A System for Compiling and Debugging Structured Data Processing Controllers

Andrew Seawright, Ulrich Holtmann, Wolfgang Meyer, Barry Pangrle, Rob Verbrugghe, Joseph Buck
Synopsys, Inc., 700 E. Middlefield Road, Mountain View, CA 94043

{andy,ulrich,wolfgang,pangrle,verb,jbuck}@synopsys.com

Abstract Three key benefits to this new approach over traditional
. . o FSM approaches are: 1) design changes at the specification
_ This paper describes a system for designing andjge| are easier to handle, 2) debugging the design is easier
implementing controllers for structured data processing. A gince simulation results are back-annotated onto the high

graphical input style (_jescribes the format of the data t_o bejavel graphical input specification, and 3) the design cycle
processed along with the necessary control actions.iime is decreased.

Advantages over FSM approaches include: 1) ease of

design changes, 2) ease of debugging, and 3) a shorter The paper is organized as follows._ The next section
design cycle. discusses related work. Section 3 describes how controllers

] are specified in Dali. Compilation and debugging are
1. Introduction described in sections 4 and 5. Results are presented in

The 10x increase in available gates that has beers€ction 6.
occurring every Six years for_the past two decades ha® Relation to Previous Work
forced designers to take a higher level approach to IC o])
design. Some of the resulting increase in design complexity Dali builds on previous work by Seawright and Brewer
has been handled by libraries consisting of more powerfulon logic synthesis from grammatical productions [Sea94a],
components. In part, because of the availability of theselS€a94b]. Differences and improvements include use of a
higher-level modules, the control portion of the design is More graphical approach, smooth integration with HDL
frequently the bottleneck in the design cycle. While the simulation and RTL synthesis, and others described in this

control might occupy only 15% of the final chip area, it is Paper.

not uncommon for the control portion of the design to take There are other related approaches to high-level
upwards of 75% of the design and debug effort time. Thespecification and design of controllers; the most prominent
lack of structure and hierarchy, in the way control circuitry of these are the Esterel language [Ber92] and Statecharts
is designed today, makes incremental design changefHarg7].

caused by specification changes or design flaws extremely

difficult and time consuming to implement. Esterel and Statecharts are designed to cope with the

complexities of designing reactive systems, where many
This paper describes a system, called Dali, that shortengxternal events, as well as internally generated events, may
the overall design cycle by reducing the time and effort arrive at once, with events being more urgent than others.
required to generate and debug the control circuitry. TheThese languages have powerful mechanisms for coping
user specifies the control by using a graphical symbolicwith the complexity of dealing with many simultaneous
format that closely matches the high level design eyents.
specification. The system automatically synthesizes the
controlling finite state machine. This frees designers from L i ;
having to think of the control in terms of an FSM and allows complexity is in the structure of the data and its evolution

them to concentrate on the design at a much higher levePVe" time, and not nece_:ssarlly in the comple>_<|ty of the
closer to the specification. transactions that occur in an instant. The Dali approach

supports a description style that explicitly uses the structure
The system described in this paper provides angfthe data.
environment where simulation results are mapped back Thi h h foat . ith
onto the graphical input specification. This allows the Est 'Si ap.prciag_ as m;mly .tea urﬁ_s n r(}:ommon I'wlt
designers to find errors at the specification level quicker Sterel, Including - modularity, \erarchy, — explict
than using conventional means. Since the user doesn’Para"e“.sm' a synchr_onogs model (.Jf communication, and
specify an FSM, the redesign cycle at the FSM level iSvyeI!—de_fyned, dete_rm_lmstlc semantics. Bepause of.these
eliminated. The user modifies the graphical specifications'm'lam'es’ compilation and implementation techniques

and the system automatically generates the new controlIendeve'()ped for producing controllers from I_Estere] Input, &.9.
[Tou93], are closely related to those used in Dali to generate

In systems that process structured data or protocols, the

EURO-DAC '96 with EURO-VHDL 96
0-89791-848-7/96 $4.00 11996 |EEE

efficient implementations that avoid combinatorial interface allows the system as a whole to be tested and
explosion. debugged.

