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Abstract

Most existing toolsfor the synthesisof asynchronouscircuitsfrom
Sgnal Transition Graphs (STGs) derive the reachability graph
for the calculation of logic equations. This paper presents novel
methods exclusively based on the structural analysisof the under-
lying Petri net. This methodology can be applied to any STG that
can be covered by State Machines and, in particular, to all live
and safe free-choice STGs. Sgnificant improvementswith regard
to existing structural methods are provided. The new techniques
have been implemented in an experimental tool that hasbeen able
to synthesize specificationswith over 102" markings, some of them
being non-free choice.

1 Introduction

Petri nets (PNs) are a powerful formalism to model concurrent
systems. As a model, their most interesting feature is the ca-
pability of implicitly describing a vast state space by a succinct
representation, which gracefully capturesthe notionsof causality,
concurrency and conflict between events. Petri netshave also been
chosen by many authors as a formalism to describe the behavior
of asynchronouscircuits by interpreting the events as signal tran-
sitions coining the term Signal Transition Graph (STG) [14, 3].

Each reachable marking of an STG is assigned a binary code
with the value of the circuit signals in that marking. Deriving
logic equationsfrom an STG requiresthe generation of the binary
codes for all markings. Currently, most synthesistools [15, 16]
perform an exhaustive token flow analysisto obtain the complete
reachability graph of the PN and all binary codes.

Even for small STGs, the reachability graph of highly con-
current systems can be extremely large and, in the worst case,
exponential in the size of the STG. Some efforts have been de-
voted to propose structural methods for synthesis [10, 17], but
they have been usually devised for restricted classes of PNs that
compromise the potential expressivenessof this formalism.

In this paper we present structural techniques to synthesize
speed-independent (SI) circuits from STGs. In this framework,
“structural” means “at Petri net level” without requiring the ex-
plicit generation of the reachability graph. The techniques have
polynomial complexity if the underlying PN is free choice 6, 4],
and can be efficiently extended to the class of PNs that can be
covered by State Machines (SM) [5]. We aim at complementing
the existing tools by providing alternative and efficient synthe-
sis methods for SM-coverable STGs, which account for a large
fraction of the set of benchmarkswe have used.

Thiswork improvesthetechniquespresentedin [11, 12] intwo
directions: (1) by providing new methods to calculate covers for
the boolean functions needed for synthesis and (2) by extending
these methods to the synthesis of Sl-circuits.

2 Overview

Let us assume that we want to derive alogic function for signal
y in Fig.1(a) and, in particular, for the set of markings in which
transitiony + isenabled—excitationregion of y+ (ER(y+)). This
region correspondsto all the markingsinwhich place psismarked,
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and it has been shadowed in the corresponding reachability graph
(see Fig.1(b)).

By a simple structural analysis that takes polynomial time
[4] we can deduce that the STG has an underlying free-
choice PN. We can also derive a subset of SMs that cover
the net. In this case, two SMs can be obtained, namely, the
sets Of nOdes SMl = {plax+ap2a Z+, P3,X—, pa,Z—, p7, y_} and
SM2:{plaX+ap5ay+ap6az_ap7ay_}'

Our purpose is to calculate a set of cubes that safely® cover
the binary codesin ER(y+). A single cube approximation of the
cover of aplace can be calculated asfollows: if asignal transition
can fire while the place remains marked, then the value of the
signal is unknown. Since transitions z+ and x— can fire when ps
is marked, then the value of x and z is unknown in ps. On the
contrary, the value of y can be exactly determined by analyzing
the structure of SM, and the ordering relation of y+ andy— with
ps. Thus, the cube (-0-) can be derived for ps. For places p1 and
pr, the cubes can be exactly calculated by analyzing the ordering
relations of the placesin SM1 and SM, (see Fig.1(a)).

However, we can easily detect that this cube is an overestima-
tion of ER(y+). Marking (000) is covered by (-0-), but also by
the cube of p1. Using these covers for synthesiswould derive an
erroneouscircuit in which y+ would be enabled in marking (000)
also. To overcome this situation we propose two strategies:

1. Torefine the place covers by analyzing the concurrent rela-
tions with the places of other SMs. In our case, we use the
fact that ps can only be simultaneously marked with p2, p3 or
pa, to obtain a multi-cube cover by intersecting the cover of
ps with the conjunction of the covers of p», ps and pa. Even
though several refinements may be needed, this refinement
is sufficient to guarantee a correct synthesis (Fig.1(c)).

2. Toinsert internal signals, similarly asit is doneto solve en-
coding conflicts, disambiguating covers whose intersection
producescontradictionsfor synthesis. Asan example, signal
v distinguishesthe covers of p1 and ps in Fig.1(d).

In general, both methods can be combined to obtain a correct set
of covers. In this paper, we present the conditions under which a
set of covers can be safely used for synthesis.

To give the idea about the efficiency of the structural approach
let us consider two illustrative examples.

Figure 2 presents an autonomous circuit with a C-element
closed on its inputs through inverters. A C-element is the basic
cell usedfor the synchronization of processesin asynchronousde-
signs. Itsoutput risesswhen all itsinputsarein “1" and fallswhen
onall inputsare“0”, in any other caseit remains unchanged. The
logicfunctionforaC-elementis: a=x1...xn+a(X1 + ... + Xn).
InFig.2 achangeon the output of the C-element leadsto a burst of
input changes. Asall inputs are switching concurrently the num-
ber of markingsin an-input circuit is 2", while the number of
placesin the corresponding STG (Fig.2(b)) isonly 4n.

