
ED&TC ’96
0-89791-821/96 $5.00  1996 IEEE

PALACE: A Parallel and Hierarchical Layout Analyzer and Circuit Extractor

F. Scherber and E. Barke W. Meier

Department of Electrical Engineering Corporate Research and Development
University of Hanover Siemens AG

Hanover, Germany Munich, Germany

Abstract
Layout verification of VLSI circuits can be speeded up

significantly by parallel execution. The approach described
in this paper combines parallel and hierarchical verifica-
tion of cells and cell areas using geometrical partitioning.
In contrast to earlier approaches, design rule check and
netlist extraction are performed in parallel without any
functional restriction. This is accomplished by a new con-
cept called multiple execution switching. Thus, industrial
leading edge VLSI circuits can be handled. High speedups
are obtained for large real-world layouts. A productive use
is possible and will reduce time-to-market considerably.

1 Introduction
Complete layout verification of today’s leading edge

VLSI circuits is only possible by exploiting the inherent
hierarchy and regularity of a chip design [1]. Using hierar-
chical design rule checking and netlist extraction decreases
computation time and data volume substantially. In addi-
tion, the number of reported errors is reduced significantly.
Design rule violations found in a specific cell are reported
only once, independently from the number of repetitions
of the cell in the whole layout. Moreover, a hierarchically
extracted netlist is a fundamental requirement for applying
one of the very fast hierarchical netlist consistency check-
ing tools [2].

According to growing circuit complexity, computation
time for verification will further increase unless innovative
solutions will be applied. Since designing a VLSI circuit
is an iterative process, verification time is directly time-to-
market relevant. One possible solution is to take advantage
of the locality of verification. Instead of using one worksta-
tion to execute verification sequentially, it can be performed
in parallel on a set of processors. There are four strategies
for parallel verification that can be applied separately or in
combination:

� Edge-based parallelization: Parallel handling of dif-
ferent polygon edges.

� Cell-based parallelization: Parallel verification of in-
dependent layout cells.

� Area-based parallelization: Parallel verification of
layout areas using geometrical partitioning.

� Operation-based parallelization: Parallel execution of
independent verification operations.

Because of its high degree of parallelism and inten-
sive interprocess communication, the first – fine-grained –
approach is only applicable on massively parallel systems.
This may speedup verification by up to two orders of magni-
tude [3]. However, high investment costs, the expense for a
complete reimplementation of the verification software and
limited utilization of the machine for other computational
work make this solution rather unattractive.

The other – coarse-grained – approaches seem to be
much more reasonable, because they can utilize multipro-
cessors [4, 5, 6, 7, 8] or even general-purpose workstation
clusters [9]. Since workstation clusters usually are at hand
and not very busy, investment costs are low. However,
using these clusters effectively makes it necessary to com-
bine parallelization strategies mentioned above. Especially
when using loosely coupled workstations, in many cases
interconnected by Ethernet, interprocess communication
has to be minimized to obtain sufficient speedup.

This paper describes the theoretical framework and
implementation of PALACE, a Parallel and hierarchical
Layout Analyzer and Circuit Extractor. PALACE is able
to utilize almost all kinds of present general-purpose work-
stations. These workstations may be only loosely coupled
by a local area network without significant performance
drawbacks. PALACE executes verification tasks hierarchi-
cally. In this way, design rule violations are reported with-
out repetition in every cell instance as described above. In
addition, PALACE may be combined with other hierarchi-
cal tools e. g. hierarchical netlist consistency and electrical
rule checking programs.

In contrast to earlier proposals for parallel verification,
PALACE performs a complete layout analysis and circuit
extraction. Complete refers to the absence of functional
restrictions, as for example the disability of executing se-
lection operations or extracting bipolar transistors, or even
the limitation to Manhattan layouts [8, page 344]. For
this purpose, the concept of multiple execution switching
has been applied to parallel layout verification. In addi-
tion, a wrapper concept is used for implementation, which
preserves all features of the proven sequential verification
algorithms and their ability of handling all-angle geometry.
In this way, real-world layouts of industrial leading edge
circuits can be verified.

