
Design of an Optimal Loosely Coupled Heterogeneous Multiprocessor System

Armin Bender

Faculty for Mathematics and Computer Science (Prof. Dr. W. Grass)
University of Passau, D-94030 Passau, Germany

e-mail: bender@fmi.uni-passau.de

Abstract

This paper presents an approach for mapping tasks op-
timal to hardware and software components in order to
design a real-time system. The tasks are derived from an
algorithm and are represented by a task-graph. The per-
formance of the algorithm on the resulting real-time sys-
tem will meet the specified timing constraints. Some of the
hardware components are programmable and others are
application specific hardware processors. We propose a
powerful MILP (Mixed Integer Linear Program) model
with and without functional pipelining. The efficiency of
the method is demonstrated with practical examples.

1 Introduction

One important task of a hardware/software codesign is
to map different tasks of an algorithm onto hardware or
software components. Some components are program-
mable and others are application specific hardware proces-
sors. The aim of the codesign is to design a heterogeneous
and loosely coupled multiprocessor system, which violates
no timing constraints while performing the underlying
algorithm. To reach this goal we split a given algorithm
into tasks and map these tasks to several processors.

The known approaches can be divided with respect to
the specification style into software or hardware oriented
approaches. The COSYMA approach [5] is a software ori-
ented approach, which means that the input specification
is given in terms of a programming language. Only tasks
that violate real-time constraints are implemented in
hardware. They use an iterative heuristic approach. For the
tasks to be implemented in hardware a partially automatic
synthesis tool generates the hardware components. After
generating the components they check the original timing
constraints while regarding additional communication
overhead. To check this they use a fast timing hardware/
software co-synthesis analysis tool [9]. The hardware ori-
ented VULCAN system [7] operates on the same system
architecture (heterogeneous processors without local
memories) as the COSYMA system. Starting from an im-
plementation where all components are implemented in
hardware some components are selected, which can be
implemented in software. Alternatives for implementations
of hardware components are not taken into consideration.
Because of the restrictions of the input specification
language (HardwareC) the designer is not able to describe

dynamic data structures, pointers, etc. In the COBRA pro-
ject [10] they have developed a prototyping system, which
includes cost functions for hardware, software and com-
munication costs. The system supports integration of stan-
dard processors as well as emulation of processors.

In this paper we formulate a Mixed Integer Linear Pro-
gram (MILP) that allows to determine a mapping optimiz-
ing a trade off function between execution time, processor
and communication costs. It is desirable to have a mapping
approach that optimizes a function depending on such
factors [14]. For some tasks it is obvious which task has to
be implemented in hardware and which one in software.
For example, a high speed packet manipulation should be
implemented in hardware while recursive searching is
always implemented in software. However, there are tasks,
which may be implemented either in hardware or in soft-
ware or should be further splitted into subtasks.

To solve the task mapping problem we have to deter-
mine on what hardware component a task is performed
(allocation) and we have to compute a starting time for ev-
ery task (schedule). In our approach this is done at the
same time. Allocation decides for each task whether it
should be implemented in hardware (e.g. ASICs) or in
software (e.g. microprocessor). The partitioning of the al-
gorithm into tasks which are executable on components is
performed in a preprocessing step. The tasks are mapped
on hardware and software components in such a way that
no timing constraints are violated by performing the algo-
rithm on the real-time system determined for this algo-
rithm. In many signal and image processing applications it
is necessary to deal with continuous data streams as input
in the real-time system. To reach this requirement we ex-
tend our basic model [3] in this paper. We call this exten-
sion functional pipelining (minimize the time interval be-
tween two runs of the algorithm).

The paper is organized as follows. In section 2, we give
a more detailed description of the problem addressed in
this paper. In section 3 we introduce the formal model and
a powerful extension for functional pipelining both de-
scribed as MILPs. In section 4 we show the practicability
of our mapping approach by applying it on several typical
signal and image algorithms. We have a second powerful
extension of the model, which we cannot present in this
paper because of the limited space. In this extension we
can deal with multiple computation of tasks (a task may be
performed on several processors to avoid the need for
(time expensive) communications and to exploit more
parallelism).

ED&TC ’96
0-89791-821/96 $5.00 1996 IEEE

Fig. 1: Target architecture

ASIC

ASIC

ASIC

...

Transputer

...

