
Abstract
This paper investigates area-speed trade-offs for Hierarchical

FPGA (HFPGA) architectures. Using a set of new CAD tools, we
measured the timing performance of HFPGAs and conventional
symmetrical FPGAs using data gathered from experiments on a
subset of benchmark circuits from the Microelectronics Centre of
North Carolina (MCNC). Experiments were also performed to
determine the effect of timing optimized placements on routing
channel requirements. These experiments demonstrate that
HFPGAs can achieve both better area and speed than symmetrical
FPGA architectures[2].

1 Introduction

The ability of Field Programmable Gate Arrays (FPGAs) to
rapidly prototype and implement complex multilevel digital circuits
has made them the subject of many research studies [3 - 9]. This
paper explores area-speed trade-offs in Hierarchical FPGAs
(HFPGAs.) First proposed by Aggarwal and Lewis [1], an HFPGA
consists of a hierarchy of logic blocks connected by partially
populated switch blocks and routing channels. Recently, the FLEX
series of FPGAs by Altera[21] has been introduced, which shares
some features with the HFPGA architecture described here. While
the reduced area of HFPGAs compared to other FPGAs has been
demonstrated [1], timing issues have so far been ignored. This
paper explores timing issues in HFPGAs. In particular, the use of a
timing-based placement is investigated, and the increased routing
requirements due to a timing-based placement are explored.
Further, the area-speed trade-off of different HFPGA architectures
is explored. Finally, a comparison to other FPGAs, such as the
Xilinx XC3000, is made. The results show an average 30-40%
reduction in the routing delay for the critical paths with only small
increase in area.

We refer to FPGAs with a symmetrical grid of logic blocks
and routing channels on all four sides of the logic block as
symmetrical FPGAs. This architecture offers great flexibility and
routability. On the other hand, symmetrical FPGAs may be slow
due to the large number of programmable switches along a routing
path. Structures such as segmented channels, direct interconnect
and long lines (as in Xilinx XC3000 [10]) have been used to reduce
routing delay.

This work was supported by Micronet

Since most digital designs contain clusters of circuits with
many local connections, an FPGA that is divided into hierarchies of
blocks, each comprising a collection of interconnected logic blocks,
may be able to provide lower routing delays and more predictable
timing behavior. HFPGAs provide segmented routing structures
using a hierarchy of logic blocks with short local wires as well as
long global wires.

Section 2 of this paper describes the HFPGA architecture.
Section 3 briefly describes the CAD tools developed, and section 4
describes the experimental study and results. Section 5 concludes
the paper.

2 Architectural Model for HFPGAs

This section provides a brief description of the HFPGA
architecture. A more detailed discussion of the architecture can be
found in [1][11]. HFPGAs are built using 2 types of primitive
blocks: logic block (or level 0 block) and I/O block. This research
uses a 4-input lookup table (4-LUT) as the basis for the logic block,
although the HPFGA architecture is not dependent on the type of
logic block used.

A level 1 block contains a collection of  level 0 logic
blocks and  I/O blocks equally placed on both sides of the
routing channel as shown in Figure 2.1. Local routing tracks are
used to connect cells within the same block while global routing
tracks can make connections outside the block. This architecture
can be easily extended to arbitrary levels of hierarchy. A level 2
logic block consists of  level 1 logic blocks with local tracks
within the block as well as global tracks connecting to routing
tracks in a level 3 logic block. The configuration of a  level

N0
M0

LUT

I/O

LUT

I/O

Figure 2.1  Example of level 1 logic block with a
(2 + 2) architecture

connection box
global tracks

local trackslevel 1 block

N1

n

Area-Speed Tradeoffs for Hierarchical
Field-Programmable Gate Arrays

Vi Cuong Chan and David M. Lewis

University of Toronto

Department of Electrical and Computer Engineering



HFPGA can be described using the expression
 An example of a

 architecture is shown in Figure 2.2.

