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Abstract
Most existing tools for the synthesis of asynchronouscircuits from
Signal Transition Graphs (STGs) derive the reachability graph
for the calculation of logic equations. This paper presents novel
methods exclusively based on the structural analysis of the under-
lying Petri net. This methodology can be applied to any STG that
can be covered by State Machines and, in particular, to all live
and safe free-choice STGs. Significant improvements with regard
to existing structural methods are provided. The new techniques
have been implemented in an experimental tool that has been able
to synthesize specificationswith over 1027 markings, some of them
being non-free choice.

1 Introduction
Petri nets (PNs) are a powerful formalism to model concurrent
systems. As a model, their most interesting feature is the ca-
pability of implicitly describing a vast state space by a succinct
representation, which gracefully captures the notions of causality,
concurrency and conflict between events. Petri nets have also been
chosen by many authors as a formalism to describe the behavior
of asynchronous circuits by interpreting the events as signal tran-
sitions coining the term Signal Transition Graph (STG) [14, 3].

Each reachable marking of an STG is assigned a binary code
with the value of the circuit signals in that marking. Deriving
logic equations from an STG requires the generation of the binary
codes for all markings. Currently, most synthesis tools [15, 16]
perform an exhaustive token flow analysis to obtain the complete
reachability graph of the PN and all binary codes.

Even for small STGs, the reachability graph of highly con-
current systems can be extremely large and, in the worst case,
exponential in the size of the STG. Some efforts have been de-
voted to propose structural methods for synthesis [10, 17], but
they have been usually devised for restricted classes of PNs that
compromise the potential expressiveness of this formalism.

In this paper we present structural techniques to synthesize
speed-independent (SI) circuits from STGs. In this framework,
“structural” means “at Petri net level” without requiring the ex-
plicit generation of the reachability graph. The techniques have
polynomial complexity if the underlying PN is free choice [6, 4],
and can be efficiently extended to the class of PNs that can be
covered by State Machines (SM) [5]. We aim at complementing
the existing tools by providing alternative and efficient synthe-
sis methods for SM-coverable STGs, which account for a large
fraction of the set of benchmarks we have used.

This work improves the techniquespresented in [11, 12] in two
directions: (1) by providing new methods to calculate covers for
the boolean functions needed for synthesis and (2) by extending
these methods to the synthesis of SI-circuits.

2 Overview
Let us assume that we want to derive a logic function for signal
y in Fig.1(a) and, in particular, for the set of markings in which
transition y+ is enabled —excitation region of y+ (ER(y+)). This
region corresponds to all the markings in which place p5 is marked,

and it has been shadowed in the corresponding reachability graph
(see Fig.1(b)).

By a simple structural analysis that takes polynomial time
[4] we can deduce that the STG has an underlying free-
choice PN. We can also derive a subset of SMs that cover
the net. In this case, two SMs can be obtained, namely, the
sets of nodes SM1 = fp1; x+; p2; z+; p3; x�; p4; z�; p7; y�g and
SM2 = fp1; x+; p5; y+; p6; z�; p7; y�g.

Our purpose is to calculate a set of cubes that safely1 cover
the binary codes in ER(y+). A single cube approximation of the
cover of a place can be calculated as follows: if a signal transition
can fire while the place remains marked, then the value of the
signal is unknown. Since transitions z+ and x� can fire when p5
is marked, then the value of x and z is unknown in p5. On the
contrary, the value of y can be exactly determined by analyzing
the structure of SM2 and the ordering relation of y+ and y� with
p5. Thus, the cube (-0-) can be derived for p5. For places p1 and
p7, the cubes can be exactly calculated by analyzing the ordering
relations of the places in SM1 and SM2 (see Fig.1(a)).

However, we can easily detect that this cube is an overestima-
tion of ER(y+). Marking (000) is covered by (-0-), but also by
the cube of p1. Using these covers for synthesis would derive an
erroneous circuit in which y+ would be enabled in marking (000)
also. To overcome this situation we propose two strategies:

1. To refine the place covers by analyzing the concurrent rela-
tions with the places of other SMs. In our case, we use the
fact that p5 can only be simultaneously marked with p2, p3 or
p4, to obtain a multi-cube cover by intersecting the cover of
p5 with the conjunction of the covers of p2, p3 and p4. Even
though several refinements may be needed, this refinement
is sufficient to guarantee a correct synthesis (Fig.1(c)).

2. To insert internal signals, similarly as it is done to solve en-
coding conflicts, disambiguating covers whose intersection
produces contradictions for synthesis. As an example, signal
v distinguishes the covers of p1 and p5 in Fig.1(d).

In general, both methods can be combined to obtain a correct set
of covers. In this paper, we present the conditions under which a
set of covers can be safely used for synthesis.

To give the idea about the efficiency of the structural approach
let us consider two illustrative examples.

Figure 2 presents an autonomous circuit with a C-element
closed on its inputs through inverters. A C-element is the basic
cell used for the synchronizationof processes in asynchronousde-
signs. Its output rises when all its inputs are in “1” and falls when
on all inputs are “0”, in any other case it remains unchanged. The
logic function for a C-element is: a=x1 : : : xn+a(x1 + : : :+ xn).
In Fig.2 a change on the output of the C-element leads to a burst of
input changes. As all inputs are switching concurrently the num-
ber of markings in a n-input circuit is 2n+1, while the number of
places in the corresponding STG (Fig.2(b)) is only 4n.