Signal
processor

Micro-
processor

local memory bus system

global
memory

2 Mapping Approach - Overview

The hardware/software codesign process consists of
several steps. This design process is repeated iteratively
until the design goals are met. First of all, the algorithm
has to be specified using a formal language [2]. In a
second step the algorithm is partitioned into tasks that are
possibly processed on different processors. Now, the set of
available processors of the generic multiprocessor target
architecture has to be defined. The time for executing a
task on an ASIC can be guessed by synthesizing this ASIC
for that task using a high level synthesis system [1, 6]. For
each other task one has to determine the execution time for
a task on at least one processor. The result is an annotated
task-graph where each task node has got information about
execution times on different processors. For each pair of
communicating tasks an edge is introduced. This edge is
annotated with the communication time. We restrict our
approach to those applications were the processing time is
independent on the values that are processed. We also as-
sume that the amount of data to be communicated between
the different tasks has been determined. Although the re-
strictions seem to be hard there are many signal and image
processing applications we can cope with. An application
specific real-time system (including the necessary com-
munication structure) with optimal allocation and schedul-
ing of the tasks is the result of the mapping procedure.

General purpose standard processor (e.g. microproces-
sor), different application specific components (ASICs)
and application oriented standard processors (e.g. signal
processors, transputers) define our generic target architec-
ture shown in Fig. 1. We call all these working compo-
nents processors in this paper. We assume each processor
has its own local memory and only one task can be exe-
cuted at a time by one processor. To handle communica-
tion each processor has its own communication processor.
Tasks on different processors are executed in parallel. A
processor execution of a task cannot be interrupted. Addi-
tionally we model a global memory as a processor with
zero execution time. In this case we have to consider only
the communication time between the memory and the
other processors. We assume a multibus system for the
communication between processors where each bus has
the same transmission rate.

In Fig. 2 we show the mapping approach. The constraint
library contains the annotated task-graph, processor and
bus costs and timing constraints. The granularity of the
task-graph is crucial for the success of the mapping proce-
dure. The finer the granularity is the more parallelism can
be exploited. On the other hand, the complexity of the
mapping problem grows with the number of tasks. The
process of splitting an algorithm into tasks must still be

Fig. 2: Mapping approach

CPLEX ®

functional pipelining

MILP model with or without

of tasks

 heuristic prepro-
cessing procedure

Constraint
library

modifying the
constraint library

No

violated
time

condition?

Yes

Result

left to a designer who
will normally start
with defining each
small procedure or
just basic block as a
task. For the whole
algorithm and some-
times for special
task-regions we have
to regard time con-
straints. Clearly, the
process will be
started by using only

few hardware processors for those tasks that are assumed
time critical. If the mapping procedure ends up by present-
ing no acceptable solution (i.e. some real-time constraints
are not met) the number of tasks that are possibly assigned
to hardware processors is enlarged in an iterative way. In
each iteration step we normally implement more and more
tasks in hardware. Therefore, we must introduce more re-
sources in our constraint library in each step. Then we up-
date the nodes of the annotated task-graph. This has to be
done only for those tasks, which can be executed on the
additional processors. At last, another MILP is generated
with these new information. At the end of this mapping
procedure all tasks from a given task-graph are mapped
onto the processors so that the underlying algorithm does
not violate any time conditions. Tasks, which are mapped
on the microprocessor are "implemented in software". On
the other hand all other tasks, which need special hardware
(ASICs, signal processors, etc.) are "implemented in hard-
ware". The designer decides whether he wants to generate
automatically the MILP with or without functional
pipelining corresponding to the requirements of the real-
time system. For solving the MILP we use the standard
software tool CPLEX [4]. To reduce the domain (range of
possible values) of the variables in the MILP and therefore
the complexity of the MILP we have developed a heuristic
preprocessing [12] for large mapping problems.

3 MILP model for functional pipelining

In section 3.2 we describe the MILP for the basic model
and in section 3.3 we extend this model for functional
pipelining. At first we introduce a notation needed to for-
mulate the MILPs.

3.1 Notation

A short summary of the abbreviations used in a MILP-
formulation is given first. N represents the number of
given tasks, M + 1 the number of available processors, and
L the number of available buses. With processor P0 we
indicate the universal microprocessor.

 T set of tasks T = T1, ...,TN{ }
 B set of buses B = B1, ..., BL{ }
 P set of processors P = P0 , ..., PM{ }
ρ T() set of processors able to execute task T ∈T
G directed acyclic task-graph.

G = V ,E() where

each vertex i ∈V represents one task Ti ; a
directed arc i, j() ∈E from task Ti to Tj repre-
sents a precedence constraint between these
tasks. For all i, j() ∈E it holds i j< .

