PALACE: A Parallel and Hierarchical Layout Analyzer and Circuit Extractor

F. Scherber and E. Barke

Department of Electrical Engineering
University of Hanover
Hanover, Germany

Abstract

Layout verification of VLS circuits can be speeded up
significantly by parallel execution. Theapproach described
in this paper combines parallel and hierarchical verifica-
tion of cells and cell areas using geometrical partitioning.
In contrast to earlier approaches, design rule check and
netlist extraction are performed in paralle without any
functional restriction. Thisisaccomplished by a new con-
cept called multiple execution switching. Thus, industrial
leading edge VLS circuits can be handled. High speedups
are obtained for largereal-world layouts. A productiveuse
is possible and will reduce time-to-market considerably.

1 Introduction

Complete layout verification of today’s leading edge
VLS circuits is only possible by exploiting the inherent
hierarchy and regularity of achip design[1]. Using hierar-
chical design rule checking and netlist extraction decreases
computation time and data volume substantialy. In addi-
tion, the number of reported errorsisreduced significantly.
Design rule violationsfound in a specific cell are reported
only once, independently from the number of repetitions
of the cell in the whole layout. Moreover, a hierarchically
extracted netlist isafundamental requirement for applying
one of the very fast hierarchical netlist consistency check-
ing tools[2].

According to growing circuit complexity, computation
time for verification will further increase unless innovative
solutions will be applied. Since designing a VLSI circuit
isan iterative process, verification timeis directly time-to-
market relevant. One possible solutionisto take advantage
of thelocality of verification. Instead of using oneworksta-
tionto execute verification sequentially, it can be performed
in paralel onaset of processors. There are four strategies
for paralle verification that can be applied separately or in
combination:

o Edge-based paralelization: Paralel handling of dif-
ferent polygon edges.

o Ceéll-based paralldization: Parale verification of in-
dependent layout cells.

o Areabased pardleization: Parallel verification of
layout areas using geometrica partitioning.

ED&TC'96
0-89791-821/96 $5.00 [1996 IEEE

W. Meier

Corporate Research and Devel opment
SiemensAG
Munich, Germany

o Operation-based paraldization: Paralel execution of
independent verification operations.

Because of its high degree of paralelism and inten-
sive interprocess communication, the first — fine-grained —
approach is only applicable on massively parallel systems.
Thismay speedup verification by up totwo orders of magni-
tude[3]. However, high investment costs, the expense for a
compl ete reimplementation of the verification software and
limited utilization of the machine for other computational
work make this solution rather unattractive.

The other — coarse-grained — approaches seem to be
much more reasonable, because they can utilize multipro-
cessors [4, 5, 6, 7, 8] or even general-purpose workstation
clusters[9]. Since workstation clusters usualy are at hand
and not very busy, investment costs are low. However,
using these clusters effectively makes it necessary to com-
bine parallelization strategi es mentioned above. Especialy
when using loosely coupled workstations, in many cases
interconnected by Ethernet, interprocess communication
has to be minimized to obtain sufficient speedup.

This paper describes the theoretical framework and
implementation of PALACE, a Paralldl and hierarchical
Layout Analyzer and Circuit Extractor. PALACE is able
to utilizeamost all kindsof present general - purpose work-
stations. These workstationsmay be only loosaly coupled
by a loca area network without significant performance
drawbacks. PALACE executes verification tasks hierarchi-
caly. Inthisway, design rule violationsare reported with-
out repetition in every cell instance as described above. In
addition, PALACE may be combined with other hierarchi-
cal toolse. g. hierarchical netlist consistency and electrica
rule checking programs.

In contrast to earlier proposas for paralle verification,
PALACE performs a complete layout analysis and circuit
extraction. Complete refers to the absence of functiona
restrictions, as for example the disability of executing se-
lection operations or extracting bipolar transistors, or even
the limitation to Manhattan layouts [8, page 344]. For
this purpose, the concept of multiple execution switching
has been applied to parallel layout verification. In addi-
tion, awrapper concept is used for implementation, which
preserves al features of the proven sequentia verification
algorithmsand their ability of handling all-angle geometry.
In this way, real-world layouts of industrial leading edge
circuits can be verified.

