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Abstract

For high quality VLSI products, exhibiting very low
escape rates, defect-oriented testing becomes mandatory.
The design activity is more and more supported by
hardware description languages, like VHDL; hence, the
testing activity needs to follow this trend. In this paper, a
VHDL-based methodology for test preparation of digital
ICs is proposed, and a new set of tools for defect-oriented
VHDL fault simulation are presented, using a
commercial VHDL simulator. The proposed methodology
is also shown to be effective in supporting realistic fault
diagnosis. Simulation results for benchmark circuits are
presented.

1. Introduction

The pace of microelectronics technologies progress leads
to ever increasing complexity of VLSI and ULSI
products, posing difficult challenges for design and test
methodologies and tools. At the same time, quality
requirements are becoming more and more stringent, as
Defect Levels [1] (or escape rates) of the order of 50 ppm
(parts per million) are now common [2]. We refer as
Defect Level the percentage of defective devices that pass
successfully the production test, and thus are marketed as
good.

Quality requirements put an additional burden on the test
activity, as, for digital Integrated Circuits (ICs), test
preparation based on the classic single Line Stuck-At
(LSA) fault model is incapable of producing test patterns
leading to a sufficiently high defect coverage. Defect-
Oriented testing approaches are thus being developed [3],
for evaluating the effectiveness of LSA-based testing [4-7]
and to extend design and test methodologies, e.g.,
introducing for CMOS technologies IDDQ (power supply

quiescent) current testing [8] or test generation
refinements [9].

VHDL has become an industry standard hardware
description language for system specification and design.
Design and test are two complementary, inter-related
tasks in the product development flow. Hence, VHDL
needs to be used also for test preparation (see the VITAL
initiative [10,11]).

The use of VHDL for test preparation, in the design
environment, has been mainly restricted to high-level
circuit and fault descriptions. For gate level (the level of
abstraction still used for structural test generation, and
fault simulation), VHDL has been used with the LSA
fault model [12]. Preliminary attempts to derive other
fault models using VHDL are being proposed [10],
namely for node short faults. However, the proposed
model is not accurate enough for CMOS. More realistic
fault models need to be considered, as test effectiveness
[7] needs to be evaluated as the ability to cover realistic
faults (those originated by physical defects, likely to occur
during IC manufacturing), not just to cover abstract,
arbitrary LSA faults. In particular, it has been shown that
bridging faults, caused by likely spot defects of extra
material, are dominant in CMOS process lines [13,14].

The Inductive Fault Analysis (IFA) approach [15]
provides a method for realistic fault identification, using
the technology, defects statistics and layout information.
Since then, several tools for realistic fault extraction have
been developed, such as carafe [16] and lift  [17]. Such
tools extracts sets of transistor-level realistic faults,
weighted by their probability of occurrence. The impact
of these faults on the IC logic behavior can be evaluated.

Now, three problems need to be solved, if high-quality
VHDL test preparation (and, in particular, fault
simulation for test effectiveness evaluation) is addressed:
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- test preparation is usually carried out in the top-
down design phase, prior to physical design. Hence,
sets of anticipated realistic faults (that we refer as
Pseudo-Realistic (PSR) faults) have to be identified,
and modelled;
- in the bottom-up verification phase of the design,
once the IC layout is defined, gate-level logic
descriptions of the realistic faults need to be
automatically generated;
- either in bottom-up, or top-down phases, automatic
VHDL fault modeling and injection need to be
carried out.

The purpose of this paper is to present a methodology for
VHDL-based test preparation of CMOS digital ICs,
which is supported in VHDL realistic fault modeling,
injection and simulation. The methodology, and the
supporting tools, are shown to efficiently evaluate the
defects coverage of benchmark designs. Moreover, due to
the enhanced diagnosability of bridging defects [18], the
tools can be rewardingly used for fault diagnosis.

The paper is organized as follows. In section 2, the
methodology is presented. Section 3 describe the new
tools, fanthom and fastpen, which are to be used with a
commercial VHDL simulator. Section 4 presents
simulation examples, and section 5 summarizes the main
conclusions of the work.

