device gates are in use, the gate
utilization, U gq:., is one-quarter the peak capacity Cyate_peak -

3 Technology and Application Trends

Utilization of a resource is only important to the extent that one
is capacity limited in that resource. For example, if an FPGA
has a plethora of gates, but insufficient switching to use them, gate
utilization isirrelevant while switch utilization is paramount. When
one resourceis limited, pacing the performance of the system, we
say this resources is the bottleneck. To improve performance we
deploy or redeploy our resources to utilize the bottleneck resource
most efficiently. In this sectionwelook at the effects of bottlenecks
arising from application requirements and from technol ogy-oriented
resource costs.

Bottlenecksand Capacity Onereasonwedonot fully pipeline
every design and run it at the maximum clock frequency is that we
often do not need that much of every computation. While heavy
pipelining gets the throughput up for the pipelined design, it does
not give us any more functionality, which is often the limiter at the
application level.

Most designs are composed of several components, each per-
forming a task necessary to complete the entire application (See
Figure 2). The overall performance of the design is limited by the
processing throughput of the slowest device. If the performance of
the slowest deviceis fixed, there is no need for the other devicesin
the system to process at substantially higher throughputs. In these
situations, reuse of the active silicon area on the non-bottleneck

System Throughput: 25M Ops/s

/B

—_ A 60M B-Ops/s D =
60M A—Ops/s\ C 35M D-Opsls
25M C-Opsls

Figure 2: Typical Multicomponent System

System Throughput: 25M Ops/s

—A B D —
30M A—Ops/s\ C /35M D-Ops/s
30M B-Ops/s
25M C-Opsl/s

Figure 3: Multifunction Component in System

System Throughput: 30M Ops/s

A B 25M C-Ops/s D
o
30M A—Ops/s\ C / 35M D-Ops/s
30M B-Ops/s
25M C-Ops/s

Figure 4: Function Distributionin System

componentscanimprove performance (See Figure 4) or lower costs
(See Figure 3).

Many applications, such asinput processing on sensor data, dis-
play processing, or video processing, have fixed requirements. In
these applications, processing faster than the sample or display rate
is not necessary or useful. Once we achieve the desired rate, the
rest of the “ capacity” of the deviceis not required for the function.
With reuse of activesilicon, the residual processing capacity can be
employed on other computations.

Technology and Bottleneck Resources Many bottlenecks
arise from implementation technology costs. Resourceswhich are
relatively “expensive” in area, have inherently high latencies, or
have inherently low bandwidths tend to create bottlenecks in de-
signs. /O and wiring resources often pose the biggest, technology-
dictated bandwidth limitations in reconfigurable systems.

Device 1/0 bandwidth often limits the rate at which data can
be delivered to a part. When data throughput is limited by 1/0
bandwidth, we can reuse the internal resourcesto provide alarger,
effective, internal gate capacity. This reuse decrease the total num-
ber of devices required in the system. It may also help lower the
1/0 bandwidth requirements by localizing larger sets of interacting
functionson each IC.

Internal routing resources tend to be one of the limiting factors
in FPGA designs. Even though it is not uncommon for 75-80%
of device area to go into interconnect, the amount of interconnect
is often insufficient to handle designs which push gate usage near
spatial capacity. Thislimitation isalsotechnology based. Desirable
switch and wire resources grow close to O(N3,,.) rather than
linearly in Ngqte. To the extent we try to increase our spatial
FPGA gate capacity linearly with silicon area, thismakestherouting
network thelimiting resource. Reuseof network wiresand switches
can be one of the biggest benefits arising from temporal reuse.

Context ID Context ID

Decode
Decode

Figure5: DPGA LUT and Interconnect Primitives

Latency Limited Designs Somedesignsarelimited by latency
not bandwidth. Here, high bandwidth may be completely irrelevant
or, at least, irrelevant when it is higher than the reciprocal of the
design latency. Thisis particularly true of applications which must
be serialized for correctness(e.g. atomic actions, database updates,
resourceallocation/deal location, adaptivefeedback control) or have
cyclic dependencies (e.g. FSMs). By reusing gates and wires,
we can use device capacity to implement these latency limited
operationswith lessresourcesthan would berequired without reuse.