Thispaper isstructured asfollows. Sections2 and 3 dis-
cussparalldization strategiesof PALACE regarding specia
problemsconcerning non-local operationsand utilization of
workstation clusters. Section 4 describes techniques used
in the implementation. Sections 5 and 6 discuss some re-
sults and the areas of our further research.

2 Cedl-Based Parallelization

Themost natura strategy for parallel hierarchical verifi-
cationis cell-based parall€lization. Sequential hierarchical
verification verifies the chip layout represented by the cell
tree in a bottom-up order cell by cell (Figure 1a). A cell-
based paralé hierarchica verifier may handle al cells of
one hierarchy level inparale (Figure 1b).

a) b)

Leaf Cells

Leaf Cells

Figure 1: Sequential (a) and cell-based parallel verifica-
tion (b) —Numbers correspondto the order of execution

The strategy of cell-based parallel verification offers
some important features:

First, there is no data dependency between cells on the
same hierarchy level. Therefore, there is no need for in-
terprocess communication or synchronization except one
“order”-message and one “ready”-message for each cdll.
These messages contain only a small amount of data.

Second, a cell-based parallel verifier can be implemen-
ted by asimplemaodification of thesequential program. One
master process with knowledge about the cell tree triggers
the verification of acell by passing an “order”-message to
an appropriate dave process. Sequential verification of the
cell is performed by the slave process. After completion
theslave processreturnsa“ready”-message. Inthismanner
the complete cell tree is verified bottom-up from the leaf
cellsto thetop cell.

However, thereisone important drawback of cell-based
paralelization. Ascan bederived from Figurel, thedegree
of parallelism decreases considerably on higher levels of
hierarchy. Moreover, cells on higher levels of hierarchy
often consume most of the computationtime. For example,
if the top cell consumes half of the sequential runtime,
speedup is less than two, independently of the number of
available processors. In Section 5 thisfact isillustrated by
some runtime measurements.

To overcome this problem, the basic approach has to be
extended by at least one of the other paralldization strate-
giesmentioned in Section 1. Area-based paralldization of
cells discussed in the next section is an efficient strategy.

3 Area-Based Parall€ization

Area-based parallelization utilizes the locality of verifi-
cation. The area of acell is geometrically partitioned into
tilesthat hereafter are verifiedin paralel. Thetilesizescan
be chosen in two ways:

o Tiles of same size are simple to compute but may
lead to load balancing problems if the density of lay-
out polygons varies. This may cause a considerable
speedup decrease.

¢ Tilesizes can be chosen in acomputation time depen-
dent way. Considering the geometrical distribution of
layout polygons, computationtimefor acertain region
can be estimated and a partition may be determined
which distributes work uniformly over the involved
processors. Developing such estimation algorithms
will bean item of our further research.

A lot of false DRC-errorsmay beintroduced by geomet-
rical partitioning. To avoid this, design rule check is per-
formed on an extended region called the verification win-
dow which islarger than the corresponding tile (Figure 2).
The verification window belonging to a specific tileis de-
termined by expanding thetile by themaximum designrule
interaction distance. In case of netlist extraction, an expan-
sion by one grid unit is sufficient for merging of broken
polygons, devices and electrical connections.

Verification)
Window /T'le
""""" AR
P4 :

Cell Area

Figure 2: Verification window vs. tile

After completing parallel processing, amerging step has
to be executed to combine the tileresults (e. g. completing
global connectivity information) and to correct deficiencies
(e.g. merging of broken devices, avoidance of design rule
violationsreported several times).

Therearetwo main advantages of area-based paralleliza-
tion:

First, the number of tilesislimited only by paralédiza
tion overhead. This overhead is caused by the overlap of
the verification windows described above and by the merg-
ing step. If it is possible to perform the merging stepin a
short time, area-based parall€lization offers a considerable
potential for high speedups.

Second, the computational complexity of layout veri-
fication is higher than linear. For example, let n be the
number of polygon edges in the layout. Then, the compu-
tational complexity of the scanline agorithm that is used
for various verification steps is O(nlogn) in best case.

m

H

al

Broken Polygon
in Verification Windows

't\ /7‘
Polygon Contour
Segments in Tiles

I

Merged Polygon

Figure 3: Merging of a broken polygon by connecting contour segments

Therefore, due to the linearizing effect of partitioning the
reduced number of polygon edges handled by one proces-
sor decreases the totally consumed computation time of
verification.