2.1 Switch Patterns

HFPGAs contain connection boxes to connect the pins of a
level i logic block to another level i logic block or to the pins of the
level ( ) blocks in a higher hierarchy. The connection boxes
use a non-uniform switch topology, in which the switches are
distributed unevenly amongst the routing tracks using an
exponential function. The routing flexibility  for leveli channel
is defined as the average number of switches on each leveli track to
which a level ( ) track can connect.

2.2 Direct Interconnect

This paper extends the architecture of Aggarwal [1] by
exploring the use of direct interconnects on HFPGAs. In order to
provide some ability to reduce path delay, fast connections are
provided between adjacent logic blocks. Nets that use direct
interconnect have reduced interconnect delay and use no general
routing resources (local or global tracks). There are two types of
direct interconnects: level 1 direct interconnect and level 2 direct
interconnect.

• level 1 direct interconnect - the output pin of a 4-LUT is
connected to the input pins of its adjacent cells through
the use of the optional level 1 direct interconnect to form
a linear chain of interconnected 4-LUTs within the same
level 1 block. The input pin still has the ability to connect
to the general routing resources within the same block as
shown in Figure 2.3.

• level 2 direct interconnect - the linear chain of
interconnected LUTs in a level 1 block extends to level 2
block by allowing the output pin of the two 4-LUTs at
both ends of the linear chain to connect to the input pin of

Nn 1− … N2×× N1× N0 M0+( )×

Figure 2.2  Example of a 4 x 2 x (2 + 2)
Hierarchical FPGAHierarchical

Logic
Block
(Level 0)

Global (Level 3)
Channel

Level 1
Block

Level 2
Blocks

Connection
Box

I/OI/O

I/O

I/O

I/O

I/O

I/OI/O

I/O

I/O

I/O

I/O

I/O

I/O I/O

I/O

I/O

Level 1 Channel 

Level 2
Channel

4 2 2 2+( )××

i 1+

Fi

i 1−

the 4-LUT at the end of the adjacent level 1 block through
a level 2 direct interconnect channel

The direct interconnect structure can be extended to more than
two levels, although this paper only studies the effects of direct
interconnect up to two levels. Direct interconnect provides
connections between logic blocks, but not to I/O cells. The direct
interconnect structure for a  architecture is shown in
Figure 2.4 . To simplify the picture, the direct interconnects
between two cells are represented as one wire, even though there
are actually two wires, one in each directions, connecting two cells
together

Software Tools

This section describes briefly the algorithms used in the
software tools developed for timing driven placement of a netlist on
HFPGAs. A more detailed discussion of these algorithms can be

Figure 2.3  Level 1 direct interconnect (linear chain)

4 LUT 4 LUT 4 LUT 4 LUT

input pin can be

level 1 direct interconnect

programmable switch

output pin

direct

to next LUTdirect
interconnect
to previous
LUT

connected to
direct interconnect
or general routing
resources

interconnect

4 6 2+( )×

4 LUTI/O

I/O

4 LUT 4 LUT

4 LUT4 LUT4 LUT

4 LUT I/O

I/O

4 LUT4 LUT

4 LUT 4 LUT 4 LUT

4 LUTI/O

I/O

4 LUT 4 LUT

4 LUT4 LUT4 LUT

4 LUT I/O

I/O

4 LUT4 LUT

4 LUT 4 LUT 4 LUT

level 1 logic block level 1 logic block

level 1 logic blocklevel 1 logic block

level 2 logic block

level 2 direct interconnect level 1 direct interconnect

Figure 2.4  Direct interconnect structure of a
4 x (6 + 2) architecture



found in [11].

2.3 Timing Driven Placement (TDPlacement)

Placement is performed usingTDPlacement, which takes the
same approach as the original Fiduccia-Mattheyes min-cut [15]
algorithm but incorporates timing in the cost function, with the
following modifications:

• A topological timing analysis and path dependency
analysis is performed before the placement.