4 DPGA Characteristics

In multicontext FPGAS, we increase utilization, U, by allocating
spaceon chip to hold several configurationsfor each gate or switch.
Rather than having a single configuration memory, each Look Up
Table (LUT) or multiplexor, for instance, hasasmall local memory
(See Figure 5). A broadcast context identifier tells each primitive
which configuration to select at any given point in time.

By allocating additional memory to hold multiple configurations,
we are reducing the potential Cleqr for afixed amount of silicon.
At the same time, we are facilitating reuse which can increase
utilization. Multiple contexts are beneficial to the extent that the
additional spacefor memory creates a net utilization increase.

Let us consider our array as composed of context memory oc-
cupying a fraction of the die A.».» and active area occupying
Agetive. FOr simplicity, we assume Acpem + Aactive = 1. We
can relate the multicontext peak to the single-context FPGA peak:

Cmcpeak = Cpeak X Aactive (3)

We can calculate multicontext gate utilization, for example:

c .
Ntotal_gates_evaluated Ngates_evaluted(l)
Umcgate = = -

teik tetat_clk
(4)

We can calculate an efficiency for the use of active multicontext
resources:

1=0

Umc
F=— 5
Cmcpeak ()
Alternately, we can compare total silicon utilization efficiency to

the single context case:

Umc
Cpeak

Eme = = E X Aactive (6)
Equation 6 computes the net utilization efficiency of the silicon.
Thisis the quantity we need to maximize to get the most capacity
out of our silicon resources.

1.00

® 0.90
§ 0.80
< 0.70
0.60
0.50
0401
0.30

A I
0246 81012141618202224

Number of Contexts (C)

Figure6: ActiveAreaPercentageversusNumber of Contexts
based on DPGA Prototype Areas

Breaking up the area by number of contexts, c:
Acmem = (C - 1) X Amem (7)

In Equation 7, we use ¢ — 1 instead of ¢ since we assume base
silicon usage (Aqctive) includes one configuration and any fixed
overhead associated with it. A,,. isthe incremental cost of one
context configuration’sworth of memory. To the extent the size of
the context configuration is linear in the size of the device, we can
approximate A, asproportional to A,ctive:

Amem = Cmem X Agctive (8)

Thisgivesus:
Agctive + (C - 1) X Cmem X Agetive = 1 (9)
Adctive = ; (10)

1+ (c— 1)Cem

Our first generation DPGA prototype [11] wasimplementedin a
3-layer metal, 1.04m CMOS process. The prototype used 4-LUTs
for the basic logic blocks and supported 4 on-chip context memo-
ries. Each context fully specified both the interconnect and LUT
functions. Roughly 40% of the die area consumed on the prototype
went into memory. We estimate that half of that area is required
for the first context, while the remaining area is consumed by the
additional three contexts. For the prototype implementation, then,
Acmem = 20% and Aqctive &~ 80%. Based on the relative sizesin
theprototypesand using the aboverelations, thisgivesCr,ern, = 1—12 .
With these technology constants, Equation 10 becomes:

1 12 12

1+(c—1)% 12+(c—1) c+11 (12)

Aactive =

Figure 6 plots the relationship shown in Equation 11.

Context switch overhead associated with reading new configu-
ration data can further decrease multicontext capacity by increas-
ING tmin_ctz_cik OVEr tmin_cix. OUr experience suggests that un-
pipelined context changesyield atimin_cte_cik < 1.5tmin_cix. This
effect can be minimized by pipelining the context read at the cost of
theadditional areafor abank of context registers(lowering Aqctive)-
We make the pedagogical assumptionthat ¢,,:in_ctz_cik = tmin_cik
for this discourse.

5 Multiple Independent Functions

The easiest and most mundaneway to increase the utilization on an
FPGA isto use the FPGA for multiple, independent functions. At

avery coarse granularity, conventional FPGAs exploit this kind of
reuse. The essence of reconfigurable resourcesis that they do not
have to be dedicated to a single function throughout their lifetime.
Unfortunately, with multi-millisecond reconfiguration time scales,
this kind of reconfiguration is only useful in pushing up utilization
in the coarsest sense. Since conventional devices do not support
background configurationloads, the active deviceresourcesareidle
and unused during these long reconfiguration events.

