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Abstract

We study the problem of multi-stage zero skew clock tree
construction for minimizing clock phase delay and wire-

length. In existing approaches clock bu�ers are inserted

only after clock tree is constructed. The novelty of this pa-

per lies in simultaneously perform clock tree routing and

bu�er insertion. We propose a clustering-based algorithm

which uses shortest delay as the cost function. We show

that the feasible positions for clock tree nodes and bu�ers

can be generalized from diagonal segments (merging seg-
ments) to rectangles (merging blocks). Bu�ers are large

components and must be placed pairwise disjointly. We

also show that the problem of �nding legal positions for

bu�ers such that no bu�ers overlap can be formulated as

a shortest path problem on graphs, and can be solved by

the Bellman-Ford algorithm. By making use of the special

properties of the graphs, we further speedup the Bellman-
Ford algorithm. The experimental results show that our

algorithm greatly outperforms the approach of inserting

bu�ers after clock routing.

I. Introduction

Many VLSI circuits are synchronous circuits which are syn-
chronized by clock signals. The clock frequency determines
the performance of a circuit. Clock skew, de�ned as the maxi-
mum arrival time di�erence from the clock source to sinks, can
degrade the clock frequency signi�cantly. Therefore, minimiz-
ing clock skew is the most important task of clock tree routing
[1, 4, 7, 10, 11, 14].
In addition to clock skew, signal delay and wirelength are

also important object functions to be minimized, as in general
net routing problem. Clock signal delay is also called phase
delay. It appears as inter-chip skew and a�ects system per-
formance. Long wire length consumes large routing area and
a�ects the routability of other nets.
Long phase delay can be reduced by inserting clock bu�ers

at appropriate levels of clock tree [1, 12]. There are algorithms
that insert bu�ers after routing is completed [13, 5]. To si-
multaneously perform clock routing and bu�er insertion is a
challenging work. In this paper we propose an algorithm that
performs the two tasks simultaneously. The algorithm gen-
erates a set of zero-skew clock trees, each of which are non-
redundant in terms of phase delay and wirelength. We show
that our algorithm provides a sound tradeo� between phase
delay and wire length.
In [14], a bottom up merging scheme which ensures zero

skew under Elmore delay model [9] is proposed. Later three
research groups [2, 3, 8] independently propose a two-phase
method (bottom-up merging phase and top-down embedding
phase) for clock tree routing assuming tree topology is given.
This method is known as Deferred Merging Embedding (DME)

algorithm. To determine tree topology, a clustering bottom-
up algorithm[7] which is based on nearest neighbor selection
achieves very good results in wirelength minimization.
We adopt the two-phase DME algorithm and generalize the

concept of merging segments to merging blocks. Loosely speak-
ing, a merging block is a set of feasible embedding points for
non-leaf vertices or center positions of clock bu�ers. In addi-
tion, our algorithm uses the smallest maximum delay among
all possible merging as the criterion for selecting next pair to
be merged in the bottom-up phase. This criterion has the same
performance of nearest neighbor selection in terms of minimiz-
ing delay and wirelength. Furthermore, it cause subtrees to
grow evenly. Since bu�ers are usually large components in a
circuit. We propose a graph theoretic method to place bu�ers
in their merging blocks (which may overlap) so that bu�ers do
not overlap one another. We transform the problem into a spe-
cial linear program which can be modeled as a constraint graph
and solved by the shortest path algorithm. Taking advantage
of the properties of the constraint graph, we further improve
the time e�ciency of the shortest path algorithm.
The remainder of this paper is organized as follows. In Sec-

tion 2, we review some basic concepts and related works. In
Section 3, we describe in details the core of our algorithm in-
cluding clustering strategy, merging block concept, bu�er in-
sertion and placement. Finally experimental results are given
in Section 4.