2. Methodology

2.1 Context and Approach

Our Test Group has developed a set of IFA-based tools,
which interfaces with commercially available EDA
design systems, such as Synopsys and Cadence. The main
tools are lift  (realistic fault extractor), clift (fault
collapser), fancy (fault classifier), tabloid (logic circuit
and fault extractor) and iceTgen (gate-level realistic test
pattern generator and fault simulator). The tools
implementing the proposed methodology are to be
incorporated in our toolset, and to interface with the
Synopsys system.

Test preparation is usually carried out at gate-level, using
the LSA fault model, during the top-down phase. Our
goal is to be able to still define, at gate-level, the test
pattern for high defects coverage, during the top-down
phase. Additionally, we aim at performing VHDL fault
simulation, using a VHDL description (of the circuit and
realistic faults), in order to evaluate the test effectiveness,
defined, as in [7], as the ratio of defects coverage and

LSA fault coverage. Such process can, in principle, be
performed using either layout-extracted faults (realistic),
during the bottom-up phase, or a set of pseudo-realistic
faults (PSR), pre-computed during the top-down phase
(Fig. 1).
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Fig. 1: Proposed approach

As shown, two major processes need to be defined, VHDL
realistic fault modeling and injection. Moreover,
heuristics for PSR fault generation need to be developed.
Finally, the VHDL fault simulation process has to be
carried out.

2.2 Fault Modeling

Bridging (BRI) defects are dominant in CMOS process
lines; hence, BRIs as assumed as target realistic faults.
Logic-level shorts (BRI1 and BRI3, in our classification)
are retained for modeling. BRI1 are realistic LSAs (in
fact, node stuck-at faults), or BRIs between a power node
and a logic node (a I/O node of a logic element). BRI3 are
BRI faults between two logic nodes (feedback, or non-
feedback).

For the top-down phase, heuristics for PSR fault
generation need to be derived. The goal is to define sets
of BRI faults which, if used as target faults for
deterministic test pattern generation, lead to high defect
coverage. In this work, two heuristics are compared.
First, the proximity heuristic, proposed in [9], is based on
the anticipated local proximity in the physical design, of
i/o terminals of cells and of interconnection lines. Such
heuristic, based on the gate-level circuit netlist, aims at
deriving a PSR fault set which mimics, as much as
possible, the final, realistic fault set. Only easily
detectable faults (such as those associated with high
fanout nodes) are skipped. Second, the hard fault
heuristic is investigated, based on the following
reasoning: if we could anticipate, from the logic-level
schematics, the most hard to detect BRI faults, and
generate test vectors to uncover them,  then high-quality



tests should be derived (although some of the hard BRIs
will not likely occur in the final layout). The new
heuristic is based on the evaluation of a testability
measure for shorted nodes, from SCOAP controllability
/observability measures [19]. Although the correlation
between testability measures and fault detection is
limited, as Mercer et. al. showed for LSA faults [20], it
may be rewarding to investigate if the poor correlation
still holds for BRI faults.

Prior to VHDL fault modeling, it is necessary to
determine the impact of bridging defects on the IC logic
behaviour. This is evaluated using transistor-level
information, as the relative strength of shorted pull-
up/pull-down paths defines the 0 or 1 dominance, and the
wining node. In fact, the assumption in [10] that a node
short can be modelled as a change of the references of one
VHDL signal for the references of another signal is
inaccurate. A local, damaged sub-circuit (comprising the
logic gates driving the shorted nodes) is defined for each
fault, and a truth-table of the damaged subcircuit, in the
presence of each fault, is automatically built using the
voting model [13], for the target technology. Hence, local
test vectors, activating each fault, are identified, and later
used for ATPG (currently, with iceTgen).

In order to define the VHDl modeling technique, it is
useful to remind that a circuit described in VHDL is
made up of components linked by signals. Each
component may have various implemen-tations. To allow
circuit simulation, a configuration mechanism assigns a
single component description to each component. A
component description is represented by an entity
declaration and an architecture. A component description
can be structural or behavioral (or a mixture of both). For
structural testing, a structural description (at gate-level)
of the circuit is required. However, in our modeling
approach, realistic faults are described by a behavioral
description.

As pointed out by [12], two techniques for fault
characterization can be envisaged. A realistic fault can be
modelled by an additional component, referred as
saboteur, or by modifying the fault-free description of
existing components, in which case the modified
description is referred as mutant. For general BRI faults,
mutants are not a good solution, as the modified
description of one gate driving the shorted nodes depends
on the input signals of the other gate driving the bridged
nodes. Hence, a saboteur representation of realistic faults
is chosen.