1only overestimations that intersect with the don’t care set are allowed.
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Figure 1: (a) STG and covering cubes for places, (b) reachability graph, (c) refined covers, (d) internal signal insertion.
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The use of cover cubes for places is very efficient here because
they define the excitation regions for all signal transitions exactly.
Indeed, given transitionx1� e.g., the cube (1--1)of its predecessor
place p4 (Fig.2(b)) is an exact cover for ER(x1�). For the output
transitions exact covers can be also computed. Given transition
a+ e.g., its predecessorplacesp1, p2 andp3, and the intersection of
their cubes gives the single marking (1110) where a+ is enabled
((1--0) � (-1-0) � (--10) = (1110)).

Another example is a Muller pipeline of C-elements (see
Fig.3(a), where a five cell pipeline is presented). Each cell can be
set either to 1 or to 0. State “1” is a working state and shows that
the cell contains information. State “0” is an idle state showing
that the cell does not contain useful information. The rules for the
pipeline functioning are the following:

� cell i goes to a working state if cell (i� 1) is in a working
state and cell (i+ 1) is in an idle state,

� cell i goes to an idle state if cell (i� 1) is in an idle state and
cell (i+ 1) is in a working state.

The STG and a piece of its reachability graph for the five cell
pipeline are presented in Fig.3(b)(c).

Suppose we would like to obtain the logic function for signal
z2. From the cube approximation ER(z2+) can be obtained from
the intersection of cubes for places p1 and p2, while ER(z2�)
from the intersection of cubes for places p3 and p4. This gives
the following covers: ER(z2+) = (10---) � (-00--) = (100--) and
ER(z2�)=(-11--)�(01---)=(011--). These covers are safe because
they cover the ER(z2+) and ER(z2�) (shadowedin Fig.3(c)) plus
the vertices (10010) and (01101) —known to be in the dc-set.

In both considered examples we got the functions for signals
from the structural information in the STG rather than by restora-
tion of its reachability graph. These examples are illustrative
ones, not always the function derivation procedure will be so sim-
ple. However they allow to catch a general view of complexity
reduction while using the cover cube approximations.

In the rest of the paper we describe how the aforementioned
techniques can be applied in case the covers do not fulfill the
synthesis conditions. We will remark the fact that the reachability
graph of the specification is never generated during the synthesis
of the circuit. The proposed techniques have been implemented
in an experimental tool. We will finally report the results obtained
from a large set of benchmarks.

3 Definitions
A Petri net (PN) is a 4-tuple Σ = hP;T ;F ;Moi, where P is the
set of places, T is the set of transitions,F � (P�T )[ (T �P)
is the flow relation, and Mo is the initial marking. Given a node
x 2 P [ T , its post-set and pre-set are denoted by x� and �x
respectively. A path of a PN is a sequencex1 : : : xr of nodes such
that 8i; 1 � i < r : (xi; xi+1) 2 F . A path is called simple if
no node appears on it more than once. A State Machine (SM)
is a PN such that each transition has exactly one input place and
one output place. A Free-choice net (FC net) is a PN such that
every arc from a place is either a unique outgoing arc or a unique
incoming arc to a transition.

A transition t is enabled in a marking M , denoted by M [ti,
when all places in �t are marked. An enabled transition inM fires,
removing a token from places in �t and adding a token to places
in t�, reaching a new marking M 0 (M [tiM 0). A marking M
is reachable from Mo if there is a sequence of firings t1t2 : : : tn
that transforms Mo into M (Mo[t1t2 : : : tniM ), hence t1t2 : : : tn
is a feasible sequence. The set of reachable markings from Mo

is denoted by [Moi. A PN is live if every transition can be
infinitely enabled through some feasible sequence of firings from
any marking in [Moi. A PN is safe if no marking in [Moi can
assign more than one token to any place.

A live and safe FC net can be decomposedinto a potentially ex-
ponential number of strongly-connected SM-Components (SMs)
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Figure 4: (a)STG example, (b) corresponding Reachability Graph, (c) SM-Cover.

[6]. We call SM-Cover a set of SMs such that every place in the
PN is included at least in one SM. The number of components in
a SM-Cover is bounded by the number of places in the PN.

A Signal Transition Graph is a triple hΣ; S;Λi, where Σ is a
PN, S is a set of signals fa;b; c; : : :g, and Λ is a labeling function
Λ : T ! S � f+;�g, in which the transitions are interpreted
as value changes on circuit signals. Rising and falling transitions
of a signal a are denoted by a+ and a� respectively, while a�

denotes a generic transition. Multiple transitions for a signal will
be distinguished by means of indices a1+;a2+ (in figures, instead
of indices for a1+, a+=1 will be used).

An STG is graphically represented as a directed graph with
transition denoted by their names and places by circles, where
places that have only one predecessor and successor transition
are usually omitted. Transitions of input signals are underlined.
The example of a free-choice STG with signals S = fa; b; c; dg
is shown in Fig.4(a). Fig.4(c) depicts three SMs that cover this
STG.

Each marking in the STG is encoded with a binary code of
signal values by means of a labeling function � : [Moi ! BjSj .
The function � must consistently encode the STG markings, that
is, no marking M can have an enabled rising (falling) transition
a+ (a�) if �(M)a = 1 (�(M)a = 0).