II. Reviews of Basic Concepts

A. Bu�ered Clock Tree

We assume that a clock tree is a binary tree in which the root
is the clock source and the leaves are clock pins. Elmore delay
model is used in computing the signal propagation delay of the
clock tree. Let ev denote the edge between node an internal
node v and its parent. Let rv be the resistance of edge ev and
Cv be the total capacitance of subtree Tv. The delay from a
node u of the clock tree to a descendant node v of u, denoted
by d(u; v) is

d(u; v) =
X

u02path(u;v)

ru0Cu0 ;

where path(u,v) is the set of nodes along the unique path from
u to v excluding u. Let r be the root, N be the number of
clock pins, and li(1 � i � N) be a leaf. Clock skew can be
de�ned as

S = max
1�i;j�N

jd(r; li)� d(r; lj)j:

Bu�ers are often inserted to reduce phase delay. The model
of a bu�er is shown in Figure 1. In this model a bu�er has
three parameters: input capacitance, cb, output resistance rb,
and internal delay db. Bu�ers of di�erent sizes have di�erent
parameters. Figure 2 shows a bu�ered clock tree. Before bu�er
insertion, the capacitance under node v3 is C3, which equals
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Figure 1: A clock bu�er and its model.

CT3 , the total capacitance of the subtree T3 rooted by v3. After
bu�er insertion, C3 reduces to cb. Capacitance cb is usually
much less than CT3 , therefore upstream delay is reduced. The
delay through the bu�er is rbCT3 + db. Therefore, we should
carefully select bu�er size and insertion points in a tree. In this
paper, we make the following assumptions. First, there is only
one type of bu�er. Second, bu�ers are leveled. For example, in
Figure 2, the four bu�ers in the second row are level-2 bu�ers.
Third, the variation among delays through each bu�er of the
same level should be minimized. Forth, the variation among
delays through the subtrees rooted by the bu�ered nodes of
the same level should be minimized. These assumptions are
reasonable because they can simplify design process, reduce
skew induced by bu�ers, and reduce skew process variation
sensitivity [12, 13].
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Figure 2: A bu�ered clock tree.

B. Zero Skew Subtree Merging

If the tree topology is given, the position of the root v of the
new subtree formed after merging can be determined from the
positions of the two children v1 and v2 of v. This is illustrated
in Figure 3 and 4. Let tv denote the delay from v to any leaf
of subtree Tv. Then

tv = rl1(
cl1

2
+ Cv1 ) + tv1

= rl2(
cl2

2
+ Cv2 ) + tv2 ;

Cv = Cv1 + Cv2 + c(l1 + l2);

where l1(l2) is the wire length from v to v1(v2), and r and
c are per unit resistance and per unit capacity of the routing
wire. The same equations hold for the case in Figure 4, where
node v1 and v2 are bu�ered. The relation between tvi and
t
0
vi
(i = 1; 2), the delay value before bu�er insertion, is

tvi = db + rb � Cvi + t
0
vi
:

In [14], during each merging distances l1 and l2 are determined
such that the delays from the new root v to all leaves are all the
same. In other words, zero skew is maintained. Extra wires
sometimes are needed to ensure zero skew.
The DME algorithm makes use of the fact that for each

merging, the candidate positions for the new node form a di-
agonal segment (merging segment). Therefore, the bottom-
up phase determines the merging segment ms(v) for each v
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Figure 3: zero-skew merging (no bu�ers).
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Figure 4: zero-skew merging (with bu�ers inserted).

and later the top-down phase determines the exact position
of v on ms(v) (embedding). A Manhattan arc is a line seg-
ment, possibly of zero length, with slope of +1 or -1. The
collection of points within a �xed distance of a Manhattan
arc is called a tilted rectangular region, or TRR. The bound-
ary of a TRR consists of Manhattan arcs. The Manhattan
arc at the center of a TRR is called its core. The radius of
a TRR is the distance between its core and its boundary. It
was proven [4] that all merging segments are Manhattan arcs,
and ms(v) = trrv1 \ trrv2 , where trrv1(trrv2) is the TRR with
core ms(v1)(ms(v2)) and radius l1(l2). The top-down phase
works as follows. It determines the root position arbitrarily
on the root merging segment. Let pl(v) denote the embedded
position of node v, and p be the parent of v. For each node v,
it embeds v on a point in ms(v)\trrp, where trrp is the square
TRR with core pl(p) and radius ev. Since both the bottom-up
and top-down phases run in linear time, the DME algorithm
has linear time-complexity.
The algorithm in [7] uses a bottom-up clustering strategy to

