

Automatic Workflow Generation

Vladimir A. Shepelev*, Stephen W. Director**

*Research Institute for VLSI CAD Systems of Russian Academy of Sciences, Moscow, Russia
**Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA

 Abstract

As the number and diversity of computer-aided VLSI
design tools grows, there is an increasing interest in
workflow management. In this paper we describe an
enhancement to the task schema approach to workflow
management that allows for the automatic generation of
workflows. Such a capability can significantly enhance
designer productivity. It has been implemented in the
Dedal program.

1. Introduction

As the number and diversity of computer-aided design
tools used by VLSI circuit designers continues to grow,
there is an increasing need for tools that can help manage
the design process. One such class of tools is known as
workflow managers which help to organize, monitor, and
automate complex processes. Through the use of

workflow management,

also known as

 task management

,
designers are freed up to think in terms of tool-
independent procedures rather than in terms of specific
application programs and data files.

Most approaches to task management are based on
flow descriptions that must be prepared in advance
thereby making them somewhat inflexible. Examples of
such approaches are those based on flow maps to
describe design tasks [2-4] and those that use extension
languages to describe tasks [5, 6]. In [7-10], an alternate
approach to task management was described. This
approach, embodied in the Hercules Task Manager,
employs the

task schema

 to specify the rules by which
tools and data may be combined to create a flow. It
maintains the advantages of previous approaches while
giving the designer maximal control over the design
process. Through the realization of

dynamically defined
flows

 [9], designers gain significant freedom and
flexibility resulting in a reduction of design cycle time.

In this paper we describe an enhancement to the task
schema based approach to workflow management that
allows for the automatic generation of workflows. This
capability, which can significantly enhance designer
productivity, has been implemented in the Dedal
program.

2. The task schema

Our approach to automatic flow generation is based
on a graph theoretic representation of the task schema
that is employed in the Hercules Task Manager. We will
show that such a representation allows us to develop an
efficient algorithm for workflow synthesis. While a
complete description of the task schema is beyond the
scope of this paper, we need to introduce a few key
concepts to facilitate our discussion. A more detailed
description of the task schema can be found in [8] and
[9]. Basically, the task schema captures the dependencies
between all design entities (both tools and data) available
to the designer and specifies construction rules to be used
to create design flows that when executed realize design
tasks. [8]. Fig. 1. is an example of a small task schema
that we use here for illustrative purposes. Space
limitations preclude inclusion of a more extensive task
schema, of which what is shown here is a part.

Data entities may be either

simple

or

compound

. A
compound entity is a set of simple entities that share
some common properties. In the schema shown in Fig.
1., the entities labeled Edited Circuit and Extracted
Circuit are simple entities while the entity labeled Layout
is a compound entity.

A

simple design task,

 which can be thought of as an
elementary design function, consists of a target entity,
which must be simple, and one or more input entities,
which may be either simple or compound. The use of a
compound entity as an input means that any of simple
entities that constitute the compound entity can be used
as inputs to the design task.

During the course of design,

instances

 of design
entities are created, either as the result of task execution
or the encapsulation of tool or data file. Each instance
associated with a simple entity is described in terms of a
vector of components. For a tool entity, this vector might
contain the name of the tool, the computational expense
associated with executing the tool, the expected quality
of result produced by the tool, etc. For a data entity, this
vector would probably contain the name of file, the size
of file, the quality or precision of the data, etc.

The

compound entity graph

 is a graph whose nodes
correspond to a compound entity, a set of corresponding
simple entities, and a set of instances associated with
each simple entity. Arcs (directed edges) of the
compound entity graph connect the compound entity
with each of its simple entities and edges connect simple
entities with their instances.

Fig. 1. An example of a task schema. The
dependencies between entities is explicitly shown.
The letter d denotes a data dependency and the
letter f denotes a functional entity. The arrows point
from resulting data entities to the entities that are
used to create it. Note that a data entity may depend
on itself, especially if it created with an editor.