An STG specification is composed of several signal transi-
tions and causality relations between them. Hence, to derive
the correspondence between transitions and the markings of the
specification different signal regions are defined:

� The excitation region ER(ai�) is the maximal connected set
of markings in which transition ai� is enabled.

� The quiescent region QR(ai�) is the maximal connected set
of markings that can be reached from ER(ai�), and the back-
ward quiescent region BR(ai�) is the maximal connected set
of markings that can reach ER(ai�), in both cases without
enabling any other transition aj�.

A transition bj� and signalb are trigger for ai� if the excitation
region ER(ai�) is reached by firing transition bj�. Signal b is
concurrent to ai� if some bj� is enabled in ER(ai�) and the firing
of ai� or bj� does not disable the other. A trigger transition bj�

is non-persistent to ai� if some transition bl� is concurrent with
ai�, otherwise it is persistent.

The reachability graph for the STG in Fig.4(a) is depicted in
Fig.4(b), shadowing the excitation regions for output signal d.
Additionally, its quiescent and backward quiescent regions are:

QR(d+=1) = f s3 s5 s7 s8 s9 s14g, BR(d+=1) = f s1g,
QR(d+=2) = f s9 s13 s14g, BR(d+=2) = f s1 s10 s11g,
QR(d�) = f s1 s10 s11g, BR(d�) = f s3 s5 s7 s8 s9 s13 s14g.

4 Implementability Conditions for SI
The synthesis conditions for SI-circuits have been exhaustively
investigated by Beerel et al. [2] and Kondratyev et al. [7]. The
conditions are applied to the synthesis of a two-level signal net-
work (Sum-of-Products) with a memory element on its output. In
this work, we will use a similar architecture in which a signal net-
work for each non-input signal a is constructed in four successive
steps:

1. Transitions for signal a are partitioned into several sets
T 1

a +; : : : ; T
n
a +; T 1

a �; : : : ; T
m
a �, exclusively composed of

rising and falling transitions —the transition clusters.

2. Each cluster T i
a � is implemented by a region cover R(T i

a �).
A region cover is a function that implements the transition
switching. The first level of the signal network consists of a
set of rising and falling region covers.

3. The rising region covers are combined to create the set region
network (Sa), while the falling region covers are combined
to create the reset region network (Ra).

4. Finally, Sa and Ra are connected to a C-element to create
the output signal. Sa forces the memory element to switch
from 0 to 1, while Ra produces the switch from 1 to 0.

The required two-input C-element implements the output sig-
nal a with a next state function a = SaRa + a(Sa +Ra). Both
the set and reset region networks are created by combining the
region covers with a pair of OR-gates. Each region cover may be
implemented with complex gates.

Figure 5(a)(b) shows two different implementations for out-
put signal d in Fig.4(a). The first implementation (Fig.5(a))
corresponds to the transition cluster partitioning T 1

d+ = fd+=1g,
T 2

d+=fd+=2g and T 1
d�=fd�g, which are implemented by region

covers R(T 1
d+) = a+ bc, R(T 2

d +) = a, and R(T 1
d�) = a+ b+ c.

This circuit is not SI because if the AND-OR gate for T 1
d+ is slow

enough the pulse on input a can propagate to the output Sd.
In Fig.5(b) transitions d+=1 and d+=2 are merged into one

cluster Td+. This makes the overall circuit simpler and SI (the
races between inputs a andb take place only within one AND-OR
gate).

The signal regions are extended for transition clusters, e.g.
ER(T i

a �) is the union of the excitation regions for the transitions
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in T i
a � Similar extensions exist for QR(T i

a �) and BR(T i
a �).

The synthesis objective is to simplify as much as possible
the complexity of the region covers while preserving the correct
circuit operation. A region cover R(T i

a �) may cover markings in
QR(T i

a �) or BR(T i
a �) to minimize its literal count.

However, not all the markings in QR and BR can be freely
used because some of them are shared by multiple transitions of
the same signal. None of these shared markings can be covered by
a region cover. Otherwise it would violate the basic requirement
for the correct operation of the signal network, i.e. only one rising
(falling) region cover of the same signal can be excited simulta-
neously. The subsets of the quiescent and backward quiescent
regions that do not contain shared markings are called restricted
regions, and denoted by QRr(T i

a �) and BRr(T i
a �) respectively.

Covering markings in the backward quiescent regions is only
possible because of the characteristics of the C-element (as pointed
out in [8]). Any marking in BRr(T i

a �) covered by R(T i
a �) must

be also covered by some other region cover R(T j
a �).

Definition 1 A set of region coversR(T i
a �) for the output signal

a is said to be correct if

1. Any marking in ER(T i
a �) is covered by R(T i

a �).

2. R(T i
a �) does not cover any reachable marking outside

ER(T i
a �) [QRr(T i

a �) [ BRr(T i
a �).

3. Any marking in BRr(T i
a �) coveredbyR(T i

a �) is also covered
by some R(T j

a �) such that QRr(T j
a �) \ BRr(T i

a �) 6= ;.

Informally Def.1 requires that:

1. Every time we arrive to a marking in the excitation region of
the cluster T i

a � the output for R(T i
a �) has to go up.

2. This will be the only one output in the region network for a
that goes up.

3. R(T i
a �) can go up even before entering ER(T i

a �), but in this
case the opposite input of the C-element has to hold its value
to prevent the premature firing of a.

