
VHDL 1076.1 — Analog and Mixed-Signal Extensions to VHDL

Ernst Christen Kenneth Bakalar
Analogy, Inc. Compass Design Automation

9205 S.W. Gemini Drive 5457 Twin Knolls Road
Beaverton, OR 97008 Columbia, MD 20845

christen@analogy.com kenb@compass-da.com

2. Foundations

The VHDL 1076.1 language satisfies a set of require-
ments that have been documented in the 1076.1 Design
Objective Document (IEEE PAR 1076.1 1995). It builds on
two major foundations, the VHDL 1076 language and the
theory of differential/algebraic equations (DAEs).

2.1. Language Design Objectives

The design objectives [1] have been compiled from
requirements submitted by interested parties to the work-
ing group. They require the VHDL 1076.1 language to be a
superset of VHDL 1076-1993 [2], supporting the hierarchi-
cal description and the simulation of continuous and mixed
continuous/discrete systems with conservative and non-
conservative semantics. The language is required to sup-
port modeling in electrical and non-electrical disciplines at
different abstraction levels. The systems to be described
are lumped systems, and the solution of the equations
describing the system may include discontinuities. Interac-
tions between the discrete part of a model and its continu-
ous part are to be supported in a flexible and efficient
manner.

2.2. VHDL 1076-1993

Being a superset of the VHDL 1076-1993 language, the
1076.1 language design is dependent on the existing 1076
language in many ways. This has both advantages and
drawbacks. The VHDL 1076 language [2] provides a firm
pragmatic, semantic and syntactic foundation, including
structural and functional decomposition, separate compila-
tion, a powerful sequential notation and a type system. On
the other hand, it presents many constraints on the design
of the 1076.1 language that can be violated only at great
peril and with good reason: its scope and visibility rules,
the requirement for declaration before use, the structure of
names, the discrete simulation cycle, among others. The

Abstract

This presentation provides an overview of the 1076.1
effort to extend the well established VHDL language to
support the description and simulation of continuous and
mixed continuous/discrete systems. It begins with a brief
history of the effort. That is followed by an overview of the
foundations: the design objectives, the base VHDL 1076
language, and the applicable mathematical theory. The
body of the presentation describes the elements of the
extended language. Each language element is described in
the context of the 1076.1 language architecture and illus-
trated by a brief example. The presentation ends with
selected examples illustrating the use of the language for
analog and mixed-signal applications.

1. Introduction

IEEE VHDL 1076-1993 (The VHSIC Hardware
Description Language) is designed for the description and
simulation of digital systems, supporting modeling at vari-
ous levels of abstractions. The standard, first approved in
1987 and later revised and reaffirmed in 1993, has gained
wide acceptance in the last few years.

The effort to extend VHDL to support continuous and
mixed continuous/discrete systems started in 1989 with the
aim to submit the relevant requirements for the 1993
VHDL revision. However, the complexity of the topic
required the formation of a separate working group under
the auspices of the Design Automation Standards Commit-
tee of the IEEE under PAR 1076.1. Language design first
started in 1993, with funding from JESSI and Rome Labo-
ratory. It is now nearing completion, and a ballottable Lan-
guage Reference Manual is expected to be available in
September 1996. The extended language has informally
been called VHDL-A, although we now prefer VHDL
1076.1.

EURO-DAC ’96 with EURO-VHDL ’96
0-89791-848-7/96 $4.00 1996 IEEE

language design challenge was to judiciously build on this
foundation, by re-using as much of the existing language as
possible, and to extend the language only where necessary.

2.3. Theory of Differential/Algebraic Equations

The continuous aspects of the behavior of the lumped
systems targeted by VHDL 1076.1 can be described by
systems of ordinary differential and algebraic equations
(DAEs) with time as the independent variable. These equa-
tions have the form

F(x, dx/dt, t) = 0 (1)
where F is a vector of expressions,x is the vector of
unknowns in the equations, dx/dt is the vector of deriva-
tives of the unknowns with respect to time, andt is time.
There is no alternative systematization with equivalent
power and scope. Most such systems of equations have no
analytic solution, so in practice the solution must be
approximated using numerical techniques.