This paper is structured as follows. Sections 2 and 3 dis-
cuss parallelization strategies of PALACE regarding special
problems concerning non-local operations and utilization of
workstation clusters. Section 4 describes techniques used
in the implementation. Sections 5 and 6 discuss some re-
sults and the areas of our further research.

2 Cell-Based Parallelization
The most natural strategy for parallel hierarchical verifi-

cation is cell-based parallelization. Sequential hierarchical
verification verifies the chip layout represented by the cell
tree in a bottom-up order cell by cell (Figure 1 a). A cell-
based parallel hierarchical verifier may handle all cells of
one hierarchy level in parallel (Figure 1 b).

1 2 4 5 6 1 1 1 1 1

3 7 2 2

8 3

Leaf Cells Leaf Cells

Top Cell Top Cell

a) b)

Figure 1: Sequential (a) and cell-based parallel verifica-
tion (b) {Numbers correspondto the order of execution

The strategy of cell-based parallel verification offers
some important features:

First, there is no data dependency between cells on the
same hierarchy level. Therefore, there is no need for in-
terprocess communication or synchronization except one
“order”-message and one “ready”-message for each cell.
These messages contain only a small amount of data.

Second, a cell-based parallel verifier can be implemen-
ted by a simple modification of the sequential program. One
master process with knowledge about the cell tree triggers
the verification of a cell by passing an “order”-message to
an appropriate slave process. Sequential verification of the
cell is performed by the slave process. After completion
the slave process returns a “ready”-message. In this manner
the complete cell tree is verified bottom-up from the leaf
cells to the top cell.

However, there is one important drawback of cell-based
parallelization. As can be derived from Figure 1, the degree
of parallelism decreases considerably on higher levels of
hierarchy. Moreover, cells on higher levels of hierarchy
often consume most of the computation time. For example,
if the top cell consumes half of the sequential runtime,
speedup is less than two, independently of the number of
available processors. In Section 5 this fact is illustrated by
some runtime measurements.

To overcome this problem, the basic approach has to be
extended by at least one of the other parallelization strate-
gies mentioned in Section 1. Area-based parallelization of
cells discussed in the next section is an efficient strategy.

3 Area-Based Parallelization
Area-based parallelization utilizes the locality of verifi-

cation. The area of a cell is geometrically partitioned into
tiles that hereafter are verified in parallel. The tile sizes can
be chosen in two ways:

� Tiles of same size are simple to compute but may
lead to load balancing problems if the density of lay-
out polygons varies. This may cause a considerable
speedup decrease.

� Tile sizes can be chosen in a computation time depen-
dent way. Considering the geometrical distribution of
layout polygons, computation time for a certain region
can be estimated and a partition may be determined
which distributes work uniformly over the involved
processors. Developing such estimation algorithms
will be an item of our further research.

A lot of false DRC-errors may be introduced by geomet-
rical partitioning. To avoid this, design rule check is per-
formed on an extended region called the verification win-
dow which is larger than the corresponding tile (Figure 2).
The verification window belonging to a specific tile is de-
termined by expanding the tile by the maximum design rule
interaction distance. In case of netlist extraction, an expan-
sion by one grid unit is sufficient for merging of broken
polygons, devices and electrical connections.

Verification
Window Tile

Cell Area

Figure 2: Verification window vs. tile

After completing parallel processing, a merging step has
to be executed to combine the tile results (e. g. completing
global connectivity information) and to correct deficiencies
(e. g. merging of broken devices, avoidance of design rule
violations reported several times).

There are two main advantages of area-based paralleliza-
tion:

First, the number of tiles is limited only by paralleliza-
tion overhead. This overhead is caused by the overlap of
the verification windows described above and by the merg-
ing step. If it is possible to perform the merging step in a
short time, area-based parallelization offers a considerable
potential for high speedups.

Second, the computational complexity of layout veri-
fication is higher than linear. For example, let n be the
number of polygon edges in the layout. Then, the compu-
tational complexity of the scanline algorithm that is used
for various verification steps is O(n logn) in best case.