RE i() set of all vertices reachable from vertex i ∈V
in the given task-graph G

2 order relation with: i, j() , i′ , j ′() ∈E :

i, j
2

i , j i i i i j j
i, j() represents a communication between task Ti and

task Tj . RE i() represents the set of tasks data dependent
from task Ti . Nodes i with RE i() = { } are called leaf no-
des of the task-graph. The corresponding tasks are called
leaf tasks. Each task T ∈T can be executed on at least
one processor, i. e. ρ T() ≠ { } . A MILP formulation
needs the definition of variables and constraints.

Variables used in the MILP formulation:

dmi = 1 task Ti is executed on processor Pm
0 otherwise



yij = 1 task Ti starts execution before task Tj ;
both tasks are allocated on the same processor

0 otherwise







hlij = 1 communication of task Ti and Tj is performed
on bus Bl

0 otherwise







γ γmij

i j

m mij mi mj

T T
P d d= = ∧







1

0

both tasks are executed on
processor It holds :
otherwise

and
.

w ij() i ′ j ′() = 1 the communication i, j() starts before
communication i′ , j ′()

0 otherwise






si start time of task Ti
bij start time of communication between task Ti and Tj

Variables d are only introduced for these tasks T ∈T
which can be performed on the processor P ∈P .We
introduce no variable for Pm ∉ρ Ti() .

Constants used in the MILP formulation (given in the
constraint library):

tmi execution time of task Ti on processor Pm
cij communication time for sending data computed by

Ti to Tj ; it holds i, j() ∈E
A communication time is only considered when the two

tasks are allocated on different processors. cij is indepen-
dent of the actual bus allocation because each bus has the
same transmission rate. Therefore, the communication
time only depends on the tasks. In this manner, we can ob-
serve the amount of data to be transferred but we cannot
model the kind of the transfer, which may be processor
dependent (e.g. protocol type). For the communication
each processor has its own communication processor.

3.2 MILP Formulation for the basic model

Now, we formulate the MILP for the basic model. The
solution of a MILP determines on which hardware unit
(allocation) and at which time the task is started
(schedule). Allocation involves the decision for each task
whether it should be implemented in hardware (e.g. on
ASICs) or in software (e.g. on microprocessor). With the
following objective function we want to minimize the
overall execution time (OET), the overall processor costs
(OPC), and the overall communication costs (OCC). The
weights k1, k2 and k3 of the costs OET , OPC and OCC
have to be tuned by the designer.

Objective function (with: k1 , k2 , k3 ∈ IR0
+) :

minimize k1 ⋅ OET + k2 ⋅ OPC + k3 ⋅ OCC() (OF)

subject to:
The finishing time of each leaf task is less or equal

OET . Constraints for bounding the OET have only to be
introduced for each leaf tasks (RE i() = { }).
objective function constraints

∀ ≤ ≤
∀ ≤ ≤

0
1

m M P
i N T

m

i

 processor
task :

RE i() = { } ∧ dmi = 1 ⇒ si + tmi ≤ OET

dmi = 1 ⇒ si + tmi ≤ OET has to be represented by a
linear inequation. Therefore, this condition is translated
into the resulting constraint:

∀ ≤ ≤
∧ () = { }

1 i N
RE i :

si + tmi ⋅ dmi()
m=0

M

∑ ≤ OET (OFC1)

In inequation (6) (will be given later) we force that each
task is allocated on exactly one processor. Therefore, the
sum in (OFC1) represents the execution time of the leaf
task Ti on the assigned processor Pm . Normally a task-
graph has more than one leaf task (see Fig. 4).

The costs for processors and buses are taken from the
constraint library. (OFC2) models the overall processor
costs and (OFC3) models the overall communication
costs.

OPC = costs of processor m
m=0

∃1≤i≤ N :dmi =1

M

∑ (OFC2)

OCC = costs of bus l
l =1

∃ i, j()∈E :hlij =1

L

∑ (OFC3)

Conditions with existential quantification can be
modeled in the MILP by introducing 0/1 variables.
Because of the limited space we do not present the result-
ing constraints in this paper. They are described in [12].
We now introduce the constraints ensuring that an assign-
ment to the variables determine a valid allocation and
schedule of the tasks. We have to observe data dependen-
cies and have to avoid resource conflicts. First, we model
data dependency constraints.