generate the tree topology, while applying the DME algorithm
to determine the positions of non-leaf vertices. Giving N clock
pins, initially there are N merging segments which form a set
S. During each iteration it �nds a nearest pair ms(vi) and
ms(vj) among all merging segments, and performs a zero-skew
merging on ms(vi) and ms(vj) to form ms(v). Then it deletes
ms(vi) and ms(vj) from S and put ms(v) into S. It takes
N �1 merging steps to �x the tree topology. Upon completion
of these operations the top-down phase of the DME algorithm
proceeds.

III. Our Algorithm

Our algorithm uses clustering approach to determine tree
topology and applies the DME algorithm to embed the inter-
nal nodes of a clock tree. We integrate bottom-up clustering
and bu�er insertion/placement. We start with the description
of bu�er insertion.

A. Bu�er Insertion

The clustering process maintains a set S of subtrees, which is
updated after each merging step. Whenever the size of S is
reduced to 2k for some integer k, we consider the possibility of
inserting bu�ers at the roots of all the subtrees in S. For each
Ti 2 S, we insert a bu�er at a distance li from the root ri of
Ti so that the delay from each leaf in the subtree to the new



root r0i (where bu�ers are positioned) is equal to a constant B.
For example, in Figure 5, l1; l2; l3 and l4 are the extra wires
to make d1 = d2 = d3 = d4 = B. The value B is the longest
delay among all subtrees assuming bu�ers are inserted without
any wire elongation. For example, in Figure 5, B is the delay
of T4. Thus T4 does not need wire elongation. This approach
tries to balance the delays through the bu�ers and the delays
of the subtrees altogether.
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Figure 5: Bu�er insertion and wire elongation.

B. Clustering Strategy

In [7], each merging operation merges two nearest neighbors
in the Manhattan distance. We also adopt a similar greedy
approach. Our algorithm merges two trees in a way that the
merged tree has the smallest root-to-leaf delay. By using this
shortest delay cost function we can ensure that trees grow more
evenly than those using the nearest neighbor selection method.
Formally, when using the shortest delay cost function, we

�nd a new root v with minimum d(v) such that

d(v) = min
vi;vj2S

fd(vk)jmb(vk) = zmerge(mb(vi);mb(vj)g; (1)

where zmerge stands for zero-skew merge operation, andmb(v)
is the merging block of the tree rooted by v. We will de�ne
merging block in the next section. This operations has time
complexity O(jSj2).
We present the bottom-up phase of our algorithm as follows.

Algorithm 1: Bottom-Up-Clustering (S)

Input: A set of clock pins or subtrees S = fviji = 1; : : :Ng;

Buffer parameters cb, rb and db.

Output:A set T of tuples (Ti; di; wi).

Begin

if jSj = 1 then

Get (d(v); w(v)) (S = fvg);

if (Not-Redundant(d(v); w(v))) then
enqueue(Bank, (v; d(v); w(v)));

return;

Find k such that 2k < jSj � 2k+1;

while jSj > 2k do

Find v using the cost function (1);

S  S � fvi; vjg;

S  S [ fvg;

call Bottom-Up-Clustering(S);

Copy S to S
0;

Do buffer insertion and placement on S
0;

if no buffers are overlapped then

call Bottom-Up-Clustering(S');

End.

Algorithm 1 is a recursive algorithm. For the basis case, the
input set consists of only one tree, which is the whole clock tree.
There is a pair of delay and wirelength values (d;w) associated
with the root. If (d;w) is non-redundant, we keep (d; w) and

the associated tree topology in a storage Bank, otherwise we
discard it. A pair (d; w) is non-redundant if there does not exist
another pair (d0; w0) in Bank such that d � d

0 and w � w
0.