With multiple, on-chip contexts, a device may be loaded with
several different functions, any of which isimmediately accessible
with minimal overhead. A DPGA can thus act as a “multifunc-
tion peripheral,” performing distinct tasks without idling for long
reconfiguration intervals. In a system such as the one shown in
Figure 3, asingle device may perform several tasks. When used as
a reconfigurable accelerator for a processor (e.g. [1] [3] [8]) or to
implement a dynamic processor (e.g. [12]), the DPGA can support
multiple loaded acceleration functions simultaneously.

Within a CAD application, suchasespr esso [9], one needsto
perform several distinct operationsat different times, each of which
could be accelerated with reconfigurable logic. We could load
the DPGA with assist functions, such as an ASCII decoder (e.g.
[8]), bitvector manipulator, first one locator (e.g. [1]), or hamming
distance calculator (e.g. [1]). Since these tasks are needed at
distinct times, they can easily be stacked in separate contexts and
selected as needed. To the extent that function usageis interleaved,
the on-chip context configurationsreducethereload idletime which
would be required to share a conventional device among as diverse
aset of functions.

6 Utility Functions

Some classesof functionality are needed, occasionally but not con-
tinuously. In conventional systems, to get the functiondity at all,
we haveto dedicate wire or gate capacity to it, even though it may
be used very infrequently. A variety of dataloading and unloading
tasksfit into this “infrequent use” category, including:
¢ Data offload — e.g. debugging snapshot, testing observability,
fault recovery snapshot, context data offload
e Data onload — e.g. configuration setting, value initialization,
debugging value injection, testing accessibility, fault recovery,
context datareload (after coarse-grain context switch)
e Operation idle/enable — e.g. conditional operation, exception
handling, stall
In amulticontext device, the resourcesto handletheseinfregquent
cases can be relegated to a separate context, or contexts, from the
“normal” case code. The wires and control required to shift in
(out) dataand load it are allocated for use only when the respective
utility context is selected. The operative circuitry then, does not
contend with the utility circuitry for wiring channels or switches,
and the utility functions do not complicate the operative logic. In
thismanner, the utility functions can exist without increasing critical
path delay during operation.
A relaxation algorithm might operate as follows:
1 Loadin starting point and boundary conditions
2 Calculate relaxation updates
3 Check for convergence, return to 2 if not converged
4 Offload result

c
=8
S%
SE
=0

w

Transformation
Quantization

Figure 7: Canonica Video Coding Pipeline

context context context context
switch switch switch switch

B

Transformation

¥

¥ \ |———= \
T \ ! I
Motion | | | | i |
Estimation | I | I Coding |

| |

L__+ L__+ L__ﬁ:_]
| | |

\
i
\
\

Quantization

|

|

Time ‘
|
|

Figure 8: Temporally Systolic Video Coding Pipdine

Each of these operations may be separate contexts. The relaxation
computation may even bespread over several contexts. Thisgeneral
operation style, whereinputs and outputs are distinct and infrequent
phases of operation, is common for many kinds of operations (e.g.
multi-round encryption, hashing, searching, and many optimization
problems).

7 Temporal Pipelining

In the introduction we noted that we can extract the highest capac-
ity from our FPGAs by fully pipelining every operation. When
we need the highest throughput for the task, but limited function-
ality, this technique works well. However, we noted in Section 3
that application and technology bottlenecks often limit the rate at
which we can provide new data for a design such that this maxi-
mum throughput is seldom necessary. Further, we noted that many
applicationsare limited in the amount of distinct functionality they
provide rather than the amount of throughput for a single function.
Temporal pipelining is a stylized way of organizing designs for
multi-context execution which uses available capacity to support a
larger range of functionsrather than providing more throughput for
asingle piece of functionality.

7.1 Temporally Systolic Pipelines

Figure 7 shows a typical video coding pipeline (e.g. [7]). In
a conventional FPGA implementation, we would lay this pipeline
out spatially, streaming data through the pipeline. If we needed the
throughput capacity offered by the most heavily pipelined spatial
implementation, that would be the design of choice. However, if
we needed less throughput, the spatially pipelined version would
require the same space while underutilizing the silicon. In this
case, a DPGA implementation could stack the pipeline stages in
time. The DPGA can execute a number of cycles on one pipeline
function then switch to another context and execute a few cycles
on the next pipeline function (See Figure 8). In this manner, the
lower throughput requirement could betrand ated directly into lower
device requirements.