Data dependencies

If two tasks Ti and Tj in the task-graph are connected
by an arc i, j() ∈E then the execution of task Ti on pro-
cessor Pm ∈ρ Ti() with execution time tmi has to be fin-
ished before the execution of task Tj can start (modeled
with 1a).
task execution times

∀ ≤ ≤
∀() ∈

∧ ∈ () ∩ ()

0 m M P

i j

P T T P
T T

m

m i j
m

i j

processor
consider all tasks with
precedence constraint
processor can execute the
two tasks and

,

:

E
ρ ρ

d d s t smi mj i mi j= = ⇒ + ≤1 (1a)
This condition has to be represented by a linear inequa-

tion. Therefore, this condition is translated into:

s t s
d d

i mi j
mi mj+ ≤ + = =

∞



0 1if

otherwise
Instead of ∞ we choose a sufficiently big number C .

The resulting constraint is

si tmi

(*)

sj 2 dmi dmj C

(**)

(1a)

(*) This part of the inequation need only to be
observed if dmi dmj 2.

(**) Therefore, this term is zero if to be observed
and at least C if not to be observed.

For internal reasons of the MILP solver C should be as
small as possible. When the tasks are allocated on different
processors P Pk m≠ then we additionally have to observe
communication time cij and Tj can start cij time units
after Ti has finished (modeled with 1b).

∀ ≤ ≤ ∀() ∈
∧ ≠ ∧ ∈ () ∧ ∈ ()

0 m k M i j
k m P T P Tk i m j

, ,
:

E
ρ ρ

⇒ + + ≤ + − −() ⋅s t c s d d Ci ki ij j ki mj2 (1b)

In hardware/software codesign the communication costs
have a great influence on the quality of a modular imple-
mentation. Therefore, communications on buses are also
considered. After the allocation of tasks on processors we
have to consider the communication time for two tasks
with direct precedence constraint which are allocated on
different processors. Each processor that has to communi-
cate has its own communication processor, i.e. communi-
cation involving Pk can take place in parallel with execut-
ing a task on Pk . Inequations related with the beginning of
a communication on bus B ∈B are modeled in (2). The
duration of a communication is observed in (3).
beginning of communication

 ∀() ∈i j, :E s t d bi mi mi

m
P T

M

ij

m i

+ ⋅() ≤
=

∈ ()

∑
0

ρ

(2)

duration of communication

i, j E :

bij

(*)

cij

(**)

(*****)

s j

(***)

1 hlij

l 1

L

C

(****)

(*) start of communication between Ti and Tj
(**) duration of communication between Ti and Tj
(***) start of task Tj
(****) observation condition
(*****) end of communication between Ti and Tj

(3)

For the introduction of such inequations we can use the
property that hlij = 1 (communication between task Ti and
Tj is done on bus l) holds for at most one l . This prop-
erty we force in inequation (7) (will be given later). If the
sum in (****) is zero, Ti and Tj are executed on the same
processor. Therefore, the observation condition equals C .
This means that the constraint is automatically fulfilled
and denotes no restriction concerning the whole model. If
the observation condition equals 0 the data depending has
to be taken into account. The constraints to observe data
dependencies are now complete. In the next step we intro-
duce the constraints to avoid resource conflicts.

Resource conflicts

Two tasks must not be executed on the same processor
at the same time. For data dependent tasks, this is ensured
by (1a´). For all other pairs of tasks, we have to introduce
nonoverlapping constraints (4a) and (4b). With the first in-
equation type (4a) we describe the possibility that task Ti
will be executed after task Tj on the same processor (i. e.
yij = 1). In (4b) we formulate the other possibility (i. e.
yji = 1).
nonoverlapping constraints for executions on processors

0 m M 0 i, j N Pm Ti Tj

i RE j
(*)

j RE i :

⇒ + ≤ + − − −() ⋅s t s d d y Ci mi j mi mj ij3 (4a)

⇒ + ≤ + − − −() ⋅s t s d d y Cj mj i mi mj ji3 (4b)

(*) T Tj i has not been executed after completion of
because of data dependencies;This avoids inequa-
tions which would be implied by (1a) and (1b).′

yji and yij are only relevant for d dmi mj= ∧ =1 1. In
this case we can assume y yji ij= ⇔ =0 1 and yji = ⇔1
yij = 0 . This allows to save some y variables. Therefore,
we add i j< to the premise and can omit i RE j∉ () be-
cause of i j i RE j< ⇒ ∉ (). The additional term in (4b) in-
dicating the relevance of the inequation (see notes for 1a´)
has to be replaced by 2 − − +() ⋅d d y Cmi mj ij .