DAEs have been studied extensively by numerical
mathematicians over the past 20 years [3]. Although there
are open issues, the theory is sufficiently mature to rely on,
particularly for the numerical solution of the DAEs.

It follows that VHDL 1076.1 must provide a notation
for DAEs, but it does not follow that the language defini-
tion must specify a technique for their solution. To the con-
trary, the 1076.1 language can remain neutral with regard
to the selection of numerical methods. It is sufficient for
the definition of the language to describe what system of
equations (at each time) is described by the text of a model.
The solution algorithm itself is referred to as the “analog
solver”. Only the results that the analog solver must
achieve, and not its algorithm, are characterized in the lan-
guage definition.

3. The 1076.1 language

In the design of the VHDL 1076.1 language we have
used the existing VHDL language - its syntax, semantics,
stylistic quirks, unstated principles and definitional style -
in satisfying as many of the design requirements as possi-
ble, adding only what is essential and still missing. Thor-
ough exploitation of the powerful VHDL engine in all of
its aspects has led to some surprising and innovative design
choices that set VHDL 1076.1 apart from other continuous
system simulation languages.

3.1. Quantities

The unknowns in the collection of DAEs implied by the
text of a model are analytic functions of time; that is, they
are piecewise continuous with a finite number of disconti-

nuities. At any analog solution point (ASP) the analog
solver simultaneously solves for the values of all
unknowns. None of the existing VHDL objects get their
values in a comparable fashion. For this reason, VHDL
1076.1 introduces a new class of value-bearing objects, the
quantity, to stand for the unknowns in the DAEs.

Quantities must have scalar subelements of a floating
point type, to approximate the real numbers of the underly-
ing formalism. A quantity object can appear in an expres-
sion or anywhere else a value of the type is allowed. In the
remainder of this section, we describe the characteristics of
scalar quantities. The characteristics of a composite quan-
tity are simply the aggregation of the characteristics of its
scalar subelements. The behavior of each scalar subele-
ment is independent of the others.

Quantities can be declared anywhere a signal can be
declared, except in a package. The following statement
declares two quantitiesq1 andq2 of type real:

QUANTITY q1, q2: real;

A quantity can also be declared as an interface element
in a port list. A quantity interface element is called a quan-
tity port, by analogy with signal ports. Interface quantities
support signal flow modeling. They have a mode, similar
to the mode of an interface signal. For instance, here is the
entity declaration of a signal flow model of a two-input
adder with two interface quantities of mode IN and one
interface quantity of mode OUT:

ENTITY adder IS
PORT (QUANTITY in1, in2: IN real;

QUANTITY sum: OUT real);
END ENTITY adder;

When this model is instantiated the semantics of the lan-
guage constrain each interface quantity to have the same
value as the quantity to which it is connected.

In addition to explicit quantities, the following quanti-
ties are implicitly defined by the language.

• The derivative of a quantity Q with respect to time:
Q’Dot.

• The integral over time of a quantity Q, from time zero to
the current time: Q’Integ.

• The value of a quantity Q at a fixed interval T in the past
(ideal delay): Q’Delayed(T).

3.2. Conservative Systems

Systems with conservation semantics - for example,
electrical systems obeying Kirchhoff’s laws - merit sepa-
rate treatment because they are so commonly encountered.
Special purpose syntax and semantics can provide a sim-
plified notation that reduces the risk of errors and thereby

improves productivity. In VHDL 1076.1, equations
describing the conservative aspects of such a system need
not be explicitly notated by the modeler. Only the so-called
constitutive equations remain the modeler’s responsibility.

The description of conservative systems uses a graph-
based conceptual model. Take, for example, an electrical
network. Here, the vertices of the graph represent equipo-
tential nodes in the circuit, and the edges represent
branches of the circuit through which current flows. In the
language these ideas are expressed bybranch quantities,
which are the unknowns in the equations describing con-
servative systems. There are two kinds of branch quanti-
ties. Across quantities represent effort like effects such as
voltage, temperature, or pressure.Through quantities rep-
resent flow like effects such as current, heat flow rate, or
fluid flow rate. The constitutive equations of conservative
systems are then expressed by relating the across and
through quantities of one or several branches. For example,
a resistor has a single branch, and its constitutive equation
(Ohm’s law) relates the voltage across (the across quantity)
and the current through the resistor (the through quantity).