Lonly overestimationsthat intersect with the don’t care set are allowed.
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Figure 1: () STG and covering cubesfor places, (b) reachability graph, (c) refined covers, (d) internal signal insertion.
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Figure 2: (8)C-element circuit, and (b)its STG.
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Figure 3: (@Muller pipeline, (b)STG, and (c)reachability graph.

Theuse of cover cubesfor placesis very efficient here because
they definethe excitation regionsfor all signal transitions exactly.
Indeed, giventransitionx1- e.g., thecube (1--1) of its predecessor
placep4 (Fig.2(b)) is an exact cover for ER(x1-). For the output
transitions exact covers can be also computed. Given transition
a+ eg., itspredecessor placespi, p2 and ps, and theintersection of
their cubes gives the single marking (1110) where a+ is enabled
((1--0) - (-1-0) - (--10) = (1110)).

Another example is a Muller pipeline of C-elements (see
Fig.3(a), where afive cell pipelineis presented). Each cell canbe
set eitherto 1 or to 0. State “1” is aworking state and shows that
the cell contains information. State “0” is an idle state showing
that the cell doesnot contain useful information. Therulesfor the
pipeline functioning are the following:

o cell : goesto aworking state if cell (: — 1) isin aworking
state and cell (: 4 1) isin anidle state,

o cell s goesto anidlestateif cell (¢ — 1) isinanidle stateand
cell (z + 1) isin aworking state.

The STG and a piece of its reachability graph for the five cell
pipeline are presented in Fig.3(b)(c).

Supposewe would like to obtain the logic function for signal
z2. From the cube approximation ER(z2+ ) can be obtained from
the intersection of cubes for places p1 and p2, while ER(z2-)
from the intersection of cubes for places ps and ps. This gives
the following covers: ER(z2+) = (10---) - (-00--) = (100--) and
ER(z2-)=(-11--)-(01---)=(011--). Thesecoversaresafebecause
they cover theER(z2+) and ER(z2 - ) (shadowedin Fig.3(c)) plus
the vertices (10010) and (01101) —known to be in the dc-set.

In both considered examples we got the functions for signals
from the structural information in the STG rather than by restora-
tion of its reachability graph. These examples are illustrative
ones, not alwaysthe function derivation procedurewill be so sim-
ple. However they alow to catch a general view of complexity
reduction while using the cover cube approximations.

In the rest of the paper we describe how the aforementioned
techniques can be applied in case the covers do not fulfill the
synthesisconditions. Wewill remark the fact that the reachability
graph of the specification is never generated during the synthesis
of the circuit. The proposed techniques have been implemented
in an experimental tool. We will finally report the results obtained
from alarge set of benchmarks.

3 Dfinitions

A Petri net (PN) isa4-tuple> = (P, 7, F, M,,), where P isthe
set of places, 7 isthe set of transitions, 7 C (PxT) U (7 x P)
isthe flow relation, and M, istheinitial marking. Given anode
z € PUT, its post-set and pre-set are denoted by z* and *=
respectively. A path of aPN isasequencez; . . . z, of nodessuch
that Ve, 1 < @ < r @ (z:,2:41) € F. A pathis called simple if
no node appears on it more than once. A State Machine (SM)
isa PN such that each transition has exactly one input place and
one output place. A Free-choice net (FC net) is a PN such that
every arc from a placeis either a unique outgoing arc or a unique
incoming arc to atransition.

A transition ¢ is enabled in amarking M, denoted by M [¢),
whenall placesin *t aremarked. An enabledtransitionin A/ fires,
removing a token from placesin *¢ and adding a token to places
in ¢*, reaching a new marking M’ (M[t)M'). A marking M
is reachablefrom M, if there is a sequenceof firings ¢tz . . . ¢,
that transforms M, into M (M, [t1tz. .. t,) M), hencetsts . . .ty
is a feasible sequence. The set of reachable markings from 37,
is denoted by [M.). A PN is live if every transition can be
infinitely enabled through some feasible sequence of firingsfrom
any marking in [AM,). A PN is safeif no marking in [A,) can
assign more than one token to any place.

A live and safe FC net can bedecomposedinto apotentially ex-
ponential number of strongly-connected SM-Components (SMs)
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Figure 4: (8)STG example, (b) corresponding Reachability Graph, (c) SM-Cover.

[6]. We call SM-Cover a set of SMs such that every placein the
PN isincluded at least in one SM. The number of componentsin
a SM-Cover is bounded by the number of placesin the PN.

A Sgnal Transition Graph is atriple (X, S,\), whereX isa
PN, S isasetof signas{a, b, c, ...}, and A isalabeling function
N: 7T — S x {+,—}, inwhich the transitions are interpreted
asvalue changeson circuit signals. Rising and falling transitions
of asignal a are denoted by a+ and a— respectively, while ax
denotesa generic transition. Multiple transitions for a signal will
be distinguished by meansof indicesai+, az+ (in figures, instead
of indicesfor a1+, a+ /1 will be used).

An STG is graphically represented as a directed graph with
transition denoted by their names and places by circles, where
places that have only one predecessor and successor transition
are usually omitted. Transitions of input signals are underlined.
The example of a free-choice STG with signals S = {a, b, ¢, d}
is shown in Fig.4(a). Fig.4(c) depicts three SMs that cover this
STG.