Dali does not pretend to be a completely general-purpose A simplified example is described here to demonstrate
tool, but instead exploits the structure of a specific problemdesign specification in Dali. The example design is a
domain to yield powerful, high-level design solutions, and receiver for the ATM protocol which processes a stream of
provides a means of interfacing with design structuresincoming ATM cells. Based on the cell header information,
implemented with other paradigms (e.g. logic specified atthe design stores the payload data into a particular area of
register-transfer level). In this philosophy (as opposed to theRAM (Figure 2a). Figure 2b shows the ATM cell format.
alternative of designing a completely general-purpose high-The input data arrives bytewise to the design via input
level design language), this project has been influenced bylata_in . The input signatell_start indicates the
the Ptolemy project [Buc94]. starting byte of each arriving ATM cell of interest. During
. ificati the following 53 clock cycles, the receiver processes the
3. Design Specification cell. First, the header information is extracted and then the

The goal of Dali is to aid in the design of systems that payload data is written to the RAM at an address calculated
process structured data streams or handle structured contréiom the VPI and VCI fields of the cell header.
protocols. In such systems, the data to be processed is

typically organized in “frames”, “cells”, or “packets”. Each a) VPIVCI..... HEC b) VPYIP{/CI (1)
of these structures has a hierarchy of sub-structures such as Other VCI >
“headers”, “markers”, or “fields”. Examples include cell_start Modules |VCI[PT[CLP|3
telecommunications protocols (such as ATM and SDH/ data_in HEC |4
Sonet) and systems that process compressed digital data Controller Payload 5
streams such as in MPEG. Dali focuses on the design of the (48 bytes) '52
controllers and/or timing generators for these systems. 0) I I I
ce ce ce cell

data_in:

cell_start: —n n n I
Frame Editor .
Figure 2. ATM Example: a) Block
Figure 3 shows the hierarchy of frames describing the

Diagram, b) ATM Cell, and c) Data Stream
Synthesis example controller. In Dali, frames are definitions which
—_———— TIOr Siator -_— - describe cycle-level behaviors. Frames may be composed of
\ simpler frames, in a similar manner to regular expressions,

| by means of sequencing, alternatives, repetition, and

condition matching.
I |Contro|ler under Design |<->| Other Modules in System| I

Simulation
Interface

Frame ATM_RXforms the root of the hierarchy and

\ _ _ _ _ SystemUnder Development consists of a composition of several frames. One of these
Figure 1. Dali frames is the'framatm_cell : The frame definition
atm cell , in turn, consists of the frames
Dali is used to design controllers that are part of a larged'€20€r_extraction , header_processing , and

system design (Figure 1). In Dali, a controller is specified payload - This frame hierarchy is modeled closely to the

graphically via a hierarchy oframe definitions and input specification_ thus allowing an easier understanding,
associated data operations calladtions The actions entry, and debugging of the design.

determinewhat to do and the frames describden the The atm_cell frame is defined as thsequence
actions are executed. Frames and actions will be describetleader_extraction followed by the alternatives
in greater detail below. header_processing andpayload . All branches of

an alternative are executed in parallel. So, after reading the
header, header processing and payload processing are
executed in parallel (frameeader_processing is not
expanded for brevityAlternativesare also commonly used

for parallel searches of different patterns.

The graphical entry of the specification for the controller
is performed using the Frame Editor. The controller
specification is compiled by Dali and integrated with the
other components of the system. The Dali simulation

ATH_EX b)

a
) & {lrrimﬂlll |Frirmi\l2| }
-:{:n;; start == 0 EI

Sequence written left to right

! l-'r.:m=1|

Frami?|

atm_call Sequence written top to bottom

[hoader_processing ‘ Jrem——

{ [noader_sxtractionl

pay load| _
‘ \
Alternative frames
payload

[writa_to_ram{idr. data_in}] i 5 Fram
M |_Frame|

ﬁn:r:ldr:|
Conditional frame

naadar _axtractian

El@ssiqn:h'"'"'.:-!l:. data_in} | [P._Fralna|:|

EIE.:GLQ‘L‘:PJ':‘LZS'DZ. dz:a_'_n:?:-i::_] Frame Repetition
(asslgn{VCI[15:12), data_in{3:0]) |

EI Grsiml o T) (start_adr{adr, VFI, YCI}]

m[u:nx:.r_an: vk Terminal Frame

El (R#=ign{HEC, data_in} | A Frame] (sealgnin 70

Actions can be attached to any frame

Figure 3. a) ATM Cell Example Frame Hierarchy b) Legend

The frameheader_extraction reads the five bytes A frame acceptsif the behaviors that it describes are
forming the header of the ATM cell and stores their valuessatisfied. For a terminal frame, this means that the condition
into the appropriate registers. This is performed by theis fulfiled during one clock cycle. A sequence accepts
sequence of fiveerminal framesand their attached actions. together with its last frame. The execution of the sequence
A terminal frameis executed for exactly one clock cycle is aborted with the first non accepting frame. An alternative
when its associated Boolean expression is checked. If thaccepts together with the first accepting branch. A frame is
expression is fulfilled, the terminatceptsand all attached said to beactiveif any of its sub-frames is accepting.
actions are executed. The Boolean expression may be