A branch quantity is declared with reference to twoter-
minals. A terminal is declared to be of some simplenature,
or of a composite nature with scalar subelements that are of
a simple nature. Each simple nature represents a distinct
physical discipline - electrical, thermal, hydraulic, and so
on. As an example, the following statements declare two
subtypes voltage and current , a simple nature
electrical , two terminals of that nature, and an across
and two through quantities between the two terminals.

SUBTYPE voltage IS real;
SUBTYPE current IS real;

NATURE electrical IS
voltage ACROSS current THROUGH;

TERMINAL t1, t2: electrical;

QUANTITY v ACROSS i1, i2 THROUGH t1 TO t2;

The type of a branch quantity is derived from the nature
of its terminals. It may be a composite type. In the example
the across quantityv, which represents the potential differ-
ence between the two terminals, is of typevoltage , and
the type of the two through quantities i1 and i2, which rep-
resent two parallel branches, iscurrent . The two termi-
nals of a quantity must have elements of the same simple
nature and must agree in other specified ways. They are
termed the plus terminal and minus terminal, and the direc-
tion of the branch is plus to minus - in an electrical system,
the direction of positive current flow.

A terminal may be declared anywhere a signal declara-
tion is allowed. In particular, a terminal, like a signal, can
be a port of an entity. For instance, the following statement

declares the terminal ports of a diode:

PORT (TERMINAL anode, cathode: electrical);

When a model with this port list is instantiated the con-
nection of terminal ports constructsnodes in the hierarchi-
cal description at which Kirchhoff’s Current Law (or its
equivalent in other disciplines) holds. The corresponding
conservation equations are automatically extracted from
the graph created by the declared branch quantities and ter-
minals and the association of terminals into nodes.

The declaration of a simple nature creates areference
terminal (a “ground”) which is shared by all terminals with
elements of that simple nature. The reference terminal of a
terminal T of nature N is designated N’Reference. The dec-
laration of T itself creates two quantities:

• Thereference quantity T’Reference is an across quantity
with T and N’Reference as its plus and minus terminals.

• The contribution quantity T’Contribution is a through
quantity whose value is equal to the sum of all through
quantities incident to T (with appropriate sign).

If T is composite, so are T’Reference and T’Contribu-
tion, and the rules apply to each scalar subelement of T.

3.3. Simultaneous Statements

VHDL 1076.1 supplements the sequential and concur-
rent statements of VHDL 1076 with a new class of lan-
guage statements, thesimultaneous statements, for
notating differential and algebraic equations. Simultaneous
statements contain ordinary VHDL expressions that can be
evaluated in the ordinary way. However, the interpretation
placed on the resulting value and the effect on the value-
bearing objects of the model is novel.

Simultaneous statements can appear anywhere a con-
current signal assignment is allowed. The basic form is the
simple simultaneous statement, with the following syntax:

[label:] expression == expression;

For instance, the constitutive equation of a resistor
could be written as i == v/r ; where i andv are a
through and an across quantity, respectively, representing
the current through and the voltage across the resistor, and
r is the resistance value. The expressions may have com-
posite values, in which case there must be a matching sub-
element on the left for each subelement on the right. The
expressions may refer to signals, quantities, constants, lit-
erals and functions. When the analog solver has properly
established the values of each quantity, the matching sub-
elements of the expressions will be (approximately) equal.

The language defines three additional forms of simulta-
neous statements.

• The simultaneous procedural statement. This form is
merely a way to rewrite the function body f in the simul-
taneous statement f(q, x) == q “in line” (q is an aggre-
gate of quantities and x is an arbitrary collection of other
objects).

• The simultaneous case and if statements allow the
description of piecewise defined behavior. Each contains
an arbitrary list of simultaneous statements in its state-
ment parts, including nested simultaneous case and if
statements. Only the simultaneous statements selected
by the case expressions and chosen by the conditional
expressions are considered by the analog solver.