Areabased pardldization utilizes the locality of the
executed operations. For example, design rule checks have
a maximum interaction distance that is small compared to
the size of atile. Also, the presence of a— possibly bro-
ken — MOS-transistor is determined by a boolean AND of
the diffusion, the polysilicon and the implant layer. This
operation can be performed locally.

However, there are some non-local operations. Exam-
ples are sdlection operations or the extraction of bipolar
transistors. In earlier approaches for area-based parallée
verification such non-local operationshavenot been consid-
ered. Only boolean operations, design rule checking, con-
nectivity analysis and extraction of MOS-transistors have
been supported.

For PALACE, a new concept has been developed that
allowsall kindsof operations. Itisbased onthefact, that the
non-local operationswhich haveto beexecuted sequentially
often consume only a small amount of computation time.
Therefore, effective parallel verification may be performed
by the following a gorithm:

1. Resort the order of the operations considering mutual
dependencies to build maximum instruction chains of
either local or non-local operations.

2. Execute an area-based paralélizableinstruction chain
without any synchronization or communication be-
tween the involved processors.

3. Synchronize the involved processors and merge bro-
ken polygons.

4. Execute non-local operationson a single processor.
5. Repeat steps 2 to 4 until al operations are executed.

6. Merge tile results, correct deficiencies and return
“ready” -message to the master.

This concept, called multiple execution switching, may
cause several merging steps. To avoid large parallelization
overhead when using aworkstation cluster we developed a
partition and merging concept with following advantage:

Local operationsare appliedto all polygonsthat overlap
the verification window. Even devices that belong to more
than onewindow areextractedin parallel by thecorrespond-
ing tile processors. Resulting“half” devicesand all related
connectivity informations are automatically combined by
the fast and ssimple polygon merging step described be-
low. Inthisway, no parallelizable work isdoneby asingle
processor and the amount of sequentially executed work is
mini mi zed.

The polygon merging algorithm works as follows (see
Figure 3):

First, polygonsthat overlap at least one edge of their tile
are sdected in paralel by the tile processors. References
of these polygons, uniquely numbered over al tiles, are
collected by the merge processor.

Second, the broken polygons are merged by this pro-
cessor by connecting contour segments. For this purpose,
all polygon contour segments are determined which arein-
side thetile. The endpoint coordinates of these segments
(which areawayson atileedge) are stored in separate lists
for each edge of atile and each layer. References to the
corresponding polygon pointsare also stored. Thellistsare
sorted by their x- and y-values, respectively.

Finally, coinciding endpoints of segments in adjacent
tiles are determined and the corresponding contour seg-
ments are connected. If the connected segments form a
complete outer contour, the polygon is finished. Net num-
bers assigned to conducting layer polygonsby thetile pro-
cessorsare uniqueover al tiles. Replacing the net numbers
of all partsof abroken polygon by one common net number
for the merged polygon automatically compl etes the global
connectivity information.

In aseparate step design rule violations detected severa
times are determined and eliminated. False DRC-errors
that may occur at the window boundary are del eted.

Let n again be the number of polygon edges in the
layout and m the number of contour segments to be con-

nected. Assuming uniform distribution of polygons over
the cdll area, m is proportiona to the perimeter of atile,
and thusm isO(,/n). Sinceruntimeof themerging step is
nearly linear in m, itscomputational complexity isO(v/n).
Therefore, the merging step isfast and causes no significant
parallelization overhead.

As discussed in Section 1, hierarchica verification re-
duces the number of reported design ruleviolationsand is
a basic requirement for a hierarchica netlist consistency
check. Therefore, even aparald verification system hasto
be able to handle verification in a hierarchical way, inde-
pendently of the obtainable speedupsin flat mode. In our
verification system, subcell instances are represented by
polygonsin aspecial symboliclayer. These instance poly-
gons point to the connecting polygons in the parent cell.
Therefore, subcell instances can be handled like primitive
devices with additional properties. After area-based paral-
Iel verification of acdll, brokensubcell instancesaremerged
by the polygon merging step described above. Also, inter-
cell connectivity is completed by merging the connecting
polygons and the corresponding net numbers in the parent
cell.