There is a need for communication when two tasks are
allocated on different processors and when there is a pre-
cedence constraint between these tasks. With the objective
function (OFC3) introduced above we also consider the
number of buses. Similar to the scheduling of tasks we
need a constraint that prevents an overlapping of two com-
munications on the same bus at the same time. Therefore,
we introduce the following inequations as nonoverlapping
constraints on buses :

i, j , i , j E
i, j 2 i , j i RE j 1 l L :

b c b h h w C

b c b h h w C

ij ij i j li j lij ij i j

i j i j ij li j lij ij i j

+ ≤ + − − −() ⋅

+ ≤ + − − +() ⋅

′ ′ ′ ′ () ′ ′()

′ ′ ′ ′ ′ ′ () ′ ′()

3

2
(5)

The inequations in (5) are defined according to (4a) and
(4b). In addition to the observation of data dependencies
and to the avoidance of resource conflicts we need the
constraints (6) to (9b). With inequation (6) we ensure that
each task has to be allocated on exactly one processor. The
equation (7) formulates this in a similar way for buses.
That means, we need exactly one bus for a communication
between two data dependent tasks allocated on different
processors.

∀ ≤ ≤1 i N : dmi

m
P T

M

m i

=
∈ ()

∑ =
0

1

ρ

(6)

 ∀() ∈i j, :E hlij mij

m
P T T

M

l

L

m i j

= −
=

∈ ()∩ ()
=

∑∑ 1
01

γ

ρ ρ

(7)

For the equation (7) we need the condition γ mij =
d dmi mj∧ . A possible formulation for this condition in a
MILP is given in (8). To get only positive start times we
need inequation (9a) and (9b).

∀() ∈ ∀ ≤ ≤ ∧ ∈ () ∩ ()i j m M P T Tm i j, :E 0 ρ ρ

d d d dmi mj mij mi mj+() − ≤ ⋅ ≤ +()1 2 γ (8)

∀ ≤ ≤1 i N : si ≥ 0 (9a)

 ∀() ∈i j, :E bij ≥ 0 (9b)

Now the formalization of the MILP model without func-
tional pipelining is complete. The inequations (2) and (3)
imply the inequation (1b). Therefore, we do not have to
regard this restriction in our MILP and we replace (1a´)
and (1b) by (1), which does not contain a case decision.
This reduces the complexity of the overall MILP.

 ∀() ∈i j, :E s t d si mi mi

m
P T

M

j

m i

+ ⋅() ≤
=

∈ ()

∑
0

ρ (1)

3.3 Extension: functional pipelining

In many real-time applications it is necessary to deal
with continuous data streams as inputs [8]. With our MILP
model previously described we can handle this only in a
restricted way. After the execution of all tasks we can start
with a new iteration. This means that the first computation
of a task in the (i+1)-th iteration is only possible if all leaf
tasks are finished in the i-th iteration. Therefore, we have
n OET⋅ as the overall computation time (OCT) after n
iterations. Normally it holds: n OET OCT⋅ >> . We illus-
trate this for two iterations with a small example in Fig. 3.

Fig. 3: Advantage of functional pipelining

Ti
Tj

Tj´

Pk

Pm time

c) with OCT = OET + LT

Ti Tj

Tj´

OET OET + LT

LT
processor

b) with OCT = 2 OET

Ti Tj

Tj´

processor

time

Ti Tj

Tj´

OET 2 OET

Pk

Pm

a) task-graph

Ti

Tj
Tj´

To minimize the OCT it is necessary to start with the
computation of the first task in iteration (i+1) as soon as
possible. The time interval between two successive runs of
the algorithm is called latency (LT). To be able to mini-
mize the latency we have to extend the objective function
given above.
Extended objective function (with: k k IR1 4 0, ..., ∈ +):

minimize k OET k OPC k OCC k LT1 2 3 4⋅ + ⋅ + ⋅ + ⋅() (EOF)

LT is a continuous variable in the MILP. The model is
restricted in the following way. To get not too much
additional variables in the MILP we allocate each task
(communication) in each iteration on the same processor
(bus). In addition, we require that all tasks of the i-th itera-
tion are finished on a processor before a task of the (i+1)-
th iteration can start on this processor. We need the follow-
ing inequation to formulate that task Ti can start its exe-
cution in iteration (i+1) after task Tj is finished in the i-th
iteration for all tasks Ti , Tj which are allocated on the
same processor Pm .