Circuit (Ct)

Router

Netlist

Extracted

Placer

Circuit

Device
Models

d

Netlist
Composer

Layout (Lt)

Auto
Layout

Placement (Pt)

Auto
Placement

Circuit
Editor

Circuit
Extractor

Layout
Editor

Placer
Options Placement

Editor

d

f f

d

f

d
d

f

d

d

f

fd

fd

(PO)(Pr) (PEd)

(AP)

(Rr)

(AL)

(LEd)

(NlC)

(Nlt)

(CEx)

(ExC)

(DMs)

(CEd)

d

Edited
Placement

(EdP)

Edited
Layout
(EdL)

Circuit
(EdC)

Router
Options

(RO)

Edited

d

A

simple design task graph

 is a partially directed
graph with nodes corresponding to the input and
functional entities, the target entity, and instances of the
input and functional entities. Edges and arcs indicate the
relations between design entities as well as between
entities and their instances.

In what follows, we will only consider a that portion
of the task schema that is shown in Fig. 2..The

 task
schema graph

 is a graph assembled from the compound
entity and simple design task graphs. As an example, Fig.
2.. shows the task schema graph associated with the task

schema of Fig. 1.. For illustrative purposes, the
compound entity graph associated with the compound
entity Circuit (Ct) (dotted lines) and the simple design

task graph associated with the simple design task ,

are marked in this figure. For the sake of simplicity,
instances are not shown.

An entity is called a

defined entity

 if it has at least one
instance associated with it. A simple design task is

executable

 if all of its input entities are defined input
entities. An executable simple design task is said to be

exclusive

 if each of its input entities has only one
instance.

Fig. 2. Task schema graph

..

.

.

.

. .

.

.

.

.
.

.
.

.

.

. .

. .

Nlt

NlC
DMs

Ct

CEd

EdCExC
CEx

PO

AP

EdP

PEd
Pt

RO

Rr

AL

Lt

LEdEdL

T1

T7

T6

T4

T2

T3

T
5

Pr

T9

3. Automatic flow generation

Our method for automatic flow generation is based on
the creation of an

expanded task schema graph

 from the
task schema graph, finding special

chains

 in this graph,
and then transforming these chains into a flow.

3.1. Expanded task schema graph

 An

expanded task schema

graph

 is a task schema
graph that has been modified so that it contains only
simple entities. Removal of compound entities results in
the creation of alternative simple design tasks. Fig. 3.

illustrates the expanded graph created from the task
schema graph shown in Fig. 2. Note, the duplication of
simple design tasks, as mentioned above. For example

task in the original graph is transformed into the

alternative tasks and in the expanded

graph. The defined entities and defined simple design

tasks are shown in gray. Note that is ready to
execute. The

input leaf nodes

 of an expanded graph are
those nodes that are inputs to at least one simple design
task but are not outputs of any simple design tasks.

A

flow

 is a subgraph of an expanded graph that does
not contain directed cycles, and if a simple design task
belongs to the subgraph, all entities associated with the
simple design task also belong to the subgraph. As with
expanded graphs, we can identify the

input leaf nodes

 of

Fig. 3. The expanded task schema graph
associated with the task schema graph of Fig. 2.

DMs

CEd

CEx

EdL(Lt)

RO

PEd

PO
EdP(Pt)Pr

AP(Pt)
AL(Lt)

EdC(Ct)

Rr

NlC

Nlt
ExC(Ct)

LEdEdP(Pt) EdL(Lt)

EdC(Ct)

T6

T5

T2 2,

T2 1,

T1

T3

T4 2,

T4 1,

T7 1,

T7 2,

T2

T2 1, T2 2,

T1

a flow. The

defined flow

is a flow in which an exclusive
executable simple design task as been chosen for every
simple design task and for which all entities that
correspond to input leaf nodes, and only these entities,
are defined entities.

A flow may be viewed as an alternating succession of
entities and simple design tasks that connect a set of input
leaf nodes to one or more target nodes. We refer to an
alternating succession of entities and simple design tasks
as a

chain

.

3.2. Flow construction method

 We can now describe the flow generation algorithm.

Step 1:

 We begin with the identification of executable
simple design tasks in the expanded task schema graph.

This is accomplished by considering each simple
entity associated with each simple design task in the task
schema graph and selecting an instance that satisfies
some suitable criteria. For example an instance may be
chosen, based on its characterization vector, to realize a
“fast flow”, an “economical flow,” etc.