Each marking in the STG is encoded with a binary code of
signal values by means of a labeling function  : [MO& — BI9l,
The function A must consistently encode the STG markings, that
is, no marking M can have an enabled rising (falling) transition
a+ (a-) if A(M)a=1(A(M)a=0).

An STG specification is composed of several signal transi-
tions and causality relations between them. Hence, to derive
the correspondence between transitions and the markings of the
specification different signal regionsare defined:

¢ Theexcitation region ER(a; ) isthe maximal connected set
of markings in which transition a; « is enabled.

¢ Thequiescent region QR(a; «) isthe maximal connected set
of markingsthat can be reached from ER(a; «), and the back-
ward quiescentregionBR(a; «) isthe maximal connected set
of markings that can reach ER(a;«), in both cases without
enabling any other transition a; «.

Atransitionb,« andsignal b aretrigger for a; « if theexcitation
region ER(a;«) is reached by firing transition b;«. Signal b is
concurrentto a; « if someb; « isenabledin ER(a; «) and thefiring
of a;« or b« does not disable the other. A trigger transition b «
is non-persistent to a; « if some transition b; = is concurrent with
a;«, otherwiseit is persistent.

The reachability graph for the STG in Fig.4(a) is depicted in
Fig.4(b), shadowing the excitation regions for output signal d.
Additionally, its quiescent and backward quiescent regions are:

at+/2

d+/2
p10
a-/2

QR(d+/1) ={ S S S S S Su}, BR(d+/1) ={ i},
QR(d+/2) ={ S Si3 Sua}, BR(d+/2) ={ S S0 Suu},
QR(d-) ={ S S sul, BR(d-) ={ S35 S Se S Si3 Su}-

4 |Implementability Conditions for S|

The synthesis conditions for Sl-circuits have been exhaustively
investigated by Beerel et al. [2] and Kondratyev et al. [7]. The
conditions are applied to the synthesis of a two-level signal net-
work (Sum-of-Products) with amemory element on its output. In
thiswork, we will useasimilar architecturein which asignal net-
work for each non-input signal a is constructed in four successive
steps:

1. Transitions for signal a are partitioned into several sets
Tip, .. Toy TA-, ..., 17—, exclusively composed of
rising and falling transitions —the transition clusters.

2. Each cluster T« isimplemented by aregion cover R(T4x).
A region cover is a function that implements the transition
switching. Thefirst level of the signal network consists of a
set of rising and falling region covers.

3. Therising region coversare combinedto createthesetregion
network (Sa), while the falling region covers are combined
to create the reset region network (Ra).

4. Finally, Sa and Ra are connected to a C-element to create
the output signal. Sa forces the memory element to switch
from 0 to 1, while Ra producesthe switch from 1 to 0.

The required two-input C-element implements the output sig-

nal a with a next state function a = SaRa + a(Sa+ Ra). Both
the set and reset region networks are created by combining the
region covers with a pair of OR-gates. Each region cover may be
implemented with complex gates.

Figure 5(a)(b) shows two different implementations for out-
put signal d in Fig4(a). The first implementation (Fig.5(a))
corresponds to the transition cluster partitioning 75+ = {d+/1},
T§+={d+/2} and Tg—={d-}, which areimplemented by region
covers R(Ti+)=a+bc, R(T¢+)=a,and R(Tj-)=a+b +c.
Thiscircuit isnot S| becauseif the AND-OR gatefor Tjj+ isslow
enough the pulse on input a can propagate to the output Sg.

In Fig.5(b) transitions d+,1 and d+ /2 are merged into one
cluster Ty+. This makes the overall circuit simpler and Sl (the
racesbetweeninputsa and b take placeonly within one AND-OR
gate).

The signal regions are extended for transition clusters, e.g.
ER(T3+) is the union of the excitation regions for the transitions



Figure 5: Two different implementations for signal d.

in T4« Similar extensionsexist for QR(T4«) and BR(T5+).

The synthesis objective is to simplify as much as possible
the complexity of the region coverswhile preserving the correct
circuit operation. A region cover R(13+«) may cover markingsin
QR(T3+) or BR(T3+) to minimizeits literal count.

However, not al the markings in QR and BR can be freely
used because some of them are shared by multiple transitions of
the samesignal. Noneof these shared markings can be covered by
aregion cover. Otherwise it would violate the basic requirement
for the correct operation of the signal network, i.e. only onerising
(falling) region cover of the same signal can be excited simulta-
neously. The subsets of the quiescent and backward quiescent
regions that do not contain shared markings are called restricted
regions, and denoted by QR" (73«) and BR" (T3 «) respectively.

Covering markings in the backward quiescent regions is only
possible because of the characteristicsof the C-element (aspointed
out in [8]). Any marking in BR"(73«) covered by R(7T3«) must
be also covered by some other region cover R(T% «).

Definition 1 A set of region covers R(T4+) for the output signal
a issaid to be correct if
1. Any markingin ER(T4«) is covered by R(T4«).
2. R(Téf) does not cover any reachable marking outside
ER(T4x) U QR"(Tax) UBR" (T3).
3. AnymarkinginBR" (T4 +) coveredby R(T4+) isalso covered
by some R(7% +) suchthat QR” (73 +) N BR" (T3+) # 0.