0 m M i, j : 1 i, j N i RE j

Pm Ti Tj :

s j tmj

(*)

si LT

(**)

2 dmj dmi C

(***)

(E1)

(*) end of task Tj in iteration i
(**) start time of task Ti in iteration (i + 1)
(***) The inequation is only to be observed if both

tasks are allocated on the same processor
In each solution there is one inequation for each proces-

sor Pm containing the first task Ti executed on processor
Pm and the last task Tj executed on Pm that influence the
latency time. We have to introduce inequations for all
pairs and all processors able to execute both tasks in order
to cover this case in each solution. According to this mul-
tiple period nonoverlapping constraints on processors we
need a multiple period nonoverlapping constraints on
buses as an extension of the single period constraints in
the basic model. Therefore, we introduce the inequation
(E2), which ensures that the last communication in the i-th
iteration has to be finished before the first communication
in the (i+1)-th iteration on bus l is possible.

 ∀() ′ ′() ∈ ′ ∉ () ∀ ≤ ≤∧i j i j i RE j l L, , , :E 1

b c b LT h h Cij ij i j lij li j+ ≤ + + − −() ⋅′ ′ ′ ′2 (E2)

When we extend our previous MILP by the inequations
(E1) and (E2) and change the objective function as we did
in (EOF) we get a new MILP, which describes a real-time
system for continuous data streams as input.

4 Experimental Results

This section is organized as follows. First, we consider
an image processing application in detail and we illustrate
for this practical example the advantage of functional pipe-
lining. Then we describe the basic structure of three
different task-graphs. For each example the underlying
annotated task-graph is considered shortly. Then we show
for these task-graphs the results of our mapping approach.
To solve the following MILPs we used CPLEX [4] on a
SPARCstation 20 (192 MB main memory, two 60 MHz
SuperSPARC CPUs).

4.1 Results of a typical application

As an example we use a typical complex image process-
ing application based on the CCITT recommendation
H.261 [13]. This application consists of several tasks with
execution times independent of the input values. Each of
these tasks have different demands on the hardware com-
ponents to be used.

Fig. 4: Task-graph

IN
IN: 0

96

FB1: 0

BMA

FIR

PRAE

DCT

Q
Q: 0

IQ
IQ: 0

IDCT

REK

C
UNIVERSAL: 132

FB2
FB2: 0

96

96

96

96

96

96

96

96

96

96

64

96

553

FB1

PAR1: 256
UNIVERSAL: 1536

DCT_SEQ: 6156

DCT_PIPE: 474

DCT_ARRAY: 132

UNIVERSAL: 12312

BMA_PIPE: 3617

BMA_ARRAY: 484
UNIVERSAL: 7234

FIR_SEQ: 3461

FIR_PIPE: 1170

FIR_ARRAY: 510
UNIVERSAL: 7234

PAR1: 128

UNIVERSAL: 1280

DCT_SEQ: 6156

DCT_PIPE: 474

DCT_ARRAY: 132
UNIVERSAL: 12312

4.1.1 The underlying algorithm
Fig. 4 shows the corresponding task-graph derived from

the video coding algorithm H.261. This graph is automati-
cally generated. Vertices are
marked with the possible al-
location of tasks to proces-
sors and the individual exe-
cution time. Arcs are
marked with the communi-
cation time in clock cycles
between two tasks allocated
on different processors.

The constraint library
contains one microprocessor
(UNIVERSAL) and 9 differ-
ent ASIC´s (BMA_PIPE, ...)
on which we can allocate
the tasks. The vertex de-
scription is a mnemonic ab-
breviation for the tasks. For
example DCT denotes the
Discrete Cosine Transfor-
mation. We have extended
the original description by
execution times for each
task on the microprocessor.
Tasks IN and FB model ex-
ternal memories. To avoid
cycles in the task-graph we
model the FB memory with
FB1 for read and FB2 for
write. These tasks as well as
the tasks Q and IQ are used
to model the environment.
Therefore, the execution
times are set to zero.

4.1.2 Mapping - Results without functional pipelining
We assume for the task C the timing constraint s tC C+

≤ 2500 . With sC we identify the start time of task C on
the allocated processor and with tC the execution time of
C on this processor. Therefore, this inequation states that
the execution of task C must be finished after 2500 clocks.
This is a typical timing constraint for the design of real-
time systems. Such constraints are contained in our con-
straint library.

Because a complex MILP can be expected we first apply
a heuristic preprocessing, which is based on the metropolis
algorithm [11]. This results in 3400 clocks as an upper
bound for the overall execution time. With this informa-
tion we determine ASAP- (as soon as possible) and
ALAP-times (as late as possible) for the start times for
each task and communication. We have used these bounds
in our MILP to reduce the computation time for solving
the MILP. With respect to the given constraint library we
can find a vaild design of a real-time system with all tasks
allocated and scheduled. The corresponding constants k1
and k3 in the objective function (OF) were given the value
0.4 and the constant k2 was given the value 0.2.