N . _ ; Actions can be associated with the frames at all levels of
arbitrarily complex using input ports and internal variables.

the hierarchy and they execute when the associated frame
Terminal frames are used to recognize specific inputhierarchy accepts. Actions may be selected from a small set

patterns as well as to describe a specific delay. In the case aof built-in actionssuch asassign , clear , set ,incr ,

the header_extraction frame, all five terminal and decr or they may beuser-definedallowing great

frames have the condition “1” which is always fulfilled. flexibility.

Therefore they always execute in five consecutive clock The built-in actions are automatically translated directly

cycles. into the “host” language (Verilog or VHDL) during code
When the first terminal frame accepts, its attached actiorgeneration. A subroutine call is generated for each user-
assign(VPI[11:4], data_in) is executed. This defined action. The designer specifies the body of the user

action simply assigns the second parameter to the firstdefined actions in an action library file coded in the host
According to the ATM format, the first byte of the header language. Dali only needs to know the interface of the user-
contains a part of the VPI field. During the next four clock defined actions.

cycles all of the other header fields are processed. In this example, built-in actions are used in header

extraction process and user-defined actions are used to write

received payload bytes into the RAMr{te_to_ram)
and to determine the starting addregar{ adr).

Execute
Actions

Framepayload receives the 48 bytes of the payload
data and writes it into the RAM. The frame is defined as a
repetition of the inner terminal frame 48 times. As
mentioned before, the combination of the actions and
frames describes the desired behavior (Action part: write

Control
Logic
Read Current
State
the received input bytes into RAM and increment the

address. Frame part: for 48 clock cycles). Figure 4. Controller Execution

Generate
Debugging
Signals

Write Next
State

The continuous processing of the stream of cells is
described by therepetition specified with the “ 4 2 Controller Synthesis

superscript in the top-level frame. Recall that the beginning . : .
of a valid ATM cell is signaled by a pulse of the signal . Figure 5 shows an overview of the synthesis steps. The

cell_start . After processing an ATM cell, the receiver input to synthesis is represented as a collection of tree

must wait for the starting of the next cell. The top level structures representing the graphical operators and frame

frame describes a repeating operation of the aIternativesb'erarChy' Each of the trees corresponds to one frame

L N ; . definition. The root of each tree describes the frame
waiting for the start of the next cell” and “processing a L .

N - ! .~ definition, each node of the tree describes one of the above
cell”. We distinguish these two cases by the two alternative

. . i operators, and the node’s children are the operands of the
conditional frameslf the condition of a conditional frame : :
. : o) .. operator. Leaves of the tree describe terminal frames or
is fulfilled, its inner frame is executed. For example, if

references to other frame definitions. The information about

cell_start is low (upper branch), then the terminal ; . .
. . ports, variables and actions is also stored.
frame is executed and consumes one clock cycle. Thid
causes this alternative to accept and the process starts over.
If the condition of the lower conditional frame is fulfilled optimization o0 e optimization

Circuit Generation

Circuit State Graph
Representation Representation
4. Compilation

Code Generation
. HDL Code
In a Dali design, frames and actions implicitly define a

controlling FSM without the designer having to explicitly Figure 5. Controller Synthesis
describe states or transitions. This is one of the major

benefits of Dali. Although the designer does not have to The design is then checked for syntax errors including
handle the details of the underlying FSM, its is important to missing clock and reset signals, undefined frames

understand how the Dali FSM operates. undeclared actions, and so forth. After this, the set of trees

I . is elaborated into a fully instantiated single hierarchical

4.1 Controller Execution Protocol Tree Further checks, such as detecting recursive
The execution of the Dali described controller is cycle- frame definitions, are also applied.

based. At the start of each cycle, the external and internal

inputs to the design are sampled by the controller and theBooIean next.state and output functions is created durin
current state of the controller is read. Next a control logic nex . outputiunct ' urng
elaboration. Starting with the simple formulas for the

block is evaluated to determine which actions will occur in orminal frames. cireuits for the parent nodes are composed
the cycle and also to compute the next state of the controlletI. ' » cireuli P P

In addition, to support debugging, the control logic block baseq on the type of operatiqn rquired until the root of the
also computes a set of debugging signals that describ fee 1S reached as Qescrlbed in- [Sead4al, [Sead4b].
which frames are actively executing and which frames are d|d|t||onacli erug functL)onsk for each nodg of tr:je tree are
accepting in the design. These debugging signals are use?na culated in order to back-annotate active and accepting
for back-annotating the state of the controller onto the input rames.

specification allowing debugging of the design at the high The circuit created for the root of the elaborated tree
level. represents the complete controller. Inputs to the circuit are

then the processing of the ATM cell starts. When
atm_cell finally accepts (after 53 clock cycles) the
process is started over again. In other words, the design will
repeatedly: a) wait one clock cyclec#ll_start is low,

or b) process an ATM cell dell_start is high.