The proposed VHDL realistic BRI fault model is shown
in Fig. 2. The correspondent realistic LSA fault model is

a particular case of the general one. The proposed model
is applicable both for feedback and non-feedback BRI
faults. For the latter, a arrival node is identified on the
schematics, as it guides the simulation.
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Fig. 2: VHDL model of a realistic BRI: (a) diagram

PROCESS (faulty nodes, subcircuit inputs, control
lines)

BEGIN

CASE   subcircuit inputs  IS
     WHEN    vector1   =>

      new node 0 <= ´1´, ´0´ or  ´X´ ;

     WHEN    vector2   =>

      new node 0 <= ´1´, ´0´ or  ´X´ ;

*
*

WHEN    OTHERS    =>

  new node 0 <= one of the faulty nodes;

END CASE ;

CASE   control lines  IS
WHEN    faulty code  =>

         new  node 1 <= new  node 0 ;

         new  node 2 <= new  node 0 ;

WHEN    OTHERS    =>

         new  node 1 <= faulty node 1 ;
         new  node 2 <= faulty node 2 ;

END CASE ;

 END  PROCESS ;

Fig. 2: VHDL model of a realistic BRI:
    (b) process description

The fault model comprises three blocks:



- a decoder, D, which implements the truth table
associated with the fault and the damaged sub-circuit,
assigning to Q the result of the voting, in case of
conflict;
- a multiplexer, M1, which assigns, for each local test
vector, the value of Q to new node 0, and the correct
value of each node for each vector not producing
conflict; and
- a second multiplexer, M2, that, when activated by the
control lines, assigns to new node 1 and new node 2 the
value of new node 0; when de-activated, M2 assigns to
new node 1 and new node 2 the values of faulty node 1
and faulty node 2, respectively. The explanation of the
control lines is given bellow, as it results from the fault
injection technique.

2.3 Fault Injection

Once a fault model has been derived, fault injection must
take place for fault simulation. Conventional fault
injection is made in such a way that, for each test vector,
copies of the damaged circuits (under the presence of
each single fault) are generated, whenever the faults are
activated by the vector. This allows concurrent fault
simulation and fault dropping techniques to be used, to
reduce the computational costs. However, using VHDL,
the insertion of saboteurs in the circuit description quests
for a recompilation of the VHDL description, each time a
new fault is injected. Such technique would severely
increase the computer costs of fault simulation.

Therefore, a different fault injection technique is used.
All faults are injected as saboteurs in the original VHDL
description, using additional signals (control lines) to
activate each single fault in sequence (Fig. 3). A number
of log2(# faults) control lines is required. The injection
technique allows both single and multiple fault injection,
by simple control lines programming.
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Fig. 3: Fault injection approach

As the main goal of this work is not the development of a
VHDL fault simulator, but to prove the feasibility of

defect-oriented VHDL fault simulation, a commercial
VHDL simulator is used, after fault injection.

3. Tools: Fanthom, Fastpen

Two tools have been developed, fanthom and fastpen.
The fault injector fanthom generates  the VHDL circuit
description of the circuit with the injected realistic faults,
and the PSR fault list (when required). The fault
simulator driver, fastpen, uses the VHDL faulty circuit
description (from fanthom) and a test pattern to drive the
Synopsys VHDL simulator, and to built defects coverage
statistics, and the fault dictionary. The use of these tools
in the two foreseeable scenarios (top-down, and bottom-
up) is illustrated in Figs. 4 and 5, within the context of
our proprietary toolset.
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Fig. 4: VHDL fault simulation: top-down scenario
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Fig. 5: VHDL fault simulation: bottom-up scenario

4. Simulation Results: Test and Diagnosis

The new tools are being extensively used with several IC
macros. Here, only some results are presented, associated
with an ALU, and ISCAS’85 benchmark circuits [21],



laied out in a standard cell layout style, using Cadence,
ES2 ECD10 technology and the IDlib10 proprietary cell
library (Table 1). The test patterns have been generated
by iceTgen to cover the realistic BRIs extracted with lift,
except for the c1908 and c3540, for which LSA-based test
patterns have been generated. As it can be seen in Table
2, VHDL fault simulation shows that high defects
coverage, DC, with these test patterns (generated using
realistic faults as target faults) can be achieved. These
results were also confirmed by iceTgen, except for minor
differences, due to soft detection criteria differences.