Step 2:

 Next we identify all chains that connect each
of the target entities to executable simple design tasks

This may be accomplished by forming an

initial
entities front

 that includes all of the target entities of the
future flow.

Then, we form the front of executable simple design
tasks that has as its target entities in the entities in the
initial entities front. At the same time we begin the
creation of chains that connect these executable simple
design tasks with the target entities. We also form
pointers connecting every such executable simple design
task with all its chains. If some executable simple design
task is exclusive, we include all its chains into the initial
set of chains. If all of the executable simple design tasks
in the front are exclusive, we have completed Step 2 and
proceed to Step 3.

Otherwise, we form the next entities front which is
made up of the input entities associated with the current
front of executable simple design tasks, and at the same
time, create chains connecting these input entities with
the target entities of the flow. Of course, we check the
chains in order to avoid cycles.

This process is repeated until all of the executable
simple design tasks in the front are exclusive.

Step 3:

 Transformation of the initial set of chains into
minimal set.

To minimize the initial set of chains, we form the
initial executable simple design tasks front which
includes all exclusive executable simple design tasks
from the initial set of chains. We then simulate the
execution of these exclusive executable simple design
tasks. Suppose, an exclusive executable simple design
task has just executed. We then remove any alternative
exclusive executable simple design tasks to realize a new
(reduced) set of chains.

The next front is then formed by including all non
exclusive executable simple design task from the current
front and executable simple design tasks which have
inputs connected to the exclusive executable simple
design task from the current front.

If all target entities of the flow are not defined entities
yet we analyze the actual front. If it does not contain any
exclusive executable simple design task there is no flow
which has to be created; otherwise, we simulate the
execution of the exclusive executable simple design task,
create the next front, and repeat this process.

If all target entities of the flow are defined entities we
transform the current set of chains into a determining set:
we analyse each chain beginning with the target entity,
and, if some executable simple design task contains a
defined input entity, we form the chain from the target to
this entity.

3.3. An example

Again consider the expanded task schema graph
shown in Fig. 3. and assume that we are interested in
generating flows that will result in realizing the target

entities . To determine the initial set of chains

we observe that the target entities are realized by the

simple design tasks ; which in turn

depend on the entities . Working

backwards in this manner we can identify the following
alternating sequences of simple design tasks and entities:

; ;

; ; ,

where executable simple design tasks are shown in bold.
From this sequence we identify the initial set of chains:

We now minimize the initial set of chains. To do this
we begin with the initial set of executable simple design

tasks . Once these tasks are executed, the

next set of simple design tasks that become executable

are as seen in Fig. 4. If we simulate

ExC Ct()

T2 1, T2 2,,{ }

AL Lt() EdL Lt(),{ }

T3 T4 1, T4 2,, ,{ } Nlt AP Pt() EdP Pt() LEd, , ,{ }

T7 1, T7 2, T6 T5, , ,{ } EdC Ct(){ } T1{ }

T1 T6,{ }

T7 2, T4 2,,{ }

the execution of we can remove chains containing

 since it is an alternative simple design task for

(note that these are marked with a “minus” in Fig. 4).
We continue the minimization until the target entities

are reached as shown below:

We can then transform these chains into a
determining set of chains connecting target with all
defined entities. The flow corresponding to these chains
is shown in Fig.4.

4. Dedal - a program for a task generation

The methodology discussed above for automatically
generating flows has been implemented in the Dedal
program which has been incorporated into the Odyssey
CAD framework and interacts closely with the Hercules
task management system [8]. Dedal can also work
interactively with the designer to create specialized
flows.

To illustrate the use of Dedal assume that the partial
flow shown in Fig.5 exists and that we wish to generate
the rest of the flow automatically. After choosing
Generation from the main menu, the designer is able to
select one or all leaf nodes as target entities using a pop-
up menu. We are then ready to start flow synthesis.

If during flow generation Dedal encounters a
compound entity for which no default has been specified,
the user will be asked to choose among the simple
entities associated with the compound entity. If no
ambiguities exist, the flow will be created entirely
automatically. The selection of a simple entity belonging
to the compound entity Placement (Pt) is shown in Fig.6.