Finally, the region covers must be monotonic, i.e. guarantee
that every output transition in the specification is exactly imple-
mented by a 0 to 1 and a 1 to 0 switch of its corresponding
region cover. R(T i

a �) is said to be monotonic if it changes exactly
twice in any sequence, where the rising change is at a marking in
BRr(T i

a �) [ ER(T i
a �) and the falling change is produced before

reaching the next excitation region of signal a.

Definition 2 A correct set of region coversR(T i
a �) for the output

signal a is said to be monotonic if

1. 8M 2 QRr(T i
a �) covered by R(T i

a �), 8M
0 2 QRr(T i

a �)
such that M 0[tiM , M 0 is also covered by R(T i

a �),

2. 8M 2 BRr(T i
a �) covered by R(T i

a �), 8M
0 2 BRr(T i

a �)
such that M [tiM 0, M 0 is also covered by R(T i

a �).

The main result proved in [2, 7] was the following:
If all the region covers satisfy the monotonous condi-
tions, the circuit implementation is speed-independent.

The main purpose of the following sections is to show how the
monotonous cover conditions can be ensured for the region covers
without generating the reachability graph of the STG.

5 Single Cube Approximations
This section studies the relations between the structure of an STG
—restricted to free choice nets— and its reachable markings.
A methodology is presented to implicitly manipulate the STG
without explicitly generate its markings, namely:

1. The dynamic behavior of the STG is analyzed by determining
the pairwise concurrency between its transitions.

2. The markings in the STG are approximated by sets of cubes.

5.1 Concurrency Relation

The dynamic behavior of a PN is indirectly defined by analyzing
which pairs of transitions can or cannot be concurrently enabled,
namely the Concurrency Relation.

Transition’s concurrency is defined in terms of reachable mark-
ings —if there is a reachable marking where two transitions can
fire without disabling each other, the transitions are said to be con-
current. Additionally, the Concurrency Relation can be extended
to places, and places and transitions [12], e.g. two places p1 and
p2 are said to be concurrent if there is a reachable marking M in
which both of them are marked.

Formally, the Concurrency Relation is a binary relation CR
between the nodes of the PN, such that two nodes (u1; u2) are
concurrent if (u1; u2) 2 CR. The CR relation can be defined on
the set of reachable markings as [12]:

(t1; t2) 2 CR , 9M : M [t1t2i ^M [t2t1i ;
(p1; p2) 2 CR ,9M : M(p1) = M(p2) = 1 ;
(t; p) 2 CR , 9M;M 0 : M [tiM 0

^M(p) =M 0(p) = 1 :

A polynomial-time algorithm for the computation of the CR re-
lations of a live and safe free-choice PN is presented in [9].

The concurrency relation between signals and nodes of the
STG can be indirectly studied by using the Concurrency Relation
of the PN. The Signal Concurrency Relation is a binary relation
SCR between signals in S and nodes in the STG, such that signal
a and node uj are concurrent if (a; uj) 2 SCR. Formally,
(a; uj) 2 SCR if exists a transition ai� concurrent to uj , i.e.
(ai�; uj) 2 CR.

5.2 Structural Marking Analysis

This section provides a methodology to approximate the markings
in the STG by means of its binary code. The STG markings will
be partitioned into a set of regions with respect to its nodes. A
single cube is initially generated for each region. This covering
cube covers the binary codes of all the markings in the region.

The marked region MR(p) is the set of markings in which
p is marked, i.e. MR(p) = fM 2 [Moi j M(p) = 1g. The
enabled region ER(t) is the set of markings in which t is enabled,
i.e. ER(t) = fM 2 [Moi j M [tig. The enabled region of any
transition is equivalent to the intersection of the marked regions
of its predecessor places, i.e. ER(t) =

T
p2�t

MR(p).

The Signal Concurrency Relation provides the information to
decide if the value of a signal a is constant in a marked or enabled
region. However, the relative position of the place or transition
with respect to the transitionsai� is neededto determine the signal
value.

Let us say that transition ai� is next to aj� if there exists a
feasible sequence in the STG which contains no other transitions
of signal a between aj� and ai� (pair (aj�;ai�) is adjacent). A



signal transition aj� can have several transitions ai� that are next
to it, we will denote this set as next(aj�). Similarly it can be
defined the set prev(aj�) for predecessor transitions.

Return to the output signal d in our STG example in Fig.4(a).
Signal transition d+=1 has only one transition next to it (d�),
while next(d�) contains both transitions d+=1 and d+=2.

Property 1 [13] If in a free-choice live consistent STG there is a
simple path L between ai+ (ai�) and aj� (aj+) such that:

1. for any place p 2 L : (a; p) 62 SCR,
2. L does not contain transitions of signal a;

then there exists a feasible sequence q = q1;ai+; q2;aj�, where
subsequence q2 does not contain any transition of signal a.

Based on Prop.1 to check whether ai� is next to aj� it is
sufficient:

1. to find a simple path L between aj� and ai�,
2. to check the non-concurrency of all nodes in the path L to

signal a.

Both conditions can be directly verified on the structure of the
STG. Its complexity is similar to the construction of the graph
transitive closure (O(n3), where n is the number of nodes in the
STG).