An initial circuit describing the controller as a set of

the input ports, internal variables, and the state informationdepending on the host language. The output code can also

Outputs from the circuit are the action triggers, the nextbe generated with or without debugging information.

states, and debug functions. Verilog code generation, for instance, produces a Verilog
Once an initial controller circuit is created it can be module describing the controller circuit. The module

optimized in several ways. The initial circuit representation implements the behavior of the circuit including the logic of

can be transformed into a state graph representation, or OWe controller_and the triggers for actlo_ns. Note in Figure 6
the other hand, the circuit representation itself may bethaf(the actions are used to manipulate outputs and
optimized. Based on compilation directives, Dali can variables.

perform a suite of optimizations on each of these two basic
representations. This allows the selective application of
optimization algorithms that are best suited for the two —_—

Controller Module

basic representations: circuit and state graph. Implicit Internal Action
optimization algorithms are performed on the circuit Variables .
representation to analyze the circuit and remove redundant Action
state registers [Ber90] [Tou93]. State graph algorithms argppyts Control : Outputs
provided for state minimization and state encoding. Logic Action
This allows, for example, designers to start with an initial Block —_ —d

circuit, remove redundant state variables and remove Debug Signals
redundant states, convert it to a state-graph, choose an
encoding that best fits their needs, convert it back into a
circuit, and still have a circuit representation that is
equivalent to the original one.

Following the above steps, we were able to optimize the ~ Figure 6. Block Diagram of Generated Code
mismatch example, a pathological regular expression,
described in [Kar83]. On the circuit level, 6 state registers5, Debugging
were found to be redundant, the state-graph representation

was reduced to 1721 states from 8062 states in the original thA test?te?ncr; can |ns|tzatntlateft:1r]e genera:tetd con:roller_rf;l]nd
representation. The authors do not know of any other®™er €Ntities Tor simufation of the complete system. 1he

system that has been able to reduce this machine [Sea94glali simulation interface provides a simulator independent

were not able to produce a state-graph representation fo echani;m for aII'owing Dali 10 interfgce to a variety'of
this circuit using SIS [Sen92]. It took 59 seconds on a Suncommermal HDL simulators for debugging. Dali debugging

Sparc 20 to remove the redundant state registers and 4g§f0rmation for the controller.is back'-annotated.in the Dali
seconds to produce the 1721 state machine. rame Editor. The other signals in the design can be
watched via an ordinary waveform viewer. In the Frame
4.3 Verification Editor, the designer sees which frames in the design are
o . “accepting” and “active” in each cycle. The designer can
To prove that the above optimizations and conversionsy g, set hreakpoints to stop the simulation when a frame is
were performed_correctly on the (—;->_<am_ples, (i.e. produced, ivated or when a frame accepts.
equivalent circuits), a formal verification approach was
undertaken. Given an initial controller circ@l and an In a typical design flow, the design is first synthesized
optimized version of the controller circu2, if the with the debugging information. The back-annotation to the
optimization steps do not change the behavior @emust ~ SPecification during simulation makes debugging much
be equivalent taC2. To prove this, the product machine €asier so that design problems are uncovered earlier. Once
C1xC2is constructed and formally verified by showing that the results are satisfactory, an optimized controller is
C1 and C2 produce the same output sequence for any inpempiled and the generated HDL code is synthesized using
sequence. For example, the above minimized 1721 statéown stream synthesis tools.
machine was formally verified in 147 seconds on a Sun6_ Results

Sparc 20.

“activate”

“accept”

State Vector

The Dali system has been used to build controllers for
4.4 HDL Code Generation real life applications such as ATM and MPEG protocols.

HDL code generation is performed as a backend process-!-hese are-

Dali generates either synthesizable Verilog or VHDL code,* A receiver for the ATM protocol. This design is simi-

lar to the example design shown before but performs Several examples have been shown in the paper to give
more tasks during the header processing. the reader an idea of the scope and depth of the Dali system.
The authors believe that Dali is the first system that has
produced a state machine for the mismatch [Kar83]
example that uses fewer than 8000 states (Dali used 1721

« Areceiver for the MPEG system layer. Special actions
are used to cope with cells of varying length.