í

Broken Polygon
in Verification Windows

í

Merged Polygon

Polygon Contour
Segments in Tiles

Figure 3: Merging of a broken polygon by connecting contour segments

Therefore, due to the linearizing effect of partitioning the
reduced number of polygon edges handled by one proces-
sor decreases the totally consumed computation time of
verification.

Area-based parallelization utilizes the locality of the
executed operations. For example, design rule checks have
a maximum interaction distance that is small compared to
the size of a tile. Also, the presence of a – possibly bro-
ken – MOS-transistor is determined by a boolean AND of
the diffusion, the polysilicon and the implant layer. This
operation can be performed locally.

However, there are some non-local operations. Exam-
ples are selection operations or the extraction of bipolar
transistors. In earlier approaches for area-based parallel
verification such non-local operations have not been consid-
ered. Only boolean operations, design rule checking, con-
nectivity analysis and extraction of MOS-transistors have
been supported.

For PALACE, a new concept has been developed that
allows all kinds of operations. It is based on the fact, that the
non-local operations which have to be executed sequentially
often consume only a small amount of computation time.
Therefore, effective parallel verification may be performed
by the following algorithm:

1. Resort the order of the operations considering mutual
dependencies to build maximum instruction chains of
either local or non-local operations.

2. Execute an area-based parallelizable instruction chain
without any synchronization or communication be-
tween the involved processors.

3. Synchronize the involved processors and merge bro-
ken polygons.

4. Execute non-local operations on a single processor.

5. Repeat steps 2 to 4 until all operations are executed.

6. Merge tile results, correct deficiencies and return
“ready”-message to the master.

This concept, called multiple execution switching, may
cause several merging steps. To avoid large parallelization
overhead when using a workstation cluster we developed a
partition and merging concept with following advantage:

Local operations are applied to all polygons that overlap
the verification window. Even devices that belong to more
than one window are extracted in parallel by the correspond-
ing tile processors. Resulting “half” devices and all related
connectivity informations are automatically combined by
the fast and simple polygon merging step described be-
low. In this way, no parallelizable work is done by a single
processor and the amount of sequentially executed work is
minimized.

The polygon merging algorithm works as follows (see
Figure 3):

First, polygons that overlap at least one edge of their tile
are selected in parallel by the tile processors. References
of these polygons, uniquely numbered over all tiles, are
collected by the merge processor.

Second, the broken polygons are merged by this pro-
cessor by connecting contour segments. For this purpose,
all polygon contour segments are determined which are in-
side the tile. The endpoint coordinates of these segments
(which are always on a tile edge) are stored in separate lists
for each edge of a tile and each layer. References to the
corresponding polygon points are also stored. The lists are
sorted by their x- and y-values, respectively.

Finally, coinciding endpoints of segments in adjacent
tiles are determined and the corresponding contour seg-
ments are connected. If the connected segments form a
complete outer contour, the polygon is finished. Net num-
bers assigned to conducting layer polygons by the tile pro-
cessors are unique over all tiles. Replacing the net numbers
of all parts of a broken polygon by one common net number
for the merged polygon automatically completes the global
connectivity information.

In a separate step design rule violations detected several
times are determined and eliminated. False DRC-errors
that may occur at the window boundary are deleted.

Let n again be the number of polygon edges in the
layout and m the number of contour segments to be con-

nected. Assuming uniform distribution of polygons over
the cell area, m is proportional to the perimeter of a tile,
and thusm is O(

p
n). Since runtime of the merging step is

nearly linear inm, its computational complexity is O(
p
n).

Therefore, the merging step is fast and causes no significant
parallelization overhead.

As discussed in Section 1, hierarchical verification re-
duces the number of reported design rule violations and is
a basic requirement for a hierarchical netlist consistency
check. Therefore, even a parallel verification system has to
be able to handle verification in a hierarchical way, inde-
pendently of the obtainable speedups in flat mode. In our
verification system, subcell instances are represented by
polygons in a special symbolic layer. These instance poly-
gons point to the connecting polygons in the parent cell.
Therefore, subcell instances can be handled like primitive
devices with additional properties. After area-based paral-
lel verification of a cell, broken subcell instances are merged
by the polygon merging step described above. Also, inter-
cell connectivity is completed by merging the connecting
polygons and the corresponding net numbers in the parent
cell.