Additionally, the STG consistency analysis can be reduced to
the calculation of next relation between transitions. Indeed, an
STG is consistent if and only if for every transition aj+ (aj�)
the set next(aj+) (next(aj�)) contains only negative (positive)
transitions of a. To our knowledge, this is the first proposed
polynomial method to check consistency for any free-choice STG.

Let us introduce one more notion to characterize the position of
a place or a transition with respect to adjacent signal transitions.
The Interleave Relation is a binary relation IR between place
or transition and the pair of adjacent transitions (aj�;ai�). A
node uj is interleaved with aj� and ai� (uj 2 IR(aj�;ai�)), if
there exists a simple path from aj� to ai� containing uj and not
containing nodes concurrent to a. For example, in Fig. 1(a), p2 is
interleaved with (x+; x�), whereas p5 is not.

The binary codes for the markings in each one of the marked
and enabled regions are implicitly determined by computing a
cover cube for the region. The cover cubes [12] Cp and Ct are
the smallest cubes, i.e. with the greatest number of literals, that
respectively cover MR(p) and ER(t).

Property 2 [13] If in a free-choice live consistent STG place pk
is interleaved with (ai+;aj�) then it cannot be interleaved with
any pair (ak�;al+).

Property 2 guarantees that the value of signal a in the marked
region of p depends on the position of p with respect to the
transitions of a. This value can be determined by the Interleave
Relation and will be the same for all the adjacent pairs for which p
is in IR. This gives a polynomial time algorithm (for free-choice
STGs) to determine the value of each literal Ca

p in the cover cube
of place p:

C
a
p =

(
a 9 adjacent (ai+;ai�) : p 2 IR(ai+;ai�) ;
a 9 adjacent (ai�;ai+) : p 2 IR(ai�;ai+) ;
� (a; p) 2 SCR :

The cover cube Ct is defined in terms of its predecessor places:
Ct =

T
p2�t

Cp :

Table 1 depicts the cover cubes for the places and transitions
of the example in Fig.4(a). Note the direct relation with the Signal
Concurrency Relation between signals and STG nodes.

Cp1 0000 Cp2 -0-0 Ca+=1 0000 Cb+=2 0000
Cp3 100- Cp4 -0-1 Cd+=1 -0-0 Cb+=1 -010
Cp5 -01- Cp6 1-1- Cc+=1 100- Ca�=1 1-1-
Cp7 0100 Cp8 0110 Cc+=2 0100 Ca+=2 0110
Cp9 1110 Cp10 1111 Cd+=2 1110 Ca�=2 1111
Cp11 -111 Cp12 0-1- Cc� 0111 Cb� 0101
Cp13 0101 Cp14 0001 Cd� 0001

Table 1: Cover cubes, with signal order (a b c d), in Fig.4(a).

6 Cover Approximations
Two elements are required to define a precise structural approxi-
mation of the signal regions:

1. a set of STG nodes that define the structure of the region,
2. a logic function for each node that determines the binary

codes of the markings in the region.

6.1 Signal Region Structure

Defining the signal regions in terms of sequences in the STG
provides the intuition for its structural analysis. The excitation
region ER(ai�) is the set of markings that enable ai�, i.e.

ER(ai�)=fM jM [ai�ig:

The quiescent region QR(ai�) is the set of markings reached
after a sequence ai� � that does not enable another transition
aj�; aj� 2 next(ai�), i.e.

QR(ai�)=fM j [ai� �iM ^ 6 9aj� : [aj� 2 � _M [aj�i]g:

The backward quiescent region BR(ai�) is the set of markings
from which there exists an allowed sequence � ai�; j�j > 0 in
which no transition of a is enabled in any proper subset of �, i.e.

BR(ai�)=fM jM [� ai�i ^ j�j>0 ^ 8�0�� : :M [�0 aj�ig:

Hence, the structure of the signal regions can be defined by means
of sets of nodes in the STG.

The excitation region ER(ai�) is defined by the excitation
transition set ETS(ai�), containing the transition ai�. The qui-
escent region QR(ai�) is defined by the quiescent place set
QPS(ai�). A place belongs to QPS(ai�) if it is “between”ai� and
aj� 2 next(ai�). This can be expressed by using the Interleave
Relation, i.e.

p 2 QPS(ai�) , 9aj� 2 next(ai�) : p 2 IR(ai�;aj�):

Similarly, the backward quiescent region BR(ai�) is defined by
the backward quiescent place set BPS(ai�). A place belongs to
BPS(ai�) if it is “between” ai� and aj� 2 prev(ai�), i.e.

p 2 BPS(ai�), 9aj� 2 prev(ai�) : p 2 IR(aj�;ai�):

Again, both transition and place sets can be extended to transition
clusters as the union of the corresponding sets for the transitions
in the cluster.

The introduced notions can be illustrated on the exam-
ple of STG in Fig.4(a). For cluster T 1

d + the quiescent
place set includes all the places “between” d+=1 and d� that
gives: QPS(T 1

d+) = fp4; p11; p13; p14g. The backward quies-
cent place set for T 1

d+ consists of places that are between
d� and d+=1, i.e. BPS(T 1

d+) = fp1; p2g. Applying sim-
ilar considerations: QPS(T 2

d+) = fp10; p11; p12 ; p13; p14g and
BPS(T 2

d+) = fp1; p7; p8; p9g.
The restricted quiescent region is approximated by the re-

stricted quiescent place set QPSr(T i
a �), computed as the quies-

cent place set minus the places shared with the quiescent place
sets of other transitions of the same signal, i.e.