* Areceiver for the HDLC protocol. It accumulates states). The other examples were chosen based on problems
incoming data bits into 32 bit words and performs that are currently of commercial interest. Designer feedback
CRC checking. indicates that the overall design cycle can be reduced by a

Table 1 shows the results. The example design is alsdactor of three and incorporating specification changes into
included to allow a better interpretation of the values. The@ Dali design can take well less than half the time to
number of frames and actions allows one to judge thelmplement compared to traditional design approaches.
complexity of the protocol. Dgll generated the FSM (see References
number of states and state bits) and the HDL output (all _
results are for VHDL). The shown times (running on a [Ber92] G. Berry and G. Gonthier, “The ESTEREL synchronous
Sparc20) include FSM synthesis as well as HDL generatiorProgramming language: design, semantics, implementation”, in
with all optimizations turned off. Short compilation times S¢ience of Computer Programmjrigov. 1992, vol. 19 (no. 2):

are important to allow a fast debugging cycle pp. 87-152.
’ [Ber90] C. Berthet, O. Coudert, J. C. Madre, “New Ideas on Sym-

FSM synthesis time, however, can be much longer wherbolic Manipulations of Finite State Machines”, in Proc. of
optimizations are turned on which is relevant after finishing ICCD’90, Cambridge MA, USA, September 1990.

removing redundant states. “Ptolemy: A Framework for Simulating and Prototyping Hetero-

~geneous Systems,” International Journal in Computer Simula-
The HDL output was then run through a commercial tion, vol. 4, no. 2, 1994, pp. 155-182.

logic synthesizer, while distinguishing between the pure[Har87] D. Harel, “Statecharts: A Visual Approach to Complex
controller part and the gates required for actions. In theSystems,” irScience of Computer Programmirfgug. 1987, vol.
MPEG design, actions play an active role during frame 8 (no. 3), pp. 231-275.

recognition. Therefore, these actions are not separated frorfiar83] A.R. Karlin, H.W. Trickey, and J.D. Ullman, “Experience

the controller part. with a regular expression compiler”, in Proc. of ICCD’83, pp.
656-665, 1983
7. Summary and Conclusions [Sea94a] A. Seawright and F. Brewer, “Clairvoyant: A Synthesis

. System For Production-Based SpecificationJEEE Trans. on
This paper has described Dali and its novel graphicaly; g, Systemsiune 1994, pp. 172-85.

input format that has been developed to closely matchiseag4b] A. Seawright, “Grammar-Based Specification and Syn-
typical high level design specification diagrams for thesis for Synchronous Digital Hardware Design,” Ph. D. Thesis,
structured data processing controllers. This frees theUniversity of California at Santa Barbara, June 1994 (UMI order
designer to work at the level of the specification, instead of#9500298).

thinking of control in terms of an FSM. Three key benefits [Sen92] E.M. Sentovich, K.J. Singh, L. Lavagno, C. Moon, R.

to this approach over the traditional FSM approach are: 1)Murgai, A. Saldanha, H. Savoj, P.R. Stephan, R.K. Brayton, and
design changes at the specification level are easier té" Sang_lqyannl-vlncentelll, “SIS: A system for sequential circuit

handle, 2) debugging the design is easier since simulatior}Y"thesis”, Electron. Res. Lab. Memo, No. UCB/ERL M92/41,

A - . ay 1992
resul.t§ ar_e back annotated onto the hlgh level g_raphlca Tou93] H. Touati and G. Berry, “Optimized Controller Synthesis
specification, and 3) it decreases the design cycle time.

Using Esterel”, ifProc. International Workshop on Logic Synthe-
sis IWLS'93 Lake Tahoe, 1993.

Table 1: Design Results

Input Specification Generated FSM + HDL Circuit Size
Design Frames| Actiong Time [$] Bits Time[s]Re‘jL.mdant states lines VHDL Ctrl | Actions
bits [gates] [gates]
Example| 26 14 0.6 10 1.0 1 10 191 19 403
ATM 12 17 0.9 20 |16 3 19 602 183 | 609
MPEG |183 28 1.8 68 | 300 0 344| 657 1416
HDLC |17 10 0.9 21 | 16 6 38 | 216 403 | 1097

	CDROM Home Page
	1996 Home Page
	EURO-DAC96 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