T1 EdC Ct() T7 2, Nlt T4 2, AL Lt() T2 1, ExC Ct(), , , , , , ,

T6 EdP Pt() T4 2, AL Lt() T2 1, ExC Ct(), , , , ,

T1 EdC Ct() T7 2, Nlt T5 AP Pt() T4 1,, , , , , , ,

T1 EdC Ct() T7 2, Nlt T4 1, AL Lt() T2 1, ExC Ct(), , , , , , ,

-

-

AL Lt() T2 1, ExC Ct(), ,

T4 2,

T4 1, T4 2,

T1 EdC Ct() T7 2, Nlt T4 2, AL Lt() T2 1, ExC Ct(), , , , , , ,
T6 EdP Pt() T4 2, AL Lt() T2 1, ExC Ct(), , , , ,

Fig. 7 shows the flow that results after the user selected
Edited Placement (EdP) belonging to the compound
entity Placement (Pt).

Dedal also has the ability to generate multi-target
flows. Unfortunately, space limitations precludes an
illustration of this capability.

5. Conclusions

We have presented a methodology for the automatic
synthesis of design flows. The methodology is based on
finding a determining set of chains in an expanded task
schema graph. This methodology has been implemented
in the Dedal computer program which has been
incorporated into the Hercules task management system,
a part of the Odyssey CAD framework. Thus users
perceive Dedal as an extension of a task management

Fig. 5. The initial flow

system. Dedal can automatically generate and entire flow
or allow the user to interact with it to create a specialized
flow. While this paper only presents some initial results,
we anticipate the development of optimal flow synthesis
methods that take into account real characteristics of
design instances.

6. References

[1] Timothy J. Barnes, David Harrison, A. Richard Newton,
Rick L. Spickelmier. Electronic CAD Frameworks. - Kluwer
Academic Publishers, 1992
[2] P. van den Hammer, M.A.Treffers. A Data Flow Based Ar-
chitecture for CAD Framework. - Proceedings of the Interna-
tional Conference on Computer-Aided Design, IEEE, 1990,
pp.482-485
[3] K.O. ten Bosch, P.Bingley, P.van der Wolf. Design Flow
Management in the NELSIS CAD Framework. - Proceedings of
28th Design Automation Conference, 1991
[4] Gunnar Bartels, Peter Kist, Kees Schot, Mattie Sim. Flow
Management Requirements of a Test Harness for Testing the
Reliability of an Electronic CAD System. - Proceedings of
EDAC-94, 1994
[5] W.Allen, D.Rosenthal, K.Fiduk. Distributed Methodology
Management for Design-in-the-Large. - IEEE, 1990, pp.346-
349
[6] W.Allen, D.Rosenthal, K.Fiduk. The MCC CAD Frame-
work Methodology Management System. - Proceedings of 28th
Design Automation Conference, 1991, pp.694-698
[7] J.B.Brockman, T.F.Cobourn, M.F.Jacome, and S.W.Direc-
tor. The Odyssey CAD Framework. - IEEE DACT Newsletter
on Design Authomation, Spring, 1992
[8] J.B.Brockman, S.W.Director. A Schema-Based Approach
to CAD Task Management. - Proceedings of the Third IFIP WG
10.2 Workshop on Electronic Design Authomation Frame-
works, Edited by T.Rhyne and F.J Ramming, Elsevier science
publishers, 1992
[9] P.R.Sutton, J.B.Brockman, S.W.Director. Design Manage-
ment Using Dinamically Defined Flows. - Proceedings of the
30th Design Authomation Conference, 1993, pp.648-653
[10] Eric W. Johnson, Jay B. Brockman. Incorporating Design
Schedule Management into a Flow Management System. - Pro-
ceedings of the 32nd Design Authomation Conference, 1995

Fig. 4. The resulting flow

DMs

CEd

CEx

PEd
EdP(Pt)

AL(Lt)EdC(Ct)

NlC
Nlt

ExC(Ct)

EdP(Pt)

EdC(Ct)

T6

T2 1,

T1 T4 2,

T7 2,

RO Rr

Fig. 6 The Selection of Simple Entities from a Compound Entity

Fig. 7. The resulting flow

	CDROM Home Page
	1996 Home Page
	EURO-DAC96 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