The following example of an ideal switch brings
together many of the new language concepts:

ENTITY ideal_switch IS
GENERIC (closed: boolean := true);
PORT (TERMINAL t1, t2: electrical);

-- terminal ports
END ENTITY ideal_switch;

ARCHITECTURE one OF ideal_switch IS
QUANTITY v ACROSS i THROUGH t1 TO t2;

-- branch quantities
BEGIN

IF closed USE -- simultaneous if statement
v == 0.0; -- simple simult. statement

ELSE
i == 0.0;

END USE;
END ARCHITECTURE one;

The equations explicitly denoted by simultaneous state-
ments and the implicit equations that are a consequence of
the conservation laws etc. are mapped to a single underly-
ing formalism - thecharacteristic expression. A character-
istic expression corresponds to one expression inF(x, dx/
dt, t). Each simple simultaneous statement has a collection
of characteristic expressions, one for each scalar subele-
ment of the expression.

The analog solver determines the value of each quantity
such that the values of all characteristic expressions are
close to zero and thus solves the DAEs of the model. To
make this possible, each quantity and each characteristic
expression has an associated error tolerance. A quantity
gets its tolerance from its subtype. If possible, the tolerance
of a characteristic expression is determined from the toler-
ances of the quantities involved, otherwise it must be spec-
ified by the user. The detailed semantics and the syntax for
the specification of tolerances are incomplete at the time of
this writing,

3.4. Time and the Simulation Cycle

Synchronization between the analog solver and the
VHDL kernel process requires a common formulation for

simulation time that encompasses the requirements for
both continuous and discrete simulation. This demand is
met by creating a new definitional type named
Universal_Time, by analogy with Universal_Integer and
Universal_Real. Universal_Time must have sufficient pre-
cision to represent each value of the physical type Time
exactly. The representation is required to equal or exceed
in precision the members of the floating point class of
types. The simulation cycle is recast using values of
Universal_Time for the kernel variables Tc, which repre-
sents the current simulation time, and Tn, which represents
the next time that a driver will become active or a process
will resume. Function NOW is redefined to return the value
of the current simulation time (a value of the type
Universal_Time) converted with truncation to the nearest
value of physical type Time. It is overloaded with another
function NOW that returns the value of the current simula-
tion time truncated to the nearest value of type Real.

The VHDL simulation cycle has been augmented to
include the execution of the analog solver. The analog
solver executes in each simulation cycle just before the
current simulation time advances. The solver establishes a
sequence of solutions to the DAEs (ASPs) at suitable inter-
vals between the current digital time and the time of the
next event. The definitions guarantee that the value of a
quantity is always correct when a digital process reads the
quantity, and that the value of a digital signal appearing in
a simultaneous statement is always correct whenever the
corresponding expression is evaluated.

3.5. A/D and D/A Interaction

If any of a set of specified quantities passes designated
amplitude thresholds before the sequence of ASPs is
extended all the way to the time of the next discrete event,
the analog solver will terminate prematurely. For any sca-
lar quantity Q the boolean signal Q’Above(level) is TRUE
if Q > level and FALSE if Q < level. An event occurs on
Q’Above(level) when the sign of the expression Q - level
changes. Threshold crossing can be used for A/D conver-
sions, as shown in the following example of a comparator.

ENTITY comparator IS
GENERIC (level: real := 2.5); -- threshold
PORT (TERMINAL a: electrical; -- elec.input

SIGNAL s: OUT bit); -- bit output
END ENTITY comparator;

ARCHITECTURE simple OF comparator IS
QUANTITY v ACROSS a;-- across quant. to gnd

BEGIN
s <= ‘1’ WHEN v’above(level) -- v > level

ELSE ‘0’; -- v < level
END ARCHITECTURE simple;

A digital process that is sensitive to such a signal exe-
cutes at the exact time of the threshold crossing, which
may have no exact representation in physical type Time.