QPSr(T i
a �) = QPS(T i

a �)�
S
aj�62T i

a�
QPS(aj�) :



A similar reasoning defines the restricted backward quiescent
place set BPSr(T i

a �) as,

BPSr(T i
a �) = BPS(T i

a �)�
S
aj�62T

i
a�

BPS(T j
a �) :

To produce the restricted quiescent place set for T 1
d+

e.g. in Fig.4(a) we need to remove from QPS(T 1
d+) places

p11, p13 and p14 , because these places are shared with
QPS(T 2

d+). Note, that if we merge transitions d+=2 and
d+=2 into one cluster Td+ = fd+=1;d+2g then the quiescent
place set and the restricted quiescent place set will coincide:
QPSr(Td+) = QPS(Td+) = QPS(T 1

d +) [ QPS(T 2
d+).

6.2 Cover Correctness

Each one of the nodes used to structurally define the signal regions
has assigned a logic function, named cover function and denoted
cv(u). This cover function approximates the binary codes of the
markings in the signal region of u.

The proposed methodology starts using the cover cubes as
initial cover functions. However, the QPS(ai�) and BPS(ai�)
sets are imprecise approximations at their boundaries. By defi-
nition QPS(ai�) e.g. contains all the places “between” ai� and
aj� 2 next(ai�). However the cover function of input places
of aj� covers also ER(aj�). It is easy to see that in ER(aj�)
the function for signal a has to change its value. Hence, to
avoid the overlapping of QPS(ai�) and ETS(aj�) the predecessor
places p 2 �(aj�) used in QPS(ai�) should be recomputed into:
cv(p)qps = cv(p) � cv(aj�). (Note that the refinement of the
places of the quiescent region also refines the backward quiescent
region.)

In case cv(aj�) is overestimated, it may result in an underes-
timation of the markings covered by QPS(ai�). Overestimations
for the transitions of the STG can be detected using the informa-
tion provided by a SM-Cover of the underlying PN. Checking that
the existing cover functions can be properly used to approximate
the different signal regions requires the intersection of the cover
functionscv(pi) and cv(pj) for all pairs of different places in each
SM of the SM-Cover. Empty intersection for all pairs guarantee
that an STG is free of coding conflicts.

Property 3 [13] Given an SM-Cover SMC, the STG is free of
coding conflicts if for every SM-Component SM 2 SMC:

8(pi; pj) 2 SM; i 6= j : cv(pi) � cv(pj) = ;:

The absence of coding conflicts guarantee the completeness
of the ETS, QPS, and BPS approximations. However, the cover
cubes may still give an overestimated approximation to the signal
regions. The following property gives the conditions when such
an overestimation is safe.

Property 4 If the cover cube cv(ai�) is not intersecting with the
covers for the excitation and quiescent regions of other transitions
of a then cv(ai�) is a correct cover of ER(ai�). 2

Property 4 gives only sufficient conditions for a correct cover.
If these conditions are not satisfied it does not mean that the
correctness of the cover is violated. The forbidden intersection
may happen at the dc-set. Here we have two possibilities:

1. To be conservative and to consider every intersection as a
bad one. Then by adding state signals the covers always can
be reduced to non-intersecting (see Section 8 for details).

2. To refine the covers of regions. If the refinement is done
up to exact covers then conditions of Property 4 always can
be satisfied for an STG without USC conflicts. However
the refinement technique leads to a growth of the number of

2Here for clarity the simplified notion of correct cover is used without extension
to the backward quiescent region.

cubes in the cover and is computationally expensive (see for
details Section 7).

Another condition that has to be checked for covers is the
monotonicity requirement (see Def.2). If the correct cover condi-
tion is satisfied for cv(ai�) then cv(ai�) � cv(aj�) = ; and cube
cv(ai�) has to be turned off somewhere inside QR(ai�).

By examining the transitions that are in IR(ai�;aj�) we can
find the set cv(ai�) # that contains all the transitions turning off
cube cv(ai�) for the first time. The monotonicity condition says
that after cube cv(ai�) is turned off by the transition t 2 cv(ai�)#
it cannot be turned on again inside QR(ai�).

Let us generalize the Interleaving Relation for the pairs
(t;aj�), where t 2 cv(ai�) #. All places that are in IR(t;aj�)
can be reached only after the firing of t, i.e. after the cube
cv(ai�) is turned off. Therefore the monotonicity is ensured if
cube cv(ai�) is never turned on again in the markings that are
covered by marked regions of places p 2 IR(t;aj�). This is
characterized formally in the following Property.

Property 5 The correct cover cube cv(ai�) is monotonous if
for any aj� 2 next(ai�), any t 2 cv(ai�) # and any place
p 2 IR(t;aj�) the cube cv(ai�) is not intersecting with cv(p).

It is easy to see that when the notion of correct cover is ex-
tended by backward quiescent regions we are dealing with the
requirements on the BR that are somewhat similar to monotonic-
ity. They can be checked in the same way as Property 5 suggests.

Properties 4 and 5 give simple sufficient conditions for the
analysis of the monotonous cover requirement by the region cov-
ers. Two different techniques to ensure them are demonstrated in
next sections.