• After each “cell move”, the algorithm updates the timing
slacks of all edges and re-calculates the gain for each cell.

In topological timing analysis (TAnnotate), for each cellv, the
actual arrival time, , and the required arrival time, ,
from the primary input cells to the output pin of the cell are
computed. After finding the required arrival time for all cells in the
circuit, the path slack for the edge  can be calculated
by subtracting the accumulated delay for a signal to propagate to
through the edgee from the required arrival time of , i.e.

where  is the intrinsic delay of the logic cells  and
 is the signal propagation delay from  to .

In an HFPGA, an even number of switches are required to
connect any two cells together, thus, it is convenient to express the
path slack in term of the number of switch pairs. The algorithm
computes the timing slack for an edge,ts(e), by dividing the path
slack of the edge with the delay of two switches, i.e.

wheresw is the delay through a programmable switch.

The next step in the placement process is to identify the set of
edges whose path slacks are affected by any change in the path
slack of  through path dependency analysis. We denote such set

, the affected edges set of . In the algorithm, the affected
edges set of an edge is used to indicate the importance of a timing
slack change for the edge.

The algorithm then uses the timing slack associated with each
edge to define the cost of introducing switch pairs to the edge. The
cost of the edge is an indicator of the effect of adding a pair of
routing switches on the delay of all path through the edge; the
higher the cost for an edge, the more effect it has on path delay.

Whenever a cell is moved from one partition to another
partition during the placement, the timing slack of each affected
edge must be updated to reflect the current timing properties of the
circuit. After the update, the cost for all edges and cells are re-
calculated to reflect the change in timing slack.

2.4 Direct Interconnect Optimization (DICOpt)

The direct interconnect optimizer reads in the placed design
after timing driven placement and re-arranges the placement of the
logic cells to take advantage of the direct interconnects that exist
between adjacent logic cells.

Topological timing analysis and path dependency analysis are
performed in the beginning to determine the longest path delay and
timing slacks for all edges. Since direct interconnects do not exist
for I/O cells, the optimizer will leave the I/O cells placement
unchanged while all the placement for logic cells will be treated as
“floating” within the same level 1 block. The algorithm uses a
greedy approach by first picking the highest cost edge and attempts
to place the two cells connected by the edge adjacent to each other;

ta v( ) tr v( )

e vi vj,( )=
vj

vj

ps e( ) tr vj( ) ta vi( )− vi vj,( )∆− σ vj( )−=
σ vi( ) vi

vi vj,( )∆ vi vj

ts e( )
ps e( )
2 sw×

=

e
Φe e

it then proceeds to pick the next highest cost edge until all cells are
placed. In addition, after each successful placement, the algorithm
will update the timing slack on all the affected edges and the cost
for each edge will be re-calculated.

3 Experimental Results

This section describes the experiments and the approach used
to study the timing characteristics of HFPGAs. These experiments
studied the timing behavior of HFPGAs based on the longest path
delay of the test circuits placed using the timing driven placement
tools developed. In addition, these experiments also studied the
effects of direct interconnects on circuit timing and switch counts.
The results were then compared against those obtained for
symmetrical FPGAs.

In order to study the timing characteristics of HFPGAs,
seventeen circuits from the MCNC test suites were placed on nine
different HFPGA architectures. The results of these experiments
revealed that circuits using HFPGA can achieve a lower longest
path delay than those using symmetrical FPGAs.

3.1 Average Routing Delay

In this paper, we express the routing delay along any path in
terms of the average number of programmable switch pairs,
denoted by ρ. Let  by a path defined by the sequence

, the delay for the path  can be expressed as

and the routing delay of the path, , can be normalized in
terms of routing switch delays as

wheresw is the switch delay.