# logic
gates

# of
nodes

# real.
faults

# poss.
BRIs

ALU 146 160 114 12720
c432 378 414 258 85491
c1355 636 677 637 228826
c1908 1105 1138 5050 646953
c3540 2549 2599 5431 3376101

Table 1: benchmark circuits and faults

circ. ALU c432 c1355
#vect 23 67 120
stat. # F DC # F DC # F DC
total. 114 99.9 258 95.3 637 99.0
LSA 100 98.3 206 99.4 538 99.5
LSA0 25 100. 58 99.6 40 100.
LSA1 75 97.1 148 99.1 498 99.1
BRI3 14 100. 52 91.1 99 100.
3.1 10 100. 14 89.8 89 100.

3.1.1 9 100. 4 100. 60 100.
3.1.2 1 100. 10 84.3 29 100.
3.2 4 100. 38 100. 10 100.

circ. c1908 c3540
#vect 147 215
stat. # F DC # F DC

BRI3.1 200 79.0 200 100.0
3.1.1 193 79.0 200 100.0
3.1.2 7 100.0 0 -

Table 2: Fault simulation results
(BRI3.1, between gates, 3.1.1, non-feedback, 3.1.2,

feedback, BRI3.2, between logic nodes of a single gate;
#F, number of faults; DC, defect coverage)

A second set of experiments was carried out, to identify
which of the two heuristics for PSR fault list generation
leads to higher quality tests. The iceTgen ATPG is used
to generate test patterns, using the two PSR fault sets as
target faults. Next, iceTgen is used as fault simulator,
with the realistic faults (extracted from the layout) as
target faults. For the c432 circuit, the proximity heuristic
leads the PSR test set to uncover DC = 95.5% of the
realistic faults, while the hard fault heuristic lead the
correspondent PSR test set to DC = 83.9%. This (and
other similar experiences) indicate that the poor
correlation between testability measures and fault

detectability still holds for BRIs; consequently, a test
pattern that covers well the (assumed) most difficult to
detect BRIs fails to cover well the realistic BRIs. Hence,
the proximity heuristic is retained.

The last set of experiments concerns fault diagnosis. As
the VHDL fault simulation with fanthom, fastpen and a
commercial simulator does not perform fault dropping, a
complete fault dictionary can be built, together with the
information regarding the faulty output vectors, for each
test vector. The majority of realistic faults tend to produce
unique faulty signatures, i.e., distinguishable sequences of
faulty output vectors. In Fig. 6, the cumulative defects
coverage of the ALU example is provided, together with
the cumulative fault diagnosis. As it can been seen, the
majority of realistic faults is diagnosable, in this example;
the only undistinguishable faults are some realistic LSA
faults, due to stuck-at fault equivalence.
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Fig. 6: Located and detected faults in VHDL fault
simulation

The major limitation of the tools developed in this work
is the computational effort, not due to modelling issues
(as faults are described in VHDL by behavioural
descriptions), but to the fault simulation strategy. In fact,
as the simulation process is carried out by an
independent, commercial tool, only sequential fault
simulation, without fault dropping, is performed. A
strategy to minimize this problem is under development,
and will be reported in the future.

5. Conclusions

In this work, a novel methodology for VHDL-based test
preparation, using IFA-based tools and VHDL fault
simulation, has been proposed. The methodology is



implemented by two new tools, fanthom and fastpen.
These tools can work in the top-down scenario, to allow
high-quality test generation (with iceTgen) and VHDL
fault simulation, or in the bottom-up scenario, to evaluate
(in VHDL) test effectiveness. A novel BRI fault model
(saboteurs) has been introduced, both for feedback and
non-feedback bridgings. Two heuristics for PSR
generation have been analysed, and the proximity
heuristic has shown to lead to higher quality tests.
Finally, the methodology and tools can be rewardingly
used for realistic fault diagnosis, especially in limited
complexity blocks, or test structures. In-house use is
being currently made, in connection with a fast
prototyping facility, which customizes pre-diffused
wafers.

In conclusion, VHDL fault simulation is feasible for
defect-oriented test and diagnosis of digital ICs. Further
work concerns the development of a VHDL fault
simulator and the exploitation of high level test
generation techniques.
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