Informally Def.1 requires that:

1. Every timewe arrive to amarking in the excitation region of
the cluster T4« the output for R(T4+«) hasto go up.

2. Thiswill be the only one output in the region network for a
that goes up.

3. R(T4x) cango up even before entering ER(T4+), but in this
casethe oppositeinput of the C-element hasto hold its value
to prevent the premature firing of a.

Finally, the region covers must be monotonic, i.e. guarantee
that every output transition in the specification is exactly imple-
mented by a0 to 1 and a 1 to O switch of its corresponding

region cover. R(T4«) issaidto bemonotonicif it changesexactly
twice in any sequence, wheretherising changeisat amarking in

BR"(T4x) U ER(T4+) and thefalling changeis produced before
reaching the next excitation region of signal a.

Definition 2 A correct set of region covers R(T4+«) for the output
signal a is said to be monotonic if
1. VM € QR'(T4+) covered by R(T4«), YM' € QR"(Tax)
suchthat M'[t) M, M isalso coveredby R(T4x),
2. YM € BR"(T4+) covered by R(T4s), YM' € BR"(T4x)
suchthat M[t)M’, M isalso coveredby R(T4x).

The main result proved in [2, 7] was the following:

If all the region covers satisfy the monotonous condi-
tions, the circuit implementation is speed-independent.

The main purpose of the following sectionsis to show how the
monotonouscover conditionscan be ensured for the region covers
without generating the reachability graph of the STG.

5 Single Cube Approximations

This section studiesthe relations between the structure of an STG
—restricted to free choice nets— and its reachable markings.
A methodology is presented to implicitly manipulate the STG
without explicitly generate its markings, namely:

1. Thedynamic behavior of the STGisanayzed by determining
the pairwise concurrency between its transitions.

2. Themarkingsin the STG are approximated by sets of cubes.
5.1 Concurrency Relation

The dynamic behavior of a PN isindirectly defined by analyzing
which pairs of transitions can or cannot be concurrently enabled,
namely the Concurrency Relation.

Transition’sconcurrency isdefined interms of reachable mark-
ings —if there is a reachable marking where two transitions can
firewithout disabling each other, thetransitions are said to be con-
current. Additionally, the Concurrency Relation can be extended
to places, and places and transitions [12], e.g. two places p; and
p2 are said to be concurrent if thereis areachable marking M in
which both of them are marked.

Formally, the Concurrency Relation is a binary relation CR
between the nodes of the PN, such that two nodes (1, u2) are
concurrent if (u1, u2) € CR. The CR relation can be defined on
the set of reachable markings as[12]:

(tla tZ) €CR & IM M[t1t2> A M[t2t1> ;
(p1,p2) € CR «3IM : M(p1)=M(p2)=1;
(tp) €CR & MM’ MM A M(p)=M'(p)=1 .

A polynomial-time algorithm for the computation of the CR re-
lations of alive and safe free-choice PN is presentedin [9].

The concurrency relation between signals and nodes of the
STG can beindirectly studied by using the Concurrency Relation
of the PN. The Signal Concurrency Relation is a binary relation
SCR betweensignalsin S and nodesin the STG, such that signal
a and node u; are concurrent if (a,u;) € SCR. Formally,

a,u;) € SCR if exists a transition a;« concurrent to «;, i.e.
a;x, u]) cCR.

5.2 Structural Marking Analysis

Thissection providesamethodol ogy to approximatethe markings
in the STG by means of its binary code. The STG markings will
be partitioned into a set of regions with respect to its nodes. A
single cubeis initially generated for each region. This covering
cube coversthe binary codes of all the markingsin the region.

The marked region MR(p) is the set of markings in which
p is marked, i.e. MR(p) ={M € [M,) | M(p) =1}. The
enabledregion ER(t) isthe set of markingsin which ¢ is enabled,
i.e ER(t)={M € [M.)| M[t)}. The enabled region of any
transition is equivalent to the intersection of the marked regions
of its predecessor places, i.e. ER() = (1 .., MR(p).

The Signal Concurrency Relation provides the information to
decideif the value of asignal a is constant in amarked or enabled
region. However, the relative position of the place or transition
Waialth respect to thetransitionsa;  is neededto determinethe signal
value.

Let us say that transition a;« is next to a, « if there exists a
feasible sequencein the STG which contains no other transitions
of signal a between a;« and a;« (pair (a,«, a;«) is adjacent). A



signal transition a, « can have several transitions a; « that are next
to it, we will denote this set as next(a;«). Similarly it can be
defined the set prev(a; «) for predecessor transitions.

Return to the output signal d in our STG examplein Fig.4(a).
Signal transition d+/1 has only one transition next to it (d-),
while nexzt(d-) containsboth transitionsd+,1 and d+ /2.

Property 1 [13] If in afree-choicelive consistent STG thereisa
simple path L between a;+ (a;-) and a; — (a;+) such that:

1. foranyplacep € L : (a,p) € SCR,
2. I does not contain transitions of signal a;

then there exists a feasible sequenceq = ¢1, a;+, ¢2, a;—, where
subsequence ¢2 does not contain any transition of signal a.

Based on Prop.1 to check whether a;« is next to aj;« it is
sufficient:

1. tofind asimple path L between a,« and a; ,

2. to check the non-concurrency of all nodesin the path 7 to
signal a.

Both conditions can be directly verified on the structure of the
STG. Its complexity is similar to the construction of the graph

transitive closure (O(n*), where n is the number of nodesin the
STG).