In the experiments, the same programmable switch delay and
direct interconnect delay are assumed for both HFPGAs and
symmetrical FPGAs. Since an HFPGA requires a minimum of two
switches are required to connect any two cells together,ρ has a
lower bound of one. For symmetrical FPGAs,ρ has a lower bound
of one if the two cells are adjacent to each other, otherwise,ρ has a
lower bound of 1.5 since a minimum of two switches and a
connection box are required to connect two cells together. In
general, if HFPGAs can achieve a value ofρ less than 1.5, their
speed is better than that of symmetrical FPGAs. However, the value
of ρ may be less than one for both symmetrical FPGAs and
HPFGAs if direct interconnects are utilized. In the experiments, we
use ρ to refer to the normalized delay of the critical path.

It should be noted that the use of switch count for delay is
limited in its accuracy as it neglects the loading on each line due to
other switches’ capacitance.

3.2 Routing Resource Requirements

In this paper, the routing resources required for a given
architecture are measured in terms of the number of switches
required per logic block (or switch counts), denoted byα. The area
of the metal tracks is neglected as the area occupied by the routing
switches typically exceeds that of the metal tracks. For an HFPGA
architecture described by the expression ,
α is defined as

Ψ
v0 … vn,,( ) Ψ

D Ψ( ) σ vi( )
i 0…n=
∑ vi vi 1+,( )∆

i 0…n 1−=
∑+=

ρ Ψ( )

ρ Ψ( )
vi vi 1+,( )∆

i 0…n 1−=
∑

2 sw×
=

N2 N1× N0 M0+( )×



wheretsw is the total number of programmable switches.

In general, better area efficiency is obtained from an FPGA
with a smaller value ofα and better speed is obtained from an
FPGA having a smaller value ofρ.

3.3 Benchmark Circuits

17 circuits from the MCNC test suites [2] were used
throughout the experiments presented in this chapter. The size of
the circuits are listed in Table 4.1

3.4 Experimental Assumptions

A number of assumptions were made in both the HFPGA model
and the symmetrical FPGA model used in the experiments
described in this chapter.

i) Only HFPGAs with three levels of hierarchy were used in
the experiments, as they have been shown [1] to be a
good size for the set of benchmark circuits used in
experiments.

ii) A 4-input LUT was used as the basic logic block .

iii) All four input pins LUTare considered to be logically
equivalent.

iv) The number of I/O blocks is allowed to “float” such that

α tsw
N2 N1× N0×

=

Table 3.1 Benchmark Circuits

Circuit #Cells #I/O #Nets

9symml 71 10 80

C3540 352 72 402

C432 106 43 142

C880 114 86 174

apex7 78 86 127

dalu 333 91 408

i2 69 202 270

i5 66 199 199

i6 110 205 248

i7 175 266 374

i8 350 214 483

i9 200 151 288

k2 353 88 398

rot 238 242 373

x1 120 86 171

x3 268 234 403

x4 126 165 220

the ratio of logic blocks to I/O blocks is approximately
equal to the ratio of logic cells and I/Os for the specific
design. This restriction is made to minimize the number
of unused logic blocks.

v) Direct interconnects are implemented as programmable
switches for both HFPGAs and symmetrical FPGAs. In
addition, the delay through a direct interconnect is
considered to be half that of a regular programmable
switch.

vi) Routing parameters , ,  and
, determined in [1] to lead to 100% routing,

were used. These parameters describe, respectively, the
number of routing switches connecting each pin to each
track in the channel at levels 1, 2, and 3, and the number
of excess tracks allocated beyond the channel density.
The routing resource usage of the symmetrical FPGA
(non-timing driven) was calculated by CGE [9] during
detailed routing. The switch counts for timing driven
placement for symmetrical FPGAs was extracted from
Xilinx’s data sheet.

With the above assumptions, the HFPGA models used in the
experiments can be described by choosing specific values of
and , and using a size of HFPGA large enough to contain the
circuit, by setting

and determining IO requirements as

where #LUT is the number of LUTs, and #IO is the number of
primary input and output cells used in a specific circuit.