7 Refinement of signal region covers
The initial cover cube approximations can be rough —only the fact
of concurrency between places (transition) and the signal is used.
This binary concurrency relation is not sufficient because from a

concurrent to b and a concurrent to c nothing can be said about
the joint concurrency of a, b and c (nodes b and c can be ordered
e.g.). To exploit more exactly the structure of casual relations
between STG nodes we can refine the initial approximation for
place or transition cover cubes by other cubes in the STG.

The set of SM-Components that covers the STG is complete
in the sense that no information about the STG is lost under
such a partition. One SM-Component reflects the causal relations
between the STG nodes only partially, however their cover set
represents it completely. This observation is the main one under
the idea of refinement.

Formally, the refinement of the cover cube cv(p) of place p 3

by a SM-component SM results in the cover that is obtained as
the intersection of cv(p) with the sum of the cover cubes of the
places pi 2 SM that are concurrent to p, i.e.

cv
ref(p) =

X
pi2SM : (p;pi)2CR

cv(p) � cv(pi) :

Such a refinement procedure is safe for free-choice live STGs,
that means that no marking from the marked region of a place can
be lost while making a refinement [13].

Indeed place p is refined only by the places of SM that are
concurrent to it. Then the only marking that can be removed
via refinement is the marking M which marks p but no place
pi 2 SM; (pi; p) 2 CR. But the latter contradicts the liveness of
the STG because under marking M SM will contain no token.

Refining by using the SM-Components in a SM-Cover permits
more STGs to satisfy Prop.3 by eliminating fake coding conflicts.

3transition refinement is obtained as the intersection of the refined cover cubes
of its input places.



A coding conflictbetweenpi and pj (cv(pi)�cv(pj) 6= ;) is a fake
coding conflict if exists a SM-Component SM covering pi , where
place pi has no coding conflicts. In that case we can conclude that
cv(pj) is overestimated and should be refined by using SM.

Obviously, several undetected overestimations may remain.
Making a sufficiently large number of refinement steps we will
arrive to the exact cover for every place, however such an approach
has two shortcomings:

1. It increases the number of cubes for the place cover. In
extreme it can be comparable to the number of markings in
the marked region.

2. The question about the minimal set of SM-Components that
is sufficient for exact refinement is an open one. It is still
needed to be proved that the set of SM-Components that
cover STG can always make a refinement exact.

Due to the growth of the cube number in the cover, the appli-
cation of the refinement technique is restricted to 1-2 iterations.
Refinement is applied in those cases when for sure the one-cube
cover cannot exist, in persistency violations e.g. [13]. The idea
of refinement was illustrated in Section 2 where one iteration was
sufficient to get the exact cover for the non-persistent transition
of signal y.

8 Insertion of state signals
When the cover functions do not fulfill the conditions for synthesis
and we do not like to perform the refinement for the covers of
places and transitions, state signals can be inserted.

This situation will be detected as follows. Given a SM-
Component SM, all places that belong to SM define a complete
partition of all reachable markings of the STG (since no more than
two places of the same state machine can be marked simultane-
ously). A state signal will be inserted when, for two places p1
and p2 of SM we have that cv(p1) � cv(p2) 6= ;. This non-empty
intersection can be produced by two facts:

1. The STG has no USC, or
2. The overestimation of the covers produce fake conflicts.

In both cases,the insertion of state signals can disambiguate the
contradictions among covers. This was illustrated in the example
of Fig.1(a), in which signal v was inserted to disambiguate the
covers of places p1 and p5.

The algorithm for state signal insertion used in our tools is sim-
ilar to the one proposed in [11], and it is based on the bi-partition
of the SM-Components that contain the places with intersecting
covers. The algorithm works on the structure of the STG and
has O(n3)-time complexity, n being the number of places and
transitions of the net.

9 Experimental Results
9.1 Structural Synthesis Methodology

This section combines the synthesis conditions and the structural
signal region analysis into a heuristic minimization algorithm.
The objective is to reduce the number of cubes and literals re-
quired to implement a set of monotonous region covers by using
gates in a given gate library. The reductions are achieved by
sequentially applying logic minimizations. Each successfully ap-
plied minimization reduces the complexity of the implementation,
but assuring that the transformed implementation remains correct.
The required gates are matched against the gate library, and finally
are optimized by using a boolean matching technology mapping
algorithm.

Practically, the signal region analysis methodology allows the
implementation of multiple signal transitions by the same region
cover combining several transitions of a signal into a transition
cluster. Each transition cluster is implemented by a single region
coverR(Ta�). The utilization of transition clusters allows a better
usage of the available complex-gates in the libraries.

Three sets of logic transformations can be applied in order to
reduce the complexity of the region covers, namely:

� The expansion of each region cover by means of the iterative
elimination of its literals towards the restricted quiescentand
backward place sets, and dc-set.

� The analysis of the interrelations between the rising or falling
region covers. Then, detecting pairs of region covers that can
be merged (two transition clusters are joined into a single
one) reducing the number of required region covers.

� Use the structure of the signal networks to combine the rising
and falling region covers with the memory element.