This is a general schema with broad application. The pipeline
design style is quite familiar and can be readily adapted for mul-
ticontext implementation. The amount of temporal pipelining can

i
'

=
_—.WL

.
T
| |

Dashed lines show one full levelization of this cir-
cuit. With a context switch at each dashedline, the
circuit can be evaluated on two physical gates.

Figure 9: Leveization Example

be varied as throughput requirements change or technology ad-
vances. As silicon feature sizes shrink, primitive device bandwidth
increases. Operations with fixed bandwidth requirements can in-
creasingly be compressed into more temporal and less spatial eval-
uation.

7.2 Levelized Logic

Levelized logic isa CAD technique for automatic temporal pipelin-
ing of existing circuit netlists. Bhat refers to this as temporal
partitioning in the context of the Dharma architecture [2]. The ba-
sic ideaisto assign an evaluation context to each gate so the gate's
predecessors are evaluated in a context prior to the gate’s context.
With latency constraints, we may further require that the levelized
network not take any more ¢,,;n_cix Steps than necessary. With a
full levelization scheme, the number of contexts used to evaluate a
netlist is equal to the critical path in the netlist.

Figure 9 shows a simple netlist with five logic elements. The
critical path (A—C—E) is three elements long. Spatially imple-
mented, this netlist evaluates a 5 gate function in 3 cyclesusing 5
physical gates. In three cycles, thesefive gates could have provided
5 x 3 = 15 gate evaluations, so we realize a gate usage efficiency,
Fgate, Of % = 0.33. Thecircuit can befully levelized as shownin
Figure 9. Thetotal gate evaluation capacity occupiedis2 x 3 =6
(Fgate = g = 0.83). Alternately, the circuit can be levelized into
5 contexts, taking a delay of 5 X tmin_cycie and a capacity of 5
(Egate = 2 =1.0).

The preceding example illustrates the kind of options available
with levelization.

¢ Slack in the network allows us some freedom in the context
placement for components outside of the critical path. In gen-
eral, this slack should be used to equalize context size, mini-
mizing capacity usage.

¢ Up to apoint, more contexts allow increased utilization.

¢ Achieving the highest utilization often requires increasing the
evaluation delay.

Table 1 summarizes full levelization results for several MCNC
benchmarks. si s [10] was used for technology independent opti-
mization. Chort| e [5] was used to map the circuits to 4-LUTSs.
For the purpose of comparison, circuits were mapped to minimize
delay sincethisgenerally gavethe highest, single context utilization
efficiency. No modificationsto the mapping and netlist generation
were made for levelized computation. Gates were assighed to con-
texts using a list scheduling heuristic. Levelization results are not
optimal, but demonstrate the basic opportunity for increased uti-
lization efficiency offered by levelized logic evaluation.

Design Single Context Full Levelization
L| Ny| Cap| B.| Cap| Emg | 22
5xpl 6 55 330 | 0.16 72 | 0.76 | 4.58
9sym 5 155 775 | 0.20 510 | 0.30 | 151
9symml 5 130 650 | 0.20 420 | 030 | 154
C499 7 406 2842 | 0.14 588 | 0.69 | 4.83
C880 9 289 2601 | 0.11 342 | 084 | 7.60
au2 10 323 3230 | 0.10 480 | 067 | 6.72
apex6 5 454 2270 | 0.20 460 | 098 | 4.93
apex7 5 158 790 | 0.20 165 | 095 | 4.78
b9 3 55 165 | 0.33 57 | 0.96 | 2.89
clip 6 162 972 | 0.16 324 | 050 | 3.00
cordic 8 529 4232 | 0.12 888 | 059 | 4.76
count 4 128 512 | 0.25 164 | 0.78 | 3.12
des 8| 2749 | 21992 | 0.12 || 3168 | 0.86 | 6.94
e64 4 385 1540 | 0.25 456 | 0.84 | 3.37
f51m 7 152 1064 | 0.14 252 | 060 | 4.22
misex1 3 24 72 | 0.33 27 | 0.88 | 2.66
misex2 4 58 232 | 0.25 60 | 0.96 | 3.86
rd73 5 157 785 | 0.20 295 | 053 | 2.66
rds4 5 381 1905 | 0.20 935 | 040 | 2.03
rot 8 398 3184 | 0.12 400 | 099 | 7.96
san2 5 98 490 | 0.20 150 | 0.65 | 3.26
vg2 5 92 460 | 0.20 135 | 0.68 | 3.40
z4ml 4 13 52 | 0.25 16 | 081 | 3.25
Mean 0.19 0.71 | 4.08