Additionally, the STG consistency analysis can be reduced to
the calculation of next relation between transitions. Indeed, an
STG is consistent if and only if for every transition a;+ (a;-)
the set next(faﬁ) (next(a;-)) contains only negative (positive)
transitions of a. To our knowledge, this is the first proposed
polynomial method to check consistency for any free-choice STG.

L et usintroduce onemore notion to characterizethe position of
aplace or a transition with respect to adjacent signal transitions.
The Interleave Relation is a binary relation ZR between place
or transition and the pair of adjacent transitions (a;«, a;x). A
node u; isinterleaved with a;« and a;« (u; € ZR(ajx, a;x)), if
there exists a simple path from a; « to a;» containing »; and not
containing nodes concurrent to a. For example, in Fig. 1(a), p2 is
interleaved with (x+, x—), whereas ps is not.

The binary codesfor the markings in each one of the marked
and enabled regions are implicitly determined by computing a
cover cube for the region. The cover cubes [12] C,, and C; are
the smallest cubes, i.e. with the greatest number of literals, that
respectively cover MR(p) and ER(¢).

Property 2 [13] If in a free-choice live consistent STG place p,
is interleaved with (a;+, a;—) then it cannot be interleaved with
any pair (ax—, ai+).

Property 2 guarantees that the value of signal a in the marked
region of p depends on the position of p with respect to the
transitions of a. This value can be determined by the Interleave
Relation and will bethe samefor all the adjacent pairsfor which p
isinZR. Thisgivesapolynomial time algorithm (for free-choice
STGs) to determine the value of each literal €2 in the cover cube
of place p:

a
Ci=<1a

The cover cube C; is defined in terms of its predecessor places:
Ct = ﬂpG't Cp .
Table 1 depicts the cover cubes for the places and transitions

of theexamplein Fig.4(a). Notethedirect relation with the Signal
Concurrency Relation between signals and STG nodes.

Eladjacent(ai+,ai_) :pEIR(aH,ai—) ,
3 adjacent (ai—, ai+) p € IR(ai—, ai+) ,
(a,p) €SCR .

Cpy [ 0000 [[ Cp, | -00 [[ Caysz | 0000 [[ Cp, , | 0000
Cpy | 100- || Cpy | 01 || Cqpyy | 00 || Cpyyy | -010
Cps | OL || Cp | 11 || Coppn | 200- || Cajy | 1-1-
Cp, | 0100 || Cpg | 0110 || Coyyo | 0200 || Caysp | OL10
Cpg | 1120 || Cpyy | 111 || Cq,/p | 1110 || Cayp | 1111
Cpy | 111 || Cpyp | O || co— | 0111 || ¢, | 0101
Cpp | 0101 || ¢, | 0001 || cg_ | 0001

Table 1: Cover cubes, with signal order (a b ¢ d), in Fig.4(a).

6 Cover Approximations

Two elements are required to define a precise structural approxi-
mation of the signal regions:
1. asetof STG nodesthat definethe structure of the region,

2. alogic function for each node that determines the binary
codes of the markings in the region.

6.1 Signal Region Structure

Defining the signal regions in terms of sequencesin the STG
provides the intuition for its structural analysis. The excitation
region ER(a; «) isthe set of markings that enable a; «, i.e.

ER(ai+)={M | Ma;)}.

The quiescent region QR(a;«) is the set of markings reached
after a sequence a;« o that does not enable another transition
Ay*, aAjx € next(a,‘*), ie

QR(a,*):{M | [ai* 0'>M A /Ha]* . [a]* EoTgv M[a]*>]}

The backward quiescent region BR(a;«) is the set of markings
from which there exists an alowed sequence o a;«, |o| > 01in
which no transition of a is enabledin any proper subset of o, i.e.

BR(a;«)={M |M[c a;+) a|0|>0a Vo' co: -M[o" a;+)}.
Hence, the structure of the signal regions can be defined by means
of sets of nodesin the STG.

The excitation region ER(a; ) is defined by the excitation
transition set ETS(a; «), containing the transition a;«. The qui-
escent region QR(a;«) is defined by the quiescent place set
QPS(a;«). A placebelongsto QPS(a; «) if it is* between” a;« and
a;« € next(a;«). Thiscan be expressed by using the Interleave
Relation, i.e.

pE QPS(al*) & dajx € next(ai*) pE IR(ai*, a]*).
Similarly, the backward quiescent region BR(a; «) is defined by
the backward quiescent place set BPS(a;«). A place belongs to
BPS(a;«) if itis“between” a;« and a;« € prev(a;«), i.e.

p € BPS(aix) < Ja;« € prev(aix) 1 p € ITR(a;x, aix).

Again, both transition and place sets can be extended to transition
clusters as the union of the corresponding sets for the transitions
in the cluster.

The introduced notions can be illustrated on the exam-
ple of STG in Fig.4(@. For cluster 7+ the quiescent
place set includes al the places “between” d+,/1 and d— that
giVESZ QPS(T&+) = {p4,p11,p13,p14}. The backward quies—
cent place set for T+ consists of places that are between
d— and d+/1, i.e. BPS(Tj+) = {p1,p2}. Applying sim-
ilar considerations: QPS(T5+) = {plo,pll,plz,pls,p14} and
BPS(T3+) = {p1, p7, ps, po}-

The restricted quiescent region is approximated by the re-
stricted quiescent place set QPS"(73+), computed as the quies-
cent place set minus the places shared with the quiescent place
sets of other transitions of the same signal, i.e.