3.5 Experimental Procedures

The experiments described in this section used 17 circuits
from the MCNC suite to determine the area and speed effects of the
architectural parameters, as well as compare HFPGAs to
symmetrical FPGAs. The experimental procedures for HFPGAs
and symmetrical FPGAs were:

i) Technology independent optimization usingSIS [12] .

ii) Technology mapping into 4-input LUT logic blocks using
chortle-crf [13].

iii) Placement: For HFPGA, non-timing driven placement
was performed byHPlacement [1]. For symmetrical
FPGA, non-timing driven placement is performed by
Xaltor [14].

iv) Timing driven placement usingTDPlacement HFPGAs,
and Xilinx’s apr [10] for symmetrical FPGAs.

v) Direct interconnect optimization usingDICOpt for
HFPGAs, and Xilinx’sapr [10] for symmetrical FPGAs.

vi) Timing Analysis usingTAnnotate for HFPGAs, and
Xilinx’s xdelay [10] for symmetrical FPGAs.

3.6 Timing Performance of different HFPGA

architectures

This section presents the results of the experimental studies
conducted to understand the timing performance of the different

F1 2= F2 2= F3 4=
Wx 3=

N0
N1

N2 2 #LUT
2 N× 0 N1×

×=

M0 2
N0 #LUT×

2 #IO×
×=



HFPGA architectures.

Experiments were performed on seventeen (17) MCNC
benchmark circuits on nine (9) different combinations of ,
specifically, , , , , , , ,

 and . The value of  and  are chosen for each
circuit so as to provide maximum utilization of logic cells. Thus, a
total of 153 independent circuit-architecture combinations are
tested and three different kinds of placements are performed for
each combination:

• non-timing driven placement,

• timing driven placement, and

• timing driven placement followed by direct interconnect
optimization.

The values ofα and ρ were computed from each final
placement and the conclusions drawn from these results will be
discussed.

Figure 3.1 shows a comparison ofρ for the three placements

and nine different architectures.

Effects of different HFPGA architectures

For the three different placement procedures, the average
value ofρ decreases when the value of  and  increase. The
lowest value ofρ is achieved with the architecture . In fact,
the average value ofρ is decreased by 32.14%, 34.72% and 40.76%
respectively when a  architecture is used instead of a
architecture for the three placements. This is because a larger
allows more cells to be connected by using only two switches, and a
larger  will reduce the number of connections that require global
tracks.

Effects of different placements

From the table, timing driven placement has 19.12% lower
delay in the critical path than non-timing driven placement and
33.38% lower if direct interconnect optimization is used.

3.7 Area Performance of different HFPGA architectures

Optimizing placement for timing may have the effect of
increasing routing channel requirements. The next set of

N1 N0×
4 2× 4 4× 4 8× 4 16× 4 32× 8 4× 8 8×

8 16× 16 4× N2 M0

Figure 3.1  Average Routing Delay verses Architecture

1 

1.2 

1.4 

1.6 

1.8 

2 

2.2 

2.4 

2.6 

A
ve

ra
ge

 R
ou

tin
g 

D
el

ay

   4x2     4x4     4x8    4x16    4x32     8x4     8x8    8x16    16x4
Architecture

Non-Timing Driven Placement Timing Driven Placement
Timing Driven Placement w/ DIC

N1 N0
4 32×

4 32× 4 2×
N0

N1

experiments investigate this effect. Figure 3.2 Table 3.2 show a

comparison ofα for the three placements and nine different
architectures.

Effects of different HFPGA architecture

For the five architectures with , the smallest value of
α is obtained for the architecture  and increases gradually as
the value of  changes. Overall, the architecture  gives the
lowest switch counts among the nine different architectures.
Basically, two opposing factors determine the effect of logic block
size on switch counts:

i) As the logic block size ( ) increases, more routing
switches are wasted due to routing of a net.