Region cover expansion as well as complete region cover
derivation are well known techniques used in [2, 7] that are
directly applied here. Traditionally, pairs of single-cube re-
gion covers with the same support at distance 1 are substi-
tuted by its merging consensus. However, region cover merg-
ing extends this transformation to multi-cube region covers tak-
ing advantage of the existence of complex gates. Additionally,
the region covers and the memory element are combined in a
particular case in which a = v1v2 v1v2 + a(v1v2 + v1v2) ; is
substituted by a = v1v2 + a(v1 + v2) : This transformation
reduces two AND gates and one C-element to only one C-
element implementation. We also apply a similar transformation
in which a = v1v2 v1v2 + a(v1v2 + v1v2) ; is substituted by
a = v1v2 + v1a ; reducing two AND gates and one C-element to
only one gated-latch implementation.

9.2 Area of the circuits

Table 2 compares the area results of several synthesis tools in-
cluding our methodology. The first column depicts the number
of markings for the benchmark, while the columns labeled SYN,
FCG and S3C reports the area obtained by the synthesis method-
ologies developed at Stanford [1], Aizu [8], and our methodology.
The results show that the combination of the structural approach
and the new logic minimization techniques results in significant
improvements4—23% area reduction with respect to [1]— in short
CPU times —less than 8 secs. for the worst case (pe-send-ifc).

If we take into account that some of the new minimization
techniques were not used by SYN, we can at least claim that
using structural methods does not negatively influence on the the
quality of the circuits obtained.

9.3 Running time: structural vs. state-based

In order to illustrate the effectiveness of structural over state-
graph-based methods, we have run some experiments for some
STGs with a large state space and compared the running times
with SIS[15] and ASSASSIN[16].

Table 3 reports the CPU times in a SUN SPARC20 workstation.
All the examples fulfilled the CSC property. For SIS we report
the running time for the command astg to f. For ASSASSIN
we report the running time for the commands assa stg to sg
and assa haz logic. The superiority of structural methods is
evident.

Interestingly, the dining philosophers benchmark is one of the
examples that illustrates that non-free-choice STGs can also be
synthesized if a cover of state machines can be found for the
net. Another scalable example is the Muller pipeline (see for
the description Section 2 and Fig.3). Its STG contains no choice
places and the circuit realization is a chain of C-elements. The
column labeled SMs indicates the number of SM-Components
required to cover the net for the dining philosophers and the Muller
pipeline examples.

4all synthesis results have been formally verified to be speed-independent.



STG States SYN FCG S3C STG States SYN FCG S3C

chu133 24 232 216 208 wrdatab 216 784 744 488
chu150 26 248 232 128 xyz 8 200 192 136
chu172 12 168 112 104 alloc-outbound 21 400 - 308
converta 18 376 320 258 mp-forward-pkt 22 320 - 256
ebergen 18 352 280 120 nak-pa 58 336 - 320
full 16 112 112 80 pe-rcv-ifc(*) 65 1304 - 1146
hazard 12 248 240 80 pe-send-ifc(*) 117 1632 1632 1122
hybridf 80 152 152 130 ram-read-sbuf 39 432 - 360
nowick 20 456 456 274 rcv-setup 14 144 - 120
qr42 18 352 280 120 sbuf-ram-write 64 320 - 304
rpdft 22 224 - 160 sbuf-read-ctl 19 296 - 258
trimos-send 336 648 - 552 sbuf-send-ctl 27 280 - 226
vbe10b 256 792 784 608 sbuf-send-pkt2 28 504 - 364
vbe5b 24 192 192 208 sendr-done 9 80 - 82
vbe5c 24 200 200 152
Total 11784 9076
Total? 6496 6144 4216

Table 2: Area results (� non-free-choice STGs, ? totals restricted to STGs synthetized by FCG).

CPU
STG states cubes area SIS ASSASSIN S3C

tsbmsi 1024 143 744 43 256 1
tsbmSIBRK 4730 298 1136 1876 12219 8
master-read-1 2254 117 610 250 1252 2
master-read-2 18856 2786 1052 > 9 h. > 24 h. 34
master-read-3 21848 2802 1102 > 9 h. > 24 h. 35
par4 1303 95 500 80 271 1
par8 1:7 � 106 342 920 - - 7
par16 2:8� 1012 1190 1768 - - 45

(a)

STG states SMs CPU

phil3(*) 864 9 2
phil10(*) 7:4� 109 30 120
phil20(*) 5:5 � 1019 60 1455
muller10 420 16 1
muller50 1:7 � 1011 96 85
muller100 1:2 � 1027 196 1437

(b)

Table 3: CPU time (in seconds) for synthesis: (a) comparison with SIS and ASSASSIN, (b) scalable examples (� non-free-choice STGs).

10 Conclusions
Structural techniques for the analysis and synthesis of STGs are
essential when the size of the state space becomes unmanageable
by algorithms that work at state graph level.

This paper has presented new methods to synthesize STGs
with underlying free choice PN. The proposed algorithms have
polynomial complexity in the size of the net and can be easily ex-
tended to the class of PNs that can be covered by SM-Components.
Although the calculation of a SM-Cover cannot be calculated in
polynomial time for non-free-choice nets, some recent symbolic
techniques have been proved to be very efficient [5]. Future work
will be devoted to fully characterize the class of Petri nets that can
be handled by the presented techniques.

The experimental results show that the proposed methods ob-
tain efficient implementations in short CPU times. Some of the
existing tools have not been able to synthesize the largest cir-
cuits, whereas the presented method has managed to do it in few
seconds.
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