Table 1: Full Leveization for Benchmark Circuits

Thefollowing equations summarize the metrics used in Table 1:

1
B, = % 12
Cap = Ng X Ltotal (13)
Eng Ny 14

L x Nmam_level_gates

For the purpose of pedagogical comparison, we normalize gate us-
age to the number of gates required, N, in each implementation.
Referring back to Equations 1 and 2, single context efficiency is
E. = C;Zak . With the normalization, the single context efficiency
is simply the reciprocal of the critical path delay, I (Equation 12).
Capacity, Cap, is the time-space capacity occupied by an imple-
mentation. E,,4 results from reducing Equation 5 normalized to
Ninaz_ievel_gates, the number of gates required by the the largest
context in the multicontext implementation.

We saw in our simple example above that utilization efficiency
varies with the number of contexts actually used. Figure 10 plots
the gate efficiencies achieved for the DES benchmark for various
numbers of contexts. Recall from Section 4 and Figure 6 that
context memory takesareaaway fromactivesilicon. Figure 10 also
combines gate efficiencieswith Equation 11 according to Equation 6
to show the net silicon utilization efficiency for this design.

In this section we havefocussed on caseswhere the entire circuit
designistemporally pipelined. Thereare, of course, hybridswhich
involve someelement of both spatial and temporal pipelining. Once
we have determined the level of spatial pipelining necessary to
providethe reguisite throughput, we are free to temporally pipeline
logic evaluation within each spatial pipeline stage.

O+ OEp,
A A Agive
O3 Emogale:AactiveXEmg

o 10044,
= 0901+ A. NS
> 0801 A p “Q
0.70+ e
& 060}
'S 0501 <
s
W 620
sl [

012345678910
Number of Contexts (C)

Figure 10: Overall Silicon Utilization for DES Benchmark
8 Finite State Machines

Since the next state calculation must complete and be fed back
to the input of the FSM before the next state behavior can begin,
there is no benefit to be gained from spatial pipelining within the
FSM logic. Temporal pipelining can be used to increase gate and
wire utilization. The middle section of Table 2 summarizesthe full
levelization of several MCNC benchmark FSMs in the same style
as Table 1.

Finite state machines, however, happento have additional struc-
ture over random logic which can be exploited. In particular, one
never needs the full FSM logic at any point in time. During any
cycle, thelogic from only one stateis active. In atraditional FPGA,
we have to implement all of this logic at once in order to get the
full FSM functionality. With multiple contexts, each context need
only contain a portion of the state graph. When the state transitions
to a state whose logic resides in another context, we can switch
contexts making a different portion of the FSM active. National
Semiconductor, for example, exploitsthisfeature in their multicon-
text programmablelogic array (PLA), MAPL [6].

In the most extreme case, each FSM state is assigned its own
context. The next state computation simply selects the appropriate
next context in which to operate. Table 2 shows the reduction
in logic depth and increase in utilization efficiency which results
from multiple context implementation. FSMs were mapped using
nmust ang [4]. Logic minimization and LUT mapping were done
with espresso, si s, and Chortl e. All single context FSM
implementations use one-hot state encodings since those uniformly
offered thelowest latency and had the lowest capacity requirements.
The multicontext FSM implementations use denseencodingsso the
state specification can directly serve as the context select. Delay
and capacity are dictated by the logic required for the largest and
slowest state. Comparing context per state partitioning in Table2to
full levelization, we see that this state partitioning achieves higher
efficiency gains and generally lower delaysthan levelization.

The capacity utilization and delay are often dictated by afew of
the more complex states. It is often possible to reduce the number
of contexts required without increasing the capacity required or in-
creasing thedelay. Figure 11 showsthe CSE benchmark partitioned
into various numbers of contexts. These partitions were obtained
by partitioning along nust ang assigned state bits starting with a
four bit state encoding.