125 

150 

175 

200 

225 

250 

275 

300 

325 

A
ve

ra
ge

 S
w

itc
h 

C
ou

nt
s

   4x2     4x4     4x8    4x16    4x32     8x4     8x8    8x16    16x4
Architectures

Non-Timing Driven Placement Timing Driven Placement
Timing Driven Placement w/ DIC

Figure 3.2  Average Switch Counts verses Architectures

Table 3.2 Switch Counts for different HFPGA
architectures

Architecture α unopt α opt
α opt,
DIC

4x2 165.18 169.06 169.35

4x4 137.65 147.29 145.47

4x8 150.29 171.59 164.71

4x16 210.06 236.35 215.35

4x32 272.06 307.47 272.41

8x4 127.06 142.35 140.41

8x8 151.53 164.18 156.18

8x16 205.88 209.82 190.18

16x4 133.35 143.88 142.82

Average 172.56 188.00 177.43

N1 4=
4 4×

N0 8 4×

N0



ii) As  decreases, the number of connections using higher
level routing channels increases. The penalty for a net
passing through every additional higher level channel is
two routing switches.

Effects of different placement algorithms

Among the three placement procedures, the minimum value of
α is achieved by non-timing driven placement. The results from
timing driven placement are on the average 8.81% higher than non-
timing driven placement. This is because timing driven placement
attempts to place cells along critical paths closer to each others and
may increase the number of switches required by non-critical nets.
On the other hand, direct interconnects can reduce the amount of
general routing resources usage, thus, the switch count is only
increased by 3.72%, an average of 5.09% less than that required by
timing driven placement.

3.8 Routing Delay verses Switch Counts

Figure 3.3 shows the average routing delay (ρ) against the
average switch counts (α) for the nine different architectures on the
three different placements. In the graph, results from the non-timing

driven placement, timing driven placement and timing driven
placement with direct interconnect optimization are displayed; in
addition, the Pareto set1 containing data points in the lower bound
for each type of placement is connected together by lines. The
architecture  has the best area while the architecture
has the best speed for all three different placement procedures. We
can also observe that, for the same HFPGA architecture, timing
driven placement with direct interconnect optimization offers the
greatest improvement in the longest path delay of the circuit with
only a small increase in the switch counts. While the Pareto set
initially has a steep slope indicating good speed gain for a small
area increase, it then tails off indicating that a relatively large
increase in the switch counts is required for a small further gain in
speed.

1. Given a set of data, the Pareto set is the set of points that are
better in at least area or speed than all of the other points.

N0

Figure 3.3  Average Routing Delay verses Average
Switch Counts

1 

1.2 

1.4 

1.6 

1.8 

2 

2.2 

2.4 

2.6 

A
ve

ra
ge

 R
ou

tin
g 

D
el

ay

125 150 175 200 225 250 275 300 325 
Average Switch Counts

    8x4

   16x4

    4x4

    4x8

    8x8

   4x2

   8x16   4x16

   4x32
    8x4

   16x4

    4x4

    8x8

   4x2

    4x8

   8x16
   4x16    4x32

    8x4

   16x4

    4x4

    8x8

    4x8

   4x2

   8x16
   4x16

   4x32

Non-Timing Driven Placement Timing Driven Placement
Timing Driven Placement w/ DIC

Timing Driven Placement

Timing Driven Placement w/ Direct Interconnect

Non-Timing Driven Placement

Non-Timing Driven Placement for
Symmetrical FPGAs (156.1, 2.16)

Timing Driven Placement for
Symmetrical FPGAs (170.0, 1.58)

8 4× 4 32×

Section 3.9 investigates the timing performance of
symmetrical FPGAs and HFPGAs.

3.9 Comparison of Routing Delay for Symmetrical and

Hierarchical FPGAs

In this section, the timing performance of symmetrical FPGAs
and HFPGAs are compared. The results show that HFPGAs
outperform symmetrical FPGAs in all but the  architecture.