4 Implementation on a Workstation Cluster

It is crucia for a parald verification system, that it
can benefit from al current features and future improve-
ments of the sequentia agorithms. Therefore, PALACE
is implemented using a wrapper concept. The sequen-
tial program is extended by a well-defined interface. This
interface allows the execution of particular functions, for
example the verification of a specific cell or cell area or
the execution of a certain operation. The sequential ago-
rithms need almost no knowledge whether verification is
performed sequentially or in parald. Therefore, modifi-
cations of these algorithmsare minimized. The sequentia
algorithms, adapted to paralld execution, can be used in
the sequentia verification system without any drawback.

To execute verification in paradlel, PALACE uses a
master-slave scheme. One master process — started by a
UNIX-command — initiates a set of dave processes. The
master process sends “order”-messages to the slave pro-
cesses. When recognizing completion of verification, the
master process terminatesthe slave processes and hereafter
itsalf.

Currently, task scheduling is performed by the master
process in the order of arrival. When all subcells of acell
are verified, this cell may be scheduled. If no dave pro-
cessisidle thecel isstored in a queue. After receiving a
“ready” -message from one of the dave processes, the mas-
ter processtriggersverification of thefirst cell inthe queue.
Computation time for verifying a specific cdl is unknown
until its verification is completed. Therefore, at present
cells in the queue cannot be sorted by their computation
timein order to minimize verification runtime.

Estimates of computation times of specific cells and
certain regions, respectively, are a base requirement for an
appropriate task scheduling scheme especialy when area-
based paraldization is applied. Therefore, development
of such estimating agorithms will be a main item of our
further research.

Table 1: Cell-based parallel netlist extraction
(WS = workstations)

Sequential Speedup Extraction
Circuit | Description

Extr. [Sec] | 1WS ‘ 2WS ‘ 4WS
ACHIP | 64 M-DRAM 38,256 1.12 1.67 1.84
MZFO | 16 M-DRAM 435 0.96 1.36 1.50
CTAG ASIC 13,544 1.04 1.64 2.06

Table 2: Cell-based parallel design rule check

Sequential Speedup DRC
Circuit | Description
DRC[sec] | 1Ws | 2ws | 4ws
ACHIP | 64 M-DRAM 45,339 1.04 1.33 1.35
MZFO | 16 M-DRAM 1,619 0.98 1.49 1.55
CTAG ASIC 21,598 101 | 123 | 127
5 Results

PALACE has been implemented on Hewlett Packard
and Sun workstations. To make results comparable, work-
stations with identical configurations have been used for
runtime measurements. Up to four HP 9000/710 worksta-
tions complying with this requirement were used. These
workstationswereinterconnected by Ethernet and provided
with 32MB main memory each.

Applying cell-based parallelization a one, the speedups
presented in Tables 1 and 2 have been obtained. Theresults
for cell-based parallel verification correspond with the ex-
pectations discussed in Section 2. All measured times are
elapsed times and given in seconds.

At present, partitioning of a specific cell in PALACE is
performed by auser command in aspecid file. In addition,
all tiles of one cell are of the same size. These restrictions
cause load imbal ance between theinvolved workstationsin
most cases. Since an appropriate task scheduling scheme
is not yet implemented for reasons discussed in Section 4,
at considerable periods someworkstationsrunidle. There-
fore, the speedups obtained by cell- and area-based paral-
Ielization are nearly worst-case results of combining these
paraldization strategies and will be improved by future
extensions (Table 3).

To demonstrate the potential of geometrical partitioning
of cellsfor parallé verification on workstation clusters, the
results of some large cells are presented in Tables 4 and 5.