The MILP generated without functional pipelining for
this application consists of 196 (275) inequations with 111
(152) variables. The values in brackets denote the MILP
without ASAP- and ALAP-times from the preprocessing.
The CPU time was 6.44 (18.46) seconds.

processor /
bus

2287 544

553 484
BMA

1926

1739 744 256
REK

1963
DCT

288
IDCT

448

1133 510
FIR

1320

OET = 2963

0 495 990 1485 1980 2475

132 132

132

128

time

PRAE

CUNIVERSAL

BMA_ARRAY

PAR1

DCT_ARRAY

FIR_ARRAY

B1

B0

Fig. 5: Gantt diagram I

UNIVERSAL

FIR
ARRAY

DCT
ARRAY

bus system

PAR1

BMA
ARRAY

B0
B1

Fig. 6: Designed system

The results are shown in Fig. 5 with an automatically
generated Gantt diagram, which is a standard illustration
for tasks executed in parallel on several processors. The
new designed real-time system consists of two buses (B0,
B1) and five different processors. For example the tasks
PRAE and REK are allocated on processor PAR1. The
task PRAE starts after 1739 clocks. The execution time of
this task is 128 clocks (see Fig. 4) on the processor PAR1.
At the beginning we have a data transfer from the FB
memory to the BMA_ARRAY, which needs 553 clocks
for the communication on bus B1. The corresponding ar-
chitecture for the designed real-time system is shown in
Fig. 6. The allocation and the scheduling for this system is
optimal for the given task-graph (Fig. 4) with respect to
OET , OPC , OCC and the given constraint library. The
timing constraint for task C is also met.

In Fig. 5 and 6 it can also be seen that we have to realize
six tasks on four ASIC´s and
only one task (C) is com-
puted as software on the
microprocessor (UNIVER-
SAL). Therefore, we have
six hardware implemented
tasks and only one software
implemented task. Tasks with
execution time zero are
omitted. The overall exe-
cution time of the video co-
ding algorithm H.261 on this
real-time system is 2963
clocks, which is also shown
in Fig. 5.

4.1.3 Mapping - Results with functional pipelining
In section 3.3 we have introduced two additional in-

equations, which we need to minimize the time interval
between two successive runs of the algorithm. For this ex-
ample we used no heuristic preprocessing procedure. With
the extended objective (EOF) we have choose (, , ,k k k1 2 3
k4) = (0.02, 0.04, 0.04, 0.9) because our main goal was to
get a minimized latency time. The necessary MILP for the
above application consists of 544 inequations with 137
variables. The CPU time was 27.06 seconds.

The results are shown in Fig. 7 with an automatically
generated Gantt diagram. Again, we have six hardware
implemented and one software implemented task. The la-
tency time of the coding algorithm on the resulted real-
time system is 1320. This latency time is defined by bus
B0. Also, we show the overall execution time in Fig. 7,
which is greater as in the previous section. It can be seen,

#
arcs

#
tasks

max. of
parallelism

available
processors

example 1 12 8 3 5
example 2 10 8 4 3
example 3 7 8 2 4
Table 1: Structure of the annotated task-graphs

that the execution of tasks FIR and BMA can start before
the last execution of the tasks in the previous iteration are
finished. One reason for this is that the communication to
task BMA can start very early. Without functional pipe-
lining 29,630 clocks are needed for ten iterations. With the
minimization of the latency time we need only 14,907
clocks for ten iterations.

Fig. 7: Gantt diagram II

processor /
bus

time 0 945 1890 2835 3780

BMA

DCT DCT DCT

REK REK REK

FIR FIR FIR

OET = 3027

4725 5667

LT = 1320

IDCT

PRAEPRAEPRAE

IDCT IDCT

BMA BMA

B1

B0

UNIVERSAL

BMA_ARRAY

DCT_ARRAY

PAR1

FIR_ARRAY iteration

i

i+1

 i-1

CCC

4.2 Further results

In this section we present the results of three task-graphs
with a typical structure by applying our mapping ap-
proach. We start our mapping procedure from the given
annotated task-graphs. In Table 1 we describe each anno-
tated task-graph shortly. Each task can be performed on
the microprocessor. Normally we have at least one addi-
tional processor for each task. In example 1 and 2 the
communication times are lower as the execution times of
the tasks on the processors. In example 3 the communica-
tion times are much higher. For each example two buses
are available. In Table 2 we show the principle structure of
the automatically generated MILPs, the solving time, the
overall execution time and the latency time. We distin-
guish between our basic model (run 1) and the extension
(run 2) concerning functional pipelining.