The experiments compared the timing performance of ten (10)
MCNC benchmark circuits on symmetrical FPGAs. Only ten
circuits2 were used because seven out of the original seventeen
circuits will not fit into any Xilinx XC3000 parts due to the large
number of I/Os on these circuits. For the ten circuits, both non-
timing driven and timing driven placement were performed. The
delay along the longest path was then calculated by assuming that:

• direct interconnects exist to connect a cell to its four
adjacent cells, and

• double-length lines are used to connect CLBs not
adjacent to each others.

Table 3.3 shows the routing delay (expressed asρ) for timing
driven placement (with direct interconnect optimization) of
HFPGAs with timing and non-timing driven placement of
symmetrical FPGAs. It also shows the switch counts (expressed as
α) for the timing driven placement with direct interconnect
optimization of HFPGAs, as well as the switch counts for timing
and non-timing driven placement of symmetrical FPGAs. The
switch counts for symmetrical FPGAs and routing delay were
extracted from the results of CGE [9] after detailed routing and the
switch count for symmetrical FPGAs with timing optimization was
estimated from [10].

From the table, the average routing delay for timing driven

2. The 10 benchmarks are: 9symml, C3540, C342, C880, apex7,
dalu, i9, k2, x1 and x4.

4 2×

Table 3.3ρ for α HFPGAs (subset), and Symm. FPGAs

Circuit ρ α

4x2 1.82 163.5

4x4 1.46 136.1

4x8 1.36 147.5

4x16 1.08 191.0

4x32 0.96 232.2

8x4 1.49 129.5

8x8 1.15 144.6

8x16 1.01 178.5

16x4 1.37 135.8

non-timing driven
for FPGAs

2.16 156.1

timing driven for
FPGAs

1.58 170.0



placement of symmetrical FPGAs has a value of 1.58 even when
direct interconnects are used. The performance for symmetrical
FPGAs non-timing driven placement is 18.7% slower than that of

, the slowest in all HFPGAs architectures tested. While the
performance of timing driven placement for symmetrical FPGAs is
13.19% faster than the  architecture, it is slower than all other
HFPGA architectures (in fact, it is 64.6% slower than ).
These results are based on using optimized commercial software for
the symmetrical FPGAs, but are subject to the limitations of the
simple delay model used for the HFPGAs.

The average switch counts for non-timing driven placement of
symmetrical FPGAs has a value of 156.1. The performance for
symmetrical FPGAs non-timing driven placement is worse than
five of the nine different HFPGA architectures. In fact, it is 20.5%
higher than the switch count of the  architecture, the
architecture with the best area performance for HFPGAs.

For timing driven placement of symmetrical FPGAs, the
switch counts is larger than six of the nine different HFPGA
architectures tested. Overall, it is 31.3% higher than that of the

 architecture.

4 Conclusions

This paper demonstrates that HFPGAs are both faster and
denser than symmetrical FPGAs. In addition, the following
conclusions on the HFPGA architecture can be drawn.

i) Switch counts for timing driven placement are
moderately higher than that required by non-timing
driven placement for HFPGAs.

ii) The use of direct interconnects can reduce the routing
switch requirement as well as provide a further
improvement in timing.

iii) Hierarchical routing architectures with larger lower level
blocks are faster than architectures having smaller lower
level blocks. Routing switch requirements also increase
as the lower level block size is increased

iv) While moderate sized low level blocks offer good speed,
beyond this, a relatively large increase in the switch
counts is required for a small gain in speed.

5 References

[1] Aditya A. Aggarwal, “Routing Architectures for Hierarchical
FPGAs”, M.A.Sc. Thesis, Department of Electrical and
Computer Engineering, University of Toronto, 1994.

[2] ISCAS ‘85 Test Generation Benchmark Data obtained from
the Microelectronics Centre of North Carolina (MCNC)

[3] S. Brown, R. J. Francis, J. Rose and Z. G. Vranesic, Field-
Programmable Gate Arrays, Kluwer Academic Publishers,
1992.