4 Implementation on a Workstation Cluster
It is crucial for a parallel verification system, that it

can benefit from all current features and future improve-
ments of the sequential algorithms. Therefore, PALACE
is implemented using a wrapper concept. The sequen-
tial program is extended by a well-defined interface. This
interface allows the execution of particular functions, for
example the verification of a specific cell or cell area or
the execution of a certain operation. The sequential algo-
rithms need almost no knowledge whether verification is
performed sequentially or in parallel. Therefore, modifi-
cations of these algorithms are minimized. The sequential
algorithms, adapted to parallel execution, can be used in
the sequential verification system without any drawback.

To execute verification in parallel, PALACE uses a
master-slave scheme. One master process – started by a
UNIX-command – initiates a set of slave processes. The
master process sends “order”-messages to the slave pro-
cesses. When recognizing completion of verification, the
master process terminates the slave processes and hereafter
itself.

Currently, task scheduling is performed by the master
process in the order of arrival. When all subcells of a cell
are verified, this cell may be scheduled. If no slave pro-
cess is idle, the cell is stored in a queue. After receiving a
“ready”-message from one of the slave processes, the mas-
ter process triggers verification of the first cell in the queue.
Computation time for verifying a specific cell is unknown
until its verification is completed. Therefore, at present
cells in the queue cannot be sorted by their computation
time in order to minimize verification runtime.

Estimates of computation times of specific cells and
certain regions, respectively, are a base requirement for an
appropriate task scheduling scheme especially when area-
based parallelization is applied. Therefore, development
of such estimating algorithms will be a main item of our
further research.

Table 1: Cell-based parallel netlist extraction
(WS = workstations)

Sequential Speedup Extraction
Circuit Description

Extr. [Sec] 1 WS 2 WS 4 WS

ACHIP 64 M-DRAM 38,256 1.12 1.67 1.84

MZFO 16 M-DRAM 435 0.96 1.36 1.50

CTAG ASIC 13,544 1.04 1.64 2.06

Table 2: Cell-based parallel design rule check

Sequential Speedup DRC
Circuit Description

DRC [Sec] 1 WS 2 WS 4 WS

ACHIP 64 M-DRAM 45,339 1.04 1.33 1.35

MZFO 16 M-DRAM 1,619 0.98 1.49 1.55

CTAG ASIC 21,598 1.01 1.23 1.27

5 Results
PALACE has been implemented on Hewlett Packard

and Sun workstations. To make results comparable, work-
stations with identical configurations have been used for
runtime measurements. Up to four HP 9000/710 worksta-
tions complying with this requirement were used. These
workstationswere interconnected by Ethernet and provided
with 32 MB main memory each.

Applying cell-based parallelization alone, the speedups
presented in Tables 1 and 2 have been obtained. The results
for cell-based parallel verification correspond with the ex-
pectations discussed in Section 2. All measured times are
elapsed times and given in seconds.

At present, partitioning of a specific cell in PALACE is
performed by a user command in a special file. In addition,
all tiles of one cell are of the same size. These restrictions
cause load imbalance between the involved workstations in
most cases. Since an appropriate task scheduling scheme
is not yet implemented for reasons discussed in Section 4,
at considerable periods some workstations run idle. There-
fore, the speedups obtained by cell- and area-based paral-
lelization are nearly worst-case results of combining these
parallelization strategies and will be improved by future
extensions (Table 3).

To demonstrate the potential of geometrical partitioning
of cells for parallel verification on workstation clusters, the
results of some large cells are presented in Tables 4 and 5.