If a discontinuity occurs in the solution of the DAEs the
analog solver must be notified. Thebreak statement serves
that purpose; it must be executed to generate a kind of
pseudo-event at the time of each discontinuity in a model.
A discontinuity will occur if, for example, a quantity is
equated to a signal in a simple simultaneous statement and
an event occurs on that signal. There is no known algo-
rithm that can reliably and efficiently detect and success-
fully correct for discontinuities without explicit notifica-
tion of the time of occurrence. Investigations are under
way to determine whether an automatic notification can be
provided for signal induced discontinuities. The break
statement includes a provision for specifying new initial
conditions for selected quantities, to be applied after the
discontinuity. The following example demonstrates the use
of a break statement in a D/A converter.

ENTITY dac IS
GENERIC (vhigh: real := 5.0); -- a for s=‘1’
PORT (SIGNAL s: IN bit; -- bit-valued input

TERMINAL a: electrical);-- output
END ENTITY dac;

ARCHITECTURE simple OF dac IS
QUANTITY v ACROSS i THROUGH a;-- to gnd

BEGIN
IF s=‘0’ USE

v == 0.0; -- low output
ELSE

v == vhigh; -- high output
END USE;
BREAK ON s; -- announce discontinuity

END ARCHITECTURE simple;

3.6. Initialization

The solution of a system of DAEs in any continuous
interval depends only on the values of the unknowns at the
beginning of the interval [3]. These values must them-
selves be a solution of the DAEs, possibly augmented by
other equations derived from the original ones [4]. The
continuous model must be initialized using a suitable algo-
rithm before a simulation begins and re-initialized at each
discontinuity.

In the general case, there are many different initial con-
ditions that satisfy the DAEs because during initialization
there are more unknowns than equations (bothx and dx/dt
are unknowns during initialization). The selection of a par-
ticular member of the set is dependent on ancillary infor-
mation, either built-in conventions or user selected.

The 1076.1 language specifies an initialization algo-
rithm that works reasonably well for low index DAE sys-

tems, but allows an implementation to provide other
initialization mechanisms. In the absence of user specified
initial conditions the system of equations (1) is augmented
by

dx/dt = 0 (2)
i.e. the default is to find the quiescent state of the system.
In electrical systems this solution is called the DC operat-
ing point. Initial conditions are specified with the break
statement described earlier, for instance:

BREAK q1 => expression1, q2 => expression2;

The effect of specifying initial conditions is that suitable
equations from the set (2) are replaced by the initial condi-
tions. For the example they are the equations dq1/dt = 0
and dq2/dt = 0. There are a number of unresolved issues,
because the system of equations formed from (1) and (2)
sometimes has no solution, and often the solution is not
unique.

For mixed continuous/discrete systems the result of the
initialization is defined to have the following characteris-
tics:

• The values of all quantities satisfy the system of equa-
tions described by (1) and (2), with initial conditions
taken into consideration as described above.

• There are no pending A/D and D/A interactions at time
0.0.

We repeat that an implementation is allowed to provide
alternative initialization schemes. Re-initialization after a
discontinuity is defined similarly to initialization at time 0,
except that (1) is augmented with equations that keep
selected quantities at theirt- values.

3.7. Miscellaneous

VHDL 1076.1 contains a variety of other facilities that
we briefly summarize here.

Number of Equations.A necessary condition for the solv-
ability of the system of equations (1) is that there be as
many equations as unknowns. The definition of the 1076.1
language includes rules enforceable for each model that
guarantee that this condition is satisfied.

Frequency Domain.A designer is often interested in the
behavior of a continuous system in the frequency domain.
The 1076.1 language will include definitions that support
such simulations in a portable way, based on the small-sig-
nal model derived from the equations (1). The semantics of
the corresponding language elements and their syntax is
incomplete at the time of this writing.

Mathematical Functions.Such functions are not part of
the 1076.1 language proper, but are available through the
1076.2 standardization effort as a VHDL package.

4. Examples

We will demonstrate the use of the VHDL 1076.1 lan-
guage with two examples. The first example is a diode with
self heating. The diode consists of two electrical branches
between its anode and cathode, and a thermal branch
between its junction and thermal ground.