QPS'(T3+) = QPS(T3+) — Ua,ugr;. QPS(a;+) -



A similar reasoning defines the restricted backward quiescent
place set BPS™ (13+) as,

BPS' (Tax) = BPS(Tax) — Ua, vgrs. BPS(T3+) -

To produce the restricted quiescent place set for T3+

eg. in Fig.4(a) we need to remove from QPS(T(}J,) places
pu, piz and pu, because these places are shared with

QPS(T2+). Note, that if we merge transitions d+,2 and
d+/2 into one cluster Tq+ = {d+/1,d42} then the quiescent
place set and the restricted quiescent place set will coincide:

QPS'(Ty+) = QPS(Ty+) = QP(T+) U QPS(T5+).
6.2 Cover Correctness

Each oneof the nodesused to structurally definethe signal regions
has assigned a logic function, named cover function and denoted
cv(u). This cover function approximates the binary codes of the
markingsin the signal region of «.

The proposed methodology starts using the cover cubes as
initial cover functions. However, the QPS(a;+) and BPS(a;x)
sets are imprecise approximations at their boundaries. By defi-
nition QPS(a;«) e.g. contains all the places “ between” a;« and
a;« € next(a;«). However the cover function of input places
of a;« covers also ER(a;«). It is easy to see that in ER(a;«)
the function for signal a has to change its value. Hence, to
avoid the overlapping of QPS(a; «) and ETS(a; «) the predecessor
placesp € *(a;«) used in QPS(a;«) should be recomputed into:
cv(p)gps = cv(p) — cv(ayx). (Note that the refinement of the
places ())f the quiescent region also refinesthe backward quiescent
region.

In casecv(a;«) isoverestimated, it may result in an underes-
timation of the markings covered by QPS(a;«). Overestimations
for the transitions of the STG can be detected using the informa-
tion provided by a SM-Cover of theunderlying PN. Checking that
the existing cover functions can be properly used to approximate
the different signal regions requires the intersection of the cover
functionscv (p; ) and cv(p;) for all pairsof different placesin each
SM of the SM-Cover. Empty intersection for all pairs guarantee
that an STG is free of coding conflicts.

Property 3 [13] Given an SM-Cover SMC, the STG is free of
coding conflictsif for every SM-Component SM € SMC:

Y(pi,ps) € M i # 5 & cv(ps) - cv(py) = 0.

The absence of coding conflicts guarantee the completeness
of the ETS, QPS, and BPS approximations. However, the cover
cubesmay still give an overestimated approximation to the signal
regions. The following property gives the conditions when such
an overestimation is safe.

Property 4 If the cover cube cv(asx) is not intersecting with the
coversfor the excitation and quiescent regionsof other transitions

of a then cv(a;«) isa correct cover of ER(a;«). 2

Property 4 gives only sufficient conditions for a correct cover.
If these conditions are not satisfied it does not mean that the
correctness of the cover is violated. The forbidden intersection
may happen at the dc-set. Here we have two possibilities:

1. To be conservative and to consider every intersection as a
bad one. Then by adding state signalsthe covers alwayscan
be reduced to non-intersecting (see Section 8 for details).

2. To refine the covers of regions. If the refinement is done
up to exact covers then conditions of Property 4 always can
be satisfied for an STG without USC conflicts. However
the refinement technique leads to a growth of the number of

2Herefor clarity the simplified notion of correct cover is used without extension
to the backward quiescent region.

cubesin the cover and is computationally expensive (seefor
details Section 7).

Another condition that has to be checked for covers is the
monotonicity requirement (see Def.2). If the correct cover condi-
tion is satisfied for cv(a;«) then cv(a;«) - cv(a;«) = @ and cube
cv(a;«) hasto beturned off somewhereinside QR(a; ).

By examining the transitions that are in TR (a; «, a,+) we can
find the set cv(a;«) | that contains all the transitions turning off
cubecv(a; ) for the first time. The monotonicity condition says
that after cubecv(a;«) isturned off by thetransition¢ € cv(a;«) |
it cannot beturned on again inside QR(a; x).

Let us generalize the Interleaving Relation for the pairs
(t,a;x), wheret € cv(a;«) |. All placesthat arein ZR(t,a;x)
can be reached only after the firing of ¢, i.e. after the cube
cv(a;«) isturned off. Therefore the monotonicity is ensured if
cube cv(a;«) is never turned on again in the markings that are
covered by marked regions of placesp € ZR(t,a;«). Thisis
characterized formally in the following Property.

Property 5 The correct cover cube cv(a;«) is monotonous if
for any aj« € nest(a;x), any t € cv(a;x) | and any place
p € TR(t, a,+) the cubecv(a;«) isnot intersecting with cv(p).

It is easy to see that when the notion of correct cover is ex-
tended by backward quiescent regions we are dealing with the
requirements on the BR that are somewhat similar to monotonic-
ity. They can be checked in the sameway as Property 5 suggests.

Properties 4 and 5 give simple sufficient conditions for the
analysisof the monotonous cover requirement by the region cov-
ers. Two different techniquesto ensure them are demonstrated in
next sections.

7 Refinement of signal region covers

Theinitial cover cubeapproximations can berough—only thefact
of concurrency between places (transition) and the signal is used.
This binary concurrency relation is not sufficient becausefrom a
concurrent to b and a concurrent to ¢ nothing can be said about
the joint concurrency of a, b and ¢ (nodesb and ¢ can be ordered
eg.). To exploit more exactly the structure of casual relations
between STG nodes we can refine the initial approximation for
place or transition cover cubes by other cubesin the STG.