While demonstrated in the contexts of FSMs, the basic technique
used hereisalsofairly general. Whenwe can predict whichportions
of a netlist or circuit are needed at a given point in time, we can

generateamore specialized designwhich only includestherequired
logic. The specialized design is often smaller and faster than the
fully general design. With a multicontext component, we can use
the contextsto hold many specialized variants of adesign, selecting
them as needed.

9 Conclusions

Programmable device capacity has both a spatial and a temporal
aspect. Traditional FPGASs can only build up functionality in the
spatial dimension. These FPGASs can only exploit the temporal
aspect of capacity to deliver additional throughput for this spatially
realized functionality. As a result, with heavy pipelining, FPGAs
can provide very high throughput but only on a limited amount
of functionality. In practice, however, we seldom want or need
the fully pipelined throughput. Instead, we are often in need of
more resources or can benefit from reducing total device count by
consolidating more functionality onto fewer devices.

In contrast, DPGA s dedicate some on-chip areato hold multiple
configurations. This allows resources such as gates, switches, and
wires, to implement different functionality in time. Consequently,
DPGAs can exploit both the temporal and the spatial aspects of
capacity to provide increased functional capacity.

Fully exploiting thetime-space capacity of these multicontext de-
vicesintroduces new tradeoffs and raises new challengesfor design
and CAD. This paper reviewed several stylized modelsfor exploit-
ing the time-space capacity of devices. Multifunction devices, seg-
regated utility functions, and temporally systolic pipelining are all
design styles where the designer can exploit the fact that the device
function can changein time. Levelized logic and FSM partitioning
are CAD techniquesfor automatically exploiting the time-varying
functionality of these devices. From the circuit benchmark suite,
we seethat 3-4x utilization improvements are regularly achievable.
The FSM benchmarks show that even greater capacity improve-
ments are possible when design behavior is naturally time varying.
Techniques such as these make it moderately easy to exploit the
capacity improvements enabled by DPGAS.

Acknowledgments

This research is supported by the Advanced Research Projects
Agency of the Department of Defense under Rome Labs contract
number F30602-94-C-0252.

References

[1] Peter Athanasand Harvey F. Silverman. Processor Reconfig-
uration Through Instruction-Set Metamorphosis. IEEE Com-
puter, 26(3):11-18, March 1993.

[2] NarasimhaB. Bhat. Novel Techniquesfor High Performance
Field Programmable L ogic Devices. UCB/ERL M93/80, Uni-
versity of California, Berkeley, November 1993.

[3] André DeHon. DPGA-Coupled Microprocessors: Commod-
ity ICsfor the Early 21st Century. In Proceedingsof the IEEE
Workshop on FPGAsfor Custom Computing Machines, 1994.

[4]

(5]

(6]

(8]

Single Context Full Levelization Context per State
FSM | States | L | Ny | Cap | B. || Cop | By | Z22 | L | Ny | Cop | By | Sphoinate
bbara 10| 3| 40 120 | 0.33 45| 088 | 266 || 1 6 6 | 1.00 20.00
bbsse 16| 3 60 180 | 0.33 60 | 1.00| 300 2| 13 26 | 0.50 6.92
beecount 71 2 22 44 | 0.50 22 | 100 | 200 || 1 7 7| 1.00 6.28
cse 16| 4| 97 388 | 0.25 104 | 093 | 373 2| 15 30 | 050 12.93
dk14 71 3 67 201 | 0.33 84 | 079 | 239 || 1 8 8 | 1.00 25.12
dk16 27| 3 83 249 | 0.33 87| 095 | 286 || 1 8 8 | 1.00 3112
dk512 15| 2 20 40 | 0.50 20| 100 | 200 || 1 7 7| 1.00 571
exl 20| 4| 151 604 | 0.25 164 | 092 | 368 (| 2| 26 52 | 1.00 11.61
ex6 8| 3 62 186 | 0.33 69| 089 | 269 | 1| 11 11 | 1.00 16.90
mc 4| 2 14 28 | 0.50 14 | 1.00 | 200 || 1 7 7| 1.00 4.00
planet 48 | 4 | 172 688 | 0.25 172 | 1.00 | 400 1| 25 25| 1.00 27.52
pma 24 | 4| 139 556 | 0.25 160 | 0.86 | 347 | 2| 15 30 | 050 18.53
sl 20| 4| 195 780 | 0.25 228 | 085 | 342 | 3| 31 93 | 0.33 8.38
s1488 48 | 4 | 183 732 | 0.25 184 | 099 | 397 | 2| 27 54 | 0.50 13.55
s208 18| 3| 40 120 | 0.33 42 | 095 | 285 | 1 7 7| 1.00 17.14
s386 13| 4| 54| 216 | 0.25 56 | 096 | 385 | 2| 12 24 | 0.50 9.00
s510 47 | 3 83 249 | 0.33 84| 098 | 29 || 1| 13 13 | 1.00 19.15
sand 32| 4| 224 | 89% | 0.25 260 | 086 | 344 | 4| 38| 152 | 0.25 5.89
styr 30| 5| 285 | 1425 | 0.20 335 | 085 | 425 | 2| 24 48 | 0.50 29.68
tbk 32| 5| 510 | 2550 | 0.20 || 1065 | 047 | 239 || 4| 46 | 184 | 0.25 13.85
Mean 3.08 15.16