#
const.

#
var. sec. OET LT

example 1 / run 1 190 87 0.82 341 -
example 1 / run 2 620 136 17.7 647 240
example 2 / run 1 199 93 0.36 198 -
example 2 / run 2 363 99 0.51 202 140
example 3 / run 1 166 84 6.16 240 -
example 3 / run 2 288 85 1.93 270 200

Table 2: Further results

For the underlying annotated task-graphs we have got
optimal real-time systems with respect to the objective
functions (EOF) and to the constraint libraries. In all ex-
amples we could reduce the overall computation time

6 Conclusion

We have presented an approach for automatically de-
signing application specific real-time systems, which de-
fines a bus oriented, heterogeneous, loosely coupled real-
time system composed of resources available from a con-
straint library. Corresponding to the requirements the de-
signer decides whether he wants to generate a MILP with
or without considering pipelining. Also the cost function
can be tuned by the designer in order to determine the
weights of hardware costs and execution times. The de-
termined allocation and schedule is optimal with respect to
the costs and the time requirements for performing the un-
derlying algorithm (e.g. image or signal processing algo-
rithm) on the designed real-time system. For solving the
optimization problem bounds have been introduced, so
that the time for solving the problem is acceptable for
problems of reasonable size. Several experimental results
show the practicability of our mapping approach in hard-
ware/software codesign for industrial applications. To illu-
strate the results where tasks are executed in parallel on se-
veral processors we use automatically generated Gantt dia-
grams, which allows the designer to evaluate the results.

References

[1] H. Achatz: SUSAN: System for Universal Scheduling and
Allocation, SASIMI, Nara, Japan, 1993, pp. 138 - 144.

[2] E. Barrows, W. Rosenstiel, X. Xiong: Hardware/Software
Partitioning with UNITY, Handouts of the 2nd Int. Work-
shop on Hardware/Software Codesign, Cambridge, 1993.

[3] A. Bender: Optimal Task Mapping in a Hardware/Soft-
ware Codesign Environment, Proc. of the Workshop on
Design Methodologies for Microelectronics, Slovakia,
1995, pp. 177-186.

[4] Using the CPLEX Callable Library, User Guide, CPLEX
Optimization Inc., Incline Village, U.S.A., 1994

[5] R. Ernst, J. Henkel, T. Benner: Hardware-Software Co-
synthesis for Microcontrollers, IEEE Design&Test of
Computers, Vol. 10, No. 4, 1993, pp. 64-75.

[6] W. Grass, M. Mutz, W.Tiedemann: High Level Synthesis
based on Formal Methods, Proc. of the 20th EURO-
MICRO conference, Liverpool, 1994, pp. 83-91.

[7] R. Gupta, C. Coelho, G. De Micheli: Program Implemen-
tation Schemes for Hardware-Software Systems, Com-
puter, Vol. 27, No. 1, 1994, pp. 48-55.

[8] W. A. Halang, A. D. Stoyenko: Real Time Computing,
Springer, 1994.

[9] D. Herrmann, J. Henkel, R. Ernst: An Approach to the
Adaption of Estimated Cost Parameters in the COSYMA
System, Proc. of the 3rd Int. Workshop on Hardware/ Soft-
ware Codesign, Grenoble, 1994, pp. 100-107.

[10] G. Koch, U. Kebschull, W. Rosenstiel: A Prototyping
Environment for Hardware/Software Codesign in the
COBRA Project, Proc. of the 3rd Int. Workshop on Hard-
ware/Software Codesign, Grenoble, 1994, pp. 10-16.

[11] N. Metropolis, et. al.: Equation of State Calculations for
Fast Computing Machines, Journal of Chemical Physics,
Vo. 21, 1953.

[12] P. Scholz: Static mapping of program tasks onto multipro-
cessor systems for real-time applications (In German),
diploma thesis, University of Passau, 1994.

[13] M. Schwiegershausen, et. al.: Mapping Complex Image
Processing Algorithms onto Heterogeneous Multiproces-
sors Regarding Architecture Dependent Performance Para-
meters, Proc. of the 3rd Int. Workshop on Algorithms and
Parallel VLSI architectures, Leuven, Belgium, 1994.

[14] N. Woo, et. al.: Compilation of a single specification into
hardware and software, Handouts of the 1st Int. Works. on
Hardware/Software Codesign, Estes Park, Colorado, 1992.

	CDROM Home Page
	1996 Home Page
	EDTC 96
	Front Matter
	Table of Contents
	Session Index
	Author Index