The set of SM-Components that covers the STG is complete
in the sense that no information about the STG is lost under
such apartition. One SM-Component reflectsthe causal relations
between the STG nodes only partially, however their cover set
represents it completely. This observation is the main one under
the idea of refinement.

Formally, the refinement of the cover cube cv(p) of placep 3
by a SM-component SM results in the cover that is obtained as
the intersection of cv(p) with the sum of the cover cubes of the
places p; € SM that are concurrent to p, i.e.

OIS

p;€SM: (p,p;)ECR

cv(p) - ev(pi) -

Such a refinement procedure is safe for free-choice live STGs,
that meansthat no marking from the marked region of a placecan
belost while making arefinement [13].

Indeed place p is refined only by the places of SM that are
concurrent to it. Then the only marking that can be removed
via refinement is the marking A which marks p but no place
pi € SM, (p:, p) € CR. But thelatter contradicts the liveness of
the STG becauseunder marking A/ SM will contain no token.

Refining by using the SM-Componentsin a SM-Cover permits
more STGsto satisfy Prop.3 by eliminating fake coding conflicts.

Stransition refinement is obtained as the intersection of the refined cover cubes
of itsinput places.



A coding conflictbetweenp; andp; (cv(p;)-cv(p;) # 0)isafake
coding conflictif existsa SM-Component SM covering p; , where
placep; hasno coding conflicts. In that casewe can concludethat
cv(p;y) is overestimated and should be refined by using SM.

Obviously, several undetected overestimations may remain.
Making a sufficiently large number of refinement steps we will
arriveto the exact cover for every place, however such anapproach
has two shortcomings:

1. It increases the number of cubes for the place cover. In
extreme it can be comparable to the number of markingsin
the marked region.

2. The question about the minimal set of SM-Componentsthat
is sufficient for exact refinement is an open one. It is still
needed to be proved that the set of SM-Components that
cover STG can always make a refinement exact.

Due to the growth of the cube number in the cover, the appli-
cation of the refinement technique is restricted to 1-2 iterations.
Refinement is applied in those caseswhen for sure the one-cube
cover cannot exist, in persistency violations e.g. [13]. Theidea
of refinement wasillustrated in Section 2 where oneiteration was
sufficient to get the exact cover for the non-persistent transition
of signal y.

8 Insertion of statesignals

When the cover functionsdo not fulfill the conditionsfor synthesis
and we do not like to perform the refinement for the covers of
places and transitions, state signals can be inserted.

This situation will be detected as follows. Given a SM-
Component SM, all places that belong to SM define a complete
partition of all reachable markingsof the STG (since no morethan
two places of the same state machine can be marked simultane-
ously). A state signal will be inserted when, for two places p1
and p> of SM we have that cv(p1) - cv(p2) # @. This non-empty
intersection can be produced by two facts:

1. TheSTG hasno USC, or
2. Theoverestimation of the covers producefake conflicts.

In both cases, theinsertion of state signals can disambiguate the
contradictions among covers. Thiswasillustrated in the example
of Fig.1(a), in which signal v was inserted to disambiguate the
covers of places p; and ps.

Thealgorithm for statesignal insertion used in our toolsissim-
ilar to the one proposed in [11], and it is based on the bi-partition
of the SM-Components that contain the places with intersecting
covers. The algorithm works on the structure of the STG and
has O(n®)-time complexity, n being the number of places and
transitions of the net.

9 Experimental Results
9.1 Structural Synthesis Methodology

This section combines the synthesis conditions and the structural
signal region analysis into a heuristic minimization algorithm.
The objective is to reduce the number of cubes and literals re-
quired to implement a set of monotonous region covers by using
gates in a given gate library. The reductions are achieved by
sequentially applying logic minimizations. Each successfully ap-
plied minimization reducesthe complexity of theimplementation,
but assuring that the transformed implementation remains correct.
Therequired gatesare matched againstthe gatelibrary, andfinally
are optimized by using a boolean matching technology mapping
algorithm.

Practically, the signal region analysis methodology allows the
implementation of multiple signal transitions by the same region
cover combining several transitions of a signal into a transition
cluster. Each transition cluster is implemented by asingleregion
cover R(Tax). Theutilization of transition clustersallows abetter
usage of the available complex-gatesin the libraries.

Three sets of logic transformations can be applied in order to
reduce the complexity of the region covers, namely:

¢ Theexpansion of eachregion cover by meansof theiterative
elimination of itsliterals towardsthe restricted quiescentand
backward place sets, and dc-set.

¢ Theanalysisof theinterrelations betweentherising or falling
region covers. Then, detecting pairsof region coversthat can
be merged (two transition clusters are joined into a single
one) reducing the number of required region covers.

o Usethestructure of the signal networksto combinetherising
and falling region covers with the memory element.

Region cover expansion as well as complete region cover
derivation are well known techniques used in [2, 7] that are
directly applied here. Traditionally, pairs of single-cube re-
gion covers with the same support at distance 1 are substi-
tuted by its merging consensus. However, region cover merg-
ing extends this transformation to multi-cube region covers tak-
ing advantage of the existence of complex gates. Additionally,
the region covers and the memory element are combined in a
particular case in which a = viv2 v172 + a(’Ul’Uz + 5152) , is
substituted by a = wiv2 + a(v1+ v2) . This transformation
reduces two AND gates and one C-element to only one C-
element implementation. We also apply asimilar transformation
in which a = vivo viv2 + a(’Ul’Uz + ’0152) , is substituted by
a = v1v2 + v1a , reducing two AND gates and one C-element to
only one gated-latch implementation.