6 Conclusions
PALACE, a new system for parallel and hierarchical lay-

out verification on clusters of loosely coupled workstations
was presented in this paper. It combines cell- and area-
based parallelization. Applying the concept of multiple

Table 3: Cell- and area-based parallelization

Speedup Extraction Speedup DRC
Circuit

4 WS 4 WS

ACHIP 2.78 2.57

MZFO 2.40 2.88

CTAG 3.14 2.65

Table 4: Speedups obtained by geometrical partitioning
of single large cells (netlist extraction)

Sequential Speedup Extraction
Cell Circuit

Extr. [Sec] 4 WS

TOPCELL ACHIP 3,451 3.60

TOPCELL MZFO 142 3.82

CIRCUIT CTAG 1,270 3.74

execution switching, layout analysis and circuit extraction
are performed in parallel without any functional restric-
tion. Even all-angle geometry causes no problems, since
proven sequential verification algorithms are exploited by
a wrapper concept in the implementation. To prevent large
parallelization overhead, a fast merging algorithm based
on the connection of contour segments has been developed.
The usability of the verification system has been proven by
verifying industrial leading edge VLSI circuits, in partic-
ular large DRAM and ASIC layouts. High speedups have
been obtained reducing time-to-market significantly.

In future, PALACE will be improved as follows:
First, independent operations will be executed in par-

allel. In this way, even considerably larger workstation
clusters may be utilized effectively.

Second, parallelization strategies mentioned above will
be combined considering properties of the current cell. In
this way, speedup can be maximized and parallelization
overhead can be minimized.

Finally, algorithms for runtime estimation and task
scheduling will be developed as discussed in Section 4.
Load caused by other processes running on the worksta-
tions can be taken into consideration. Moreover, in hetero-
geneous clusters workstations with higher computational
power may be used in a more effective way.

Acknowledgement
The authors would like to thank Siemens AG for support

of this work.

Table 5: Speedups obtained by geometrical partitioning
of single large cells (design rule check)

Sequential Speedup DRC
Cell Circuit

DRC [Sec] 4 WS

TOPCELL ACHIP 2,359 3.28

TOPCELL MZFO 933 3.59

CIRCUIT CTAG 13,315 3.46

References
[1] W. Meier, ‘‘Hierarchical Layout Verification for Submicron

Designs,’’ Proc. 1st European Design Automation Confer-
ence, Glasgow, Scotland, March 1990, pp. 382{386

[2] W. Meier, ‘‘VLSI Logic Verification by Hierarchical Netlist
Comparison,’’ Proc. GME Fachtagung Mikroelektronik,
Baden-Baden, Germany, March 1995, pp. 101{106

[3] E. C. Carlson and R. A. Rutenbar, ‘‘Design and Performance
Evaluation of New Massively Parallel VLSI Mask Verifica-
tion Algorithms in JIGSAW,’’ Proc.27th Design Automation
Conference, Orlando, Florida, June 1990, pp. 253{259

[4] F. Gregoretti and Z. Segall, ‘‘Analysis and Evaluation of
VLSI Design Rule Checking Implementation in a Multicom-
puter,’’ Proc. Int’l Conf. on Parallel Processing, Bellaire,
Michigan, August 1984, pp. 7{14

[5] G. E. Bier and A. R. Pleszkun, ‘‘An Algorithm for Design
Rule Checking on a Multiprocessor,’’ Proc. 22th Design
Automation Conference, Las Vegas, Nevada, June 1985,
pp. 299{303

[6] B. A. Tonkin, ‘‘Circuit Extraction on a Message-Based
Multiprocessor,’’ Proc. 27th Design Automation Conference,
Orlando, Florida, June 1990, pp. 260{265

[7] K. P. Belkhale and P. Banerjee, ‘‘A Parallel Algorithm
for Hierarchical Circuit Extraction,’’ Proc. Int’l Conf. on
Computer-Aided Design, Santa Clara, California, November
1990, pp. 236{239

[8] P. Banerjee, Parallel Algorithms for VLSI Computer-Aided
Design, Englewood Cliffs, New Jersey: Prentice Hall, 1994

[9] J. D. Marantz, ‘‘Exploiting Parallelism in VLSI CAD,’’
Proc. Int’l Conf. on Computer Design, Port Chester, New
York, October 1986, pp. 442{445

	CDROM Home Page
	1996 Home Page
	EDTC 96
	Front Matter
	Table of Contents
	Session Index
	Author Index