[4] S. Singh, J. Rose, D. Lewis, K. Chung and P. Chow,
“Optimization of Field-Programmable Gate Array Logic
Block Architecture for Speed”, Proceedings of the 1991
Custom Integrated Circuits Conference (CICC-91), May 1991,
pp. 6.1.1-6.1.6.

[5] J. Rose, R. J. Francis, D. Lewis, P. Chow, “Architecture of
Field-Programmable Gate Arrays: The Effect of Logic Block
Functionality on Area Efficiency”, IEEE Journal of Solid State
Circuits (JSSC), Vol. 25, No. 5, Oct. 1990, pp. 1217-1225.

[6] S. Singh, “The Effect of Logic Block Architecture on FPGA
Performance”, M.A.Sc. Thesis, Department of Electrical
Engineering, University of Toronto, 1991.

4 2×

4 2×
4 32×

8 4×

8 4×

[7] K. Chung, S. Singh, J. Rose and P. Chow, “Using Hierarchical
Logic Blocks to Improve the Speed of Field-Programmable
Gate Arrays”, Proceedings of the First International Workshop
on Field Programmable Logic and Applications, Oxford, Sept.
1991, pp. 103-113.

[8] J. Rose and S. Brown, “Flexibility of Interconnection
Structures in Field Programmable Gate Arrays”, IEEE Journal
of Solid State Circuits (JSSC), Vol. 26, No. 3, March 1991, pp.
277-282.

[9] S. D. Brown, “Routing Algorithms and Architectures for Field
Programmable Gate Arrays”, PhD. Thesis, University of
Toronto, 1992.

[10] The Programmable Logic Data Book, Xilinx Inc., 1994.

[11] Vi C. Chan, “Timing Optimization for Hierarchical FPGAs”,
M.A.Sc. Thesis, Department of Electrical and Computer
Engineering, University of Toronto, 1995.

[12] R. Brayton, R. Rudell, A. Sangiovanni Vincentelli and A.
Wang, “MIS: a Multiple-Level Logic Optimization System”,
IEEE Transactions on CAD (TCAD), Vol CAD-6, No. 6, Nov.
1987, pp. 1062-1081.

[13] R. J. Francis, J. Rose and Z. Vranesic, “Chortle-crf: Fast
Technology Mapping for Lookup Table-Based FPGAs”,
Proceedings of the 28th Design Automation Conference
(DAC-28), June 1991, pp. 227-233.

[14] J. Rose, Z. Vranesic and W. M. Snelgrove, “ALTOR: An
automatic standard cell layout program”, in Proceeding of the
Canadian Conference on VLSI, Nov. 1985, pp. 168-173.

[15] Fiduccia, C.M., and Mattheyses, R.M., “A linear-time
Heuristics for Improving Network Partitions”, Proceedings of
the 19th Design Automation Conference (DAC-19), 1982, pp.
175-181.

[16] B. W. Kernighan and S. Lin, “An Efficient Heuristic Procedure
for Partitioning Graphs”, Bell System Tech. Journal, 49, 2,
1970, pp. 291-308.

[17] Wilm E. Donath, Reini, J. Norman, Bhuwan K. Agrawal, et.
al, “Timing Driven Placement Using Complete Path Delays”,
27th ACM/IEEE Design Automation Conference, 1990, pp.
84-89.

[18] P. S. Hauge, R. Nair and E. J. Yoffa, “Circuit Placement for
Predictable Performance”, IEEE Proc. of ICCAD, 1987, pp.
88-91.

[19] Michael Burstein, Mary N. Youssef, “Timing Influenced
Layout Design”, 22nd Design Automation Conference, 1985,
pp. 124-130.

[20] Grant A. Cheston, “Incremental Algorithms in Graph Theory”,
Ph. D. Thesis, Department of Computer Science, University of
Toronto, 1976.

[21] Altera Corp., “Flex 8000 Handbook”, 1994


	CD-ROM Home Page
	FPGA Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index