9.2 Areaof thecircuits

Table 2 compares the area results of several synthesis tools in-
cluding our methodology. The first column depicts the number
of markings for the benchmark, while the columns labeled SYN,
FCG and S3C reports the area obtained by the synthesis method-
ologiesdeveloped at Stanford [1], Aizu [8], and our methodology.
The results show that the combination of the structural approach
and the new logic minimization techniques results in significant

improvements*—23% areareduction with respect to[1]—in short
CPU times —less than 8 secs. for the worst case (pe-send-ifc).

If we take into account that some of the new minimization
techniques were not used by SYN, we can at least claim that
using structural methods does not negatively influence on the the
quality of the circuits obtained.

9.3 Runningtime: structural vs. state-based

In order to illustrate the effectiveness of structural over state-
graph-based methods, we have run some experiments for some
STGs with a large state space and compared the running times
with SIS[15] and ASSASSIN[16].

Table3reportsthe CPU timesina SUN SPARC20 workstation.
All the examples fulfilled the CSC property. For SIS we report
the running time for the command ast g_t o_f . For ASSASSIN
we report the running time for the commandsassa._st g-t 0_sg
andassa_haz_| ogi c. Thesuperiority of structural methodsis
evident.

Interestingly, the dining philosophers benchmark is one of the
examples that illustrates that non-free-choice STGs can also be
synthesized if a cover of state machines can be found for the
net. Another scalable example is the Muller pipeline (see for
the description Section 2 and Fig.3). Its STG contains no choice
places and the circuit realization is a chain of C-elements. The
column labeled SMs indicates the number of SM-Components
required to cover the net for the dining philosophersand theMuller
pipeline examples.

“all synthesis results have been formally verified to be speed-independent.



[STG [ Satles [ SYN [ FCG | S3C [ STG [[Satles [ SYN [ FCG [ S3C ]
chul33 24 232 216 208 wrdatab 216 784 744 488
chul50 26 248 232 128 Xyz 8 200 192 136
chul72 12 168 112 104 alloc-outbound 21 400 - 308
converta 18 376 320 258 mp-forward-pkt 22 320 - 256
ebergen 18 352 280 120 nak-pa 58 336 - 320
full 16 112 112 80 pe-rev-ifc(*) 65 1304 - 1146
hazard 12 248 240 80 pe-send-ifc(*) 117 1632 1632 1122
hybridf 80 152 152 130 ram-read-sbuf 39 432 - 360
nowick 20 456 456 274 rev-setup 14 144 - 120
qr42 18 352 280 120 shuf-ram-write 64 320 - 304
rpdft 22 224 - 160 sbuf-read-ctl 19 296 - 258
trimos-send 336 648 - 552 sbuf-send-ctl 27 280 - 226
vbelOb 256 792 784 608 sbuf-send-pkt2 28 504 - 364
vbe5b 24 192 192 208 sendr-done 9 80 - 82
vbe5c 24 200 200 152
Total 11784 9076
Totalx 6496 6144 4216

Table 2: Arearesults (x non-free-choice STGs, * totals restricted to STGs synthetized by FCG).

CPU
‘ STG ‘ states ‘ cubes ‘ area H SIS [ ASSASSIN | S3C I
tsbms 1024 143 | 744 43 256 1
tsbmSIBRK 4730 298 | 1136 1876 12219 8
master-read-1 2254 117 | 610 250 1252 2
master-read-2 18856 | 2786 | 1052 || > 9h. > 24h. 34
master-read-3 21848 | 2802 | 1102 || > 9h. > 24h. 35
par4 1303 95 | 500 80 271 1
par8 1.7 x 10° 342 | 920 - - 7
parl6 2.8x 102 | 1190 | 1768 - - 45
a)

[ STG | states [ SMs | CPU |
phil3(*) 864 9 2
phil10(*) 7.4% 10° 30 | 120
phil20(*) | 5.5 x 10%° 60 | 1455
mullerl0 420 16 1
muller50 | 1.7 x 10% 96 85
muller100 | 1.2 x 107 | 196 | 1437

(b)

Table 3: CPU time (in seconds) for synthesis: (a) comparisonwith SISand ASSASSIN, (b) scalable examples (x non-free-choice STGs).

10 Conclusions

Structural techniques for the analysis and synthesis of STGs are
essential when the size of the state space becomesunmanageable
by algorithms that work at state graph level.

This paper has presented new methods to synthesize STGs
with underlying free choice PN. The proposed algorithms have
polynomial complexity in the size of the net and can be easily ex-
tended to the class of PNsthat can be covered by SM-Components.
Although the calculation of a SM-Cover cannot be calculated in
polynomial time for non-free-choice nets, some recent symbolic
techniques have been proved to be very efficient [5]. Future work
will be devoted to fully characterizethe class of Petri netsthat can
be handled by the presented techniques.

The experimental results show that the proposed methods ob-
tain efficient implementations in short CPU times. Some of the
existing tools have not been able to synthesize the largest cir-
cuits, whereas the presented method has managed to do it in few
seconds.
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