For the electrical branchesvoltage and current
are the across and through types, as described in section
3.2. For the thermal branch the corresponding types are
temperature andpwr . The VHDL 1076.1 implementa-
tion of the model is:

USE disciplines.electrical_system.all;
USE disciplines.thermal_system.all;
USE ieee.math_real.all;
ENTITY diode_th IS

GENERIC (is0: real := 1.0e-14;
 n, area: real := 1.0;
 tau, cj0, phi, rd: real := 0.0);

PORT (TERMINAL p, m: electrical;
 TERMINAL j: thermal); -- junction

END ENTITY diode_th;

ARCHITECTURE one OF diode_th IS
QUANTITY v ACROSS id, ic THROUGH p TO m;
QUANTITY q: charge; -- junction charge
QUANTITY vt: voltage; -- thermal voltage
QUANTITY temp ACROSS power THROUGH thgnd TO j;
CONSTANT boltzmann: real := 1.3806226e-23;
CONSTANT electron_charge: real:= 1.602191e-19;

BEGIN
id == area*is0*(exp((v-rd*id)/(n*vt)) - 1.0);
q == tau*id - 2.0*cj0*sqrt(phi*(phi-v));
ic == q’dot;
vt == temp * boltzmann / electron_charge;
power == v*id;

END ARCHITECTURE one;

In the architecture we declare the electrical and thermal
branches, two free quantities and two physical constants.
The first simultaneous statement defines the current in the
resistive branch; it depends on the thermal voltagevt . The
second and third statements define the current in the capac-
itive branch.vt depends on the temperature at the junc-
tion, as shown in the fourth statement, and finally the
power dissipated in the diode is the value of the through
source that forms the thermal branch.

The second example is a silicon-controlled rectifier. It
turns on when it is forward biased and the control voltage

mp

j thgnd

electrical
branches

thermal
branch

Figure 1. Diode with self heating

is larger than the on voltage. It turns off when the current is
smaller than the holding current and the control voltage is
smaller than the on voltage. These conditions are expressed
by the value of signaloff . Current is flowing through the
SCR when it is on and the voltage across the SCR is larger
than vdrop . This condition is encoded in signal
zero_current , whose value controls which of the two
simple simultaneous statements is selected. The break
statement announces the discontinuity that occurs when
zero_current changes its value.

ENTITY scr IS
GENERIC (vdrop: voltage := 0.7; -- On vlt. drop

von: voltage := 0.7; -- Turn on voltage
ihold: current := 0.0;-- Holding current
ron: resistance := 0.1e-9); -- On res.

PORT (TERMINAL an, cath, gate: electrical);
END ENTITY scr;

ARCHITECTURE ideal OF scr IS
QUANTITY vscr ACROSS iscr THROUGH an TO cath;
QUANTITY vcontrol ACROSS gate TO cath;
SIGNAL off, zero_current: boolean := true;

BEGIN
off <= true WHEN NOT (vcontrol’Above(von) OR

 iscr’Above(ihold)) ELSE
 false WHEN vcontrol’Above(von) AND

vscr’Above(0.0);
zero_current <= off OR NOT vscr’Above(vdrop);

IF zero_current USE
iscr == 0.0;

ELSE
iscr == (vscr - vdrop) / ron;

END USE;
BREAK ON zero_current;

END ARCHITECTURE ideal;

5. Summary

We have given an overview of the VHDL 1076.1 lan-
guage scheduled to become an IEEE standard in 1997. We
believe that the language is flexible enough to address
many if not all of the requirements imposed by continuous
and mixed continuous/discrete simulation problems.

References

[1] VHDL 1076.1 Design Objective Document. IEEE 1076.1
Working Group, 1995.

[2] IEEE Standard VHDL Language Reference Manual. ANSI/
IEEE Std 1076-1993.

[3] Brenan, K.E., S.L.Campbell, and L.R.Petzold.Numerical
Solution of Initial-Value Problems in Differential-Algebraic
Equations. North-Holland, 1989.

[4] Pantelides, C.C. “The Consistent Initialization of Differen-
tial-Algebraic Systems”.SIAM J.Sci.Stat.Comput., 9(2): 213-
231, March 1988.

	CDROM Home Page
	1996 Home Page
	EURO-DAC96 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