Table 2: Full Levelization and State per Context FSM Partitioning

I I)
0 2 4 6 8 10 12 14 16

Number of Contexts (C)

Capsingle/ CaPmurti

Logic Levels (L)
w

51—

L1 ! 1 1 1 1 1]
0 2 4 6 8 10 12 14 16

Number of Contexts (C)

Figure 11: Capacity and Delay versus Number of Contextsfor CSE Benchmark

Srinivas Devadas, Hi-Keung Ma, , A.R. Newton, and Alberto
Sangiovanni-Vincentelli. MUSTANG: State Assignment of
Finite State Machines Targeting Multilevel Logic Implemen-
tations. |EEE Transactionson Computer-Aided Design of In-
tegrated Circuits and Systems, 7(12):1290-1300, December
1988.

Robert Francis. Technology Mapping for Lookup-TableBased
Field-Programmable Gate Arrays. PhD thesis, University of
Toronto, 1992.

David Hawley. Advanced PLD Architectures. In Will Moore
and Wayne Luk, editors, FPGAs, pages 11-23. Abingdon
EE&CS Books, 15 Harcourt Way, Abingdon, OX14 1NV,
UK, 1991.

Chris Jones, John Oswald, Brian Schoner, and John Vil-
lasenor. Issues in Wireless Video Coding using Run-time-
reconfigurable FPGAs. In Proceedingsof the | EEE Workshop
on FPGAsfor Custom Computing Machines, April 1995.

Rahul Razdan. PRISC: Programmable Reduced Instruction
Set Computers. PhD thesis, Harvard Univeristy, May 1994.

(9]

[10]

[11]

[12]

[13]

R. Rudell and A. Sangiovanni-Vincentelli. Multiple-Valued
Minimization for PLA Optimization. |EEE Transactionson
Computer-Aided Design of Integrated Circuits, 6(5):727-751,
September 1987.

Ellen M. Sentovich, Kanwar Jit Singh, L uciano Lavagno, Cho
Moon, Rajeev Murgai, Alexander Saldanha, Hamid Savoj,
Paul R. Stephan, Robert K. Brayton, and Alberto Sangiovanni-
Vincentelli. SIS: A System for Sequential Circuit Synthesis.
UCB/ERL M92/41, University of California, Berkeley, May
1992.

Edward Tau, lan Eslick, Derrick Chen, Jeremy Brown, and
André DeHon. A First Generation DPGA Implementation.
In Proceedings of the Third Canadian Workshop on Field-
Programmable Devices, pages 138-143, May 1995.

Michael J. Wirthlin and Brad L. Hutchings. A Dynamic In-
struction Set Computer. In Proceedingsof the |EEE Workshop
on FPGAs for Custom Computing Machines, April 1995.
Xilinx, Inc., 2100 Logic Drive, San Jose, CA 95124. The
Programmable Logic Data Book, 1989, 1994.

	CD-ROM Home Page
	FPGA Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