When input size is larger than one, we use the shortest de-
lay cost function to successively merge pairs of subtrees. the
operations of bu�er insertion and bu�er placement are applied
after a certain number of merging steps as speci�ed in the al-
gorithm. The operation of bu�er placement will be described
in details in Section D.. We have the following two lemmas.

Lemma 1 The number of merging operations (zmerge) in the

Bottom-Up-Clustering Algorithm (Algorithm 1) is O(N logN),
where N is the number of clock pins.

Lemma 2 The number of the operations of inserting bu�er on

a tree in the Bottom-Up-Clustering algorithm is O(N logN).

We can see that each successful bu�er insertion and place-
ment generates a new independent merging process, which is
generated by the recursive call at the last line of Algorithm 1.

C. Merging Blocks
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Figure 6: A merging block.

In DME algorithm, the set of feasible points for positioning a
node v is a diagonal segment ms(v). In our algorithm, the set
of feasible points can be generalized to a rectangle area which
we call merging block. It originates from bu�er insertion as
illustrated in Figure 6. Assume that the tree under root v
has no bu�ers. Then the feasible points for v forms a segment
(ms(v)) as usual. Now that a bu�er is inserted, and an exten-
sion wire of length L is applied, the bu�er may be positioned
anywhere within the TRR with core ms(v) and radius L. The
TRR is called the merging block of bu�ered root v0 denoted
by mb(v0). We consider diagonal segments and points as spe-
cial cases of merging blocks. Let zero-seg-merge(s1 ; s2) denote
the merge operation in the original DME algorithm. We now
describe the merge operation (zmerge) of merging blocks. Let
mb(v1) and mb(v2) be the merging blocks of trees rooted by
v1 and v2. Let dist(l1; l2) be the distance between segments l1
and l2.

Case 1: mb(v1) and mb(v2) do not overlap. Let b1; b2; b3 and
b4 be the four boundaries of mb(v1), and c1; c2; c3 and
c4 be the four boundaries of mb(v2). Note that it is pos-
sible that bi = bj (or ci = cj) for some i and j, which
is the case that the merging block is degenerated. We
have zmerge(mb(v1);mb(v2)) = zero-seg-merge(bk; cl),
where (dist(bk; cl) = min1�i;j�4fdist(bi; cj))g. (See Fig-
ure 7(a).)

Case 2: mb(v1) and mb(v2) overlap, and neither of v1 and v2
is a bu�ered root. Assume d(v1) � d(v2). The parent v
has delay d(v) = d(v1), and v can reside on mb(v1). Let
l be the length of wire that connects v to v2. Enlarge
mb(v2) by l and obtain a TRR trrv0

2

. Then mb(v) =



mb(v1) \ trrv0

2

. (See Figure 7(b).) Note that Case

2 includes the situation that one merging block totally
encloses the other.
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Figure 7: Two cases of determining new merging blocks

D. A Graph-Theoretic Approach to Bu�er Placement

Clock bu�ers are large components in a circuit. It is essential
that the bu�er positions determined by our algorithm do not
cause bu�ers to overlap. The merging block associated with
a bu�ered root is the possible placement area for that bu�er.
In order to reserve enough space for bu�ers at lower levels of
the clock tree, whose merging blocks are determined later than
bu�ers at the higher level, we need to shrink the merging blocks
as soon as their parents are determined. Therefore, in Case 1
of Section 3.3, we shrink mb(v1) to a single segment bk, and
shrink mb(v2) to cl.
The higher level merging blocks associated with bu�ers are

considered as obstacles to low level merging blocks. During
the bottom-up phase, we keep a set B of obstacles. For each
bu�ered node v 2 S, the newly generated merging block mb(v)
should be shrunk to mb(v) � B immediately. This shrinking
process can be done e�ciently by constructing a grid which
divides the chip area into a set of small squares. Each square
is associated with a list of elements in B which overlap with
the square. So we only have to test the squares which overlap
with mb(v) to perform the shrinking process. If by doing so
mb(v) become ;, then it is impossible to insert bu�ers at the
roots of the subtrees in S. We abort S and later try another
set with smaller number of subtrees.
The above strategy avoid the overlap between the bu�ers