6 Conclusions

PALACE, anew systemfor parallel and hierarchical lay-
out verification on clustersof loosely coupled workstations
was presented in this paper. It combines cdll- and area
based pardlelization. Applying the concept of multiple

Table 3: Cell- and area-based parallelization

Speedup Extraction || Speedup DRC
Circuit
4WS 4WS
ACHIP 2.78 257
MZFO 2.40 2.88
CTAG 3.14 2.65

Table 4: Speedups obtained by geometrical partitioning
of single large cells (netlist extraction)

Sequential | Speedup Extraction
Cell Circuit
Extr. [Sec] 4WS
TOPCELL | ACHIP 3,451 3.60
TOPCELL | MZFO 142 3.82
CIRCUIT CTAG 1,270 3.74

execution switching, layout analysis and circuit extraction
are performed in paralel without any functiona restric-
tion. Even all-angle geometry causes no problems, since
proven sequential verification algorithms are exploited by
awrapper concept in theimplementation. To prevent large
paralelization overhead, a fast merging algorithm based
on the connection of contour segments has been devel oped.
The usability of the verification system has been proven by
verifying industria leading edge VLS circuits, in partic-
ular large DRAM and ASIC layouts. High speedups have
been obtained reducing time-to-market significantly.

In future, PALACE will be improved as follows:

First, independent operations will be executed in par-
allel. In this way, even considerably larger workstation
clusters may be utilized effectively.

Second, parall€lization strategies mentioned above will
be combined considering properties of the current cell. In
this way, speedup can be maximized and parall€lization
overhead can be minimized.

Finally, agorithms for runtime estimation and task
scheduling will be developed as discussed in Section 4.
Load caused by other processes running on the worksta-
tions can be taken into consideration. Moreover, in hetero-
geneous clusters workstations with higher computational
power may be used in amore effective way.

Acknowledgement
Theauthorswouldliketo thank Siemens AG for support
of thiswork.

Table 5: Speedups obtained by geometrical partitioning
of single large cells (design rule check)

Sequential | Speedup DRC
Cell Circuit
DRC [Sec] 4WS
TOPCELL | ACHIP 2,359 3.28
TOPCELL | MZFO 933 3.59
CIRCUIT CTAG 13,315 3.46

References

[1] W. Meier, ‘‘Hierarchical Layout Verification for Submicron
Designs,’”’ Proc. 1st European Design Automation Confer-
ence, Glasgow, Scotland, March 1990, pp. 382-386

[2] W. Meier, *“VLSI Logic Verification by Hierarchical Netlist
Comparison,”” Proc. GME Fachtagung Mikroelektronik,
Baden-Baden, Germany, March 1995, pp. 101-106

[3] E.C.CarlsonandR. A. Rutenbar, ‘‘ Design and Performance
Evaluation of New Massively Parallel VLS| Mask Verifica-
tion Algorithmsin IGSAW,”’ Proc. 27th Design Automation
Conference, Orlando, Florida, June 1990, pp. 253-259

[4] F. Gregoretti and Z. Segall, ‘*Analysis and Evaluation of
VLS| Design Rule Checking Implementation in aMulticom-
puter,”” Proc. Int'l Conf. on Parallel Processing, Bellaire,
Michigan, August 1984, pp. 7-14

[5] G. E. Bier and A. R. Pleszkun, ‘**An Algorithm for Design
Rule Checking on a Multiprocessor,”” Proc. 22th Design
Automation Conference, Las Vegas, Nevada, June 1985,
pp. 299-303

[6] B. A. Tonkin, ‘‘Circuit Extraction on a Message-Based
Multiprocessor,”” Proc. 27th Design Automation Conference,
Orlando, Florida, June 1990, pp. 260-265

[7] K. P. Belkhale and P. Banerjee, ‘A Parallel Algorithm
for Hierarchical Circuit Extraction,”” Proc. Int'l Conf. on
Computer-Aided Design, Santa Clara, California, November
1990, pp. 236-239

[8] P. Banerjee, Parallel Algorithms for VLS Computer-Aided
Design, Englewood Cliffs, New Jersey: Prentice Hall, 1994

[9] J. D. Marantz, ‘‘Exploiting Paralelism in VLSl CAD,”
Proc. Int'l Conf. on Computer Design, Port Chester, New
Y ork, October 1986, pp. 442-445

	CDROM Home Page
	1996 Home Page
	EDTC 96
	Front Matter
	Table of Contents
	Session Index
	Author Index