of the current level and the bu�ers of the higher (previous)
levels. To avoid overlap among the bu�ers of the current level,
we �x an exact position for a bu�er if its corresponding merging
block overlap with other merging blocks. It can be considered
as shrinking the merging block to a point. Although this may
result in increased delay or wirelength of clock tree, bu�ers are
guaranteed legal positions. If we rotate all merging blocks by
45�, and shift them to the �rst quadrant, all merging blocks
become rectangles with rect-linear boundaries. Let W be the
width of a bu�er. We assume a bu�er has a square shape. After
rotation, each bu�er becomes a rhombus. We �nd the smallest
square that encloses the rhombus, which has dimension W

0 �
W

0, where W 0 =
p
2W . We enlarge each side of a rectangle

by W 0, since bu�er centers can be positioned at the boundary
of merging blocks. Now we can formally de�ne the problem as
follows.

Problem 1 We are givenM rectangles with rect-linear bound-

aries. Each is large enough to contain a square with dimension

W
0 �W

0, and each overlaps with at least one other rectangle.

Find a placement of all the squares such that each is contained

by a rectangle, and no two squares overlap. (See Figure 8 for

an example.)
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Figure 8: An example of Problem 1.

Let B1 and B2 be two squares with center coordinates
(x1; y1) and (x2; y2). They do not overlap if and only if
jx1 � x2j � W

0 _ jy1 � y2j � W
0, which is equivalent to the

disjunction of the following four inequalities. This set is called
separation set.

x1 � x2 � �W 0 (2)

x2 � x1 � �W 0 (3)

y1 � y2 � �W 0 (4)

y2 � y1 � �W 0 (5)

For example, in Figure 8, there are two pairs of overlapped
rectangles. The above four inequalities can specify that Buf1
and Buf2 do not overlap. We need another four inequalities
to specify that Buf2 and Buf3 do not overlap.

x1 � x3 � �W 0 (6)

x3 � x1 � �W 0 (7)

y1 � y3 � �W 0 (8)

y3 � y1 � �W 0
: (9)

The square Buf1 is contained by RA (speci�ed by inequal-
ities (12)-(15)), while Buf2 is contained by RB (speci�ed by
inequalities (16)-(19)), and Buf3 is contained by RC (speci�ed
by inequalities (20)-(23)). We introduce a pair (x0; y0) of vari-
ables corresponding to the origin (0; 0). Inequalities (10) and
(11) are exactly x0 = y0. Note that w = W

0
=2. We call the

inequalities (10)-(23) the con�nement set.

x0 � y0 � 0 (10)

y0 � x0 � 0 (11)

x0 � x1 � �(A1x + w) (12)

x1 � x0 � (A2x � w) (13)

y0 � y1 � �(A1y +w) (14)

y1 � y0 � (A2y � w) (15)

x0 � x2 � �(B1x +w) (16)

x2 � x0 � (B2x �w) (17)

y0 � y3 � �(B1y + w) (18)

y3 � y0 � (B2y � w) (19)

x0 � x3 � �(C1x +w) (20)

x3 � x0 � (C2x �w) (21)

y0 � y3 � �(C1y + w) (22)

y3 � y0 � (C2y � w) (23)

Note that all of the inequalities from (2) to (23) have the form
xj�xi � aij . Problem 1 is now transformed to a type of linear
program as follow.



Problem 2 Given a con�nement set B (e.g. constraints (10)

- (23)), and a group of k separation sets D1; D2; : : : ; Dk (e.g.

constraints (2) - (5), and constraints (6) - (9)), determine a

set of values for all of the variables (e.g. x1; y1; x2; y2; x3 and

y3) that satisfy B and at least one of the constraints in each

Di or determine that no such values exists.

There is a natural correspondence between Problem 2 and
the single-source shortest-paths problem on a graph [6]. We
construct a directed graph G = (V;E) called constraint graph.
We create a vertex for each variable. Let v(x) denote the
vertex that corresponds to variable x. For each constraint xj�
xi � aij , we create an edge from vertex v(xi) to v(xj) with
weight aij . We designate x0 as the source. For example, if we
choose (4) from the �rst separation set, and choose (6) from the
second separation set, together with all inequalities from the
con�nement set the constraint graph is shown in Figure 9(a). If
G contains negative cycle, then no solution exists. Otherwise,
the sums of weights of the shortest paths from x0 to each node
is a solution to Problem 2. It is obvious that the solution
includes x0 = y0 = 0. For the shortest path problem, we can
use Bellman-Ford algorithm [6], which runs in time O(jV jjEj).
The size of vertex set jV j = 2m+2 and the size of edge set jEj =
4m+k+2, where m is the number of rectangles (squares), and
k is the number of pairs of overlapped rectangles. For problem
2, in the worst case, we need to run Bellman-Ford algorithm 4k

times, which leads to total time complexity O(4k(2m+2)(4m+
k+ 2)). To improve the e�ciency, we check beforehand to see
if some of the inequalities in separation sets are impossible for
a given rectangle pair. For example, in Figure 8, inequalities
(2) and (5) are not possible.
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Figure 9: Examples of constraint graph, etc.

We explore the characteristics of the constraint graphs and
develop the following techniques to further reduce the running
time by reducing the problem size for each run of the shortest
path algorithm, and by performing some preprocessing to avoid
unnecessary runs of the shortest path algorithm.

Lemma 3 Problem 1 can be solved by constructing the con-

straint graph and removing the edges x0 ! y0 and y0 ! x0

and solving the single source shortest path problems on the two

sub-graphs with source x0 and y0 respectively.

Now we only need to consider the two sub-graphs indepen-
dently. We call them X-graph and Y -graph (Figure 9-(b)).
For simplicity, the following discussion is only in terms of X-
graph. Nevertheless, it applies to Y -graph as well. Let Gx

denote a X-graph. We construct a sub-graph Gnx of Gx,
whose vertex set is V (Gnx) = V (Gx) � x0 and edge set is
E(Gnx) = fxi ! xj ji 6= j and i; j 6= 0g. In other words,
E(Gnx) corresponds to the set of edges from separation sets.
We call Gnx negative graph (Figure 9-(c)), since all of its edges
have negative weights. The following lemma is obvious.

Lemma 4 All cycles in the negative graph are negative cycles.

A depth-�rst search on the negative graph creates a depth-
�rst forest and classi�es all edges into the category of tree edges,
forward edges, cross edges and back edges[6]. The existence
of back edges implies that there are cycles and they must be
negative cycles (Lemma 4). Therefore, instead of running the
Bellman-Ford algorithm to detect negative cycles, we can �rst
perform depth-�rst search on the negative graph to detect back
edges. If back edges exist, then we know that there is no
solution for the current combination of constraints.
We remove all outgoing edges of x0 from the X-graph and

it becomes a reduced X-graph (Figure 9-(d)). We present the
Modi�ed Bellman-Ford algorithm which applies to reduced X-
graphs. As in the original Bellman-Ford algorithm, d(v) is the
shortest-path estimate of vertex v.

Algorithm 2: Modified-Bellman-Ford (MBF)(G0
x)

Input: A reduced X-graph (Y -graph);

Output:The shortest path length d(v) for each v 2 V (G0
x);

or ``FALSE'' if negative cycle detected

Begin

d(x0) 0 and for every v 6= x0, d(v) W (x0 ! v).

for i 1 to jV (G0
x)j � 1 (* Main Loop *)

do for each edge u
e
! v 2 E(G0

x) do

if d(v) > d(u) + w(e) then

d(v)  d(u) +w(e)

if d(x0) < 0

return ``FALSE'' (*End of Main Loop.*)

for each edge u
e
! v 2 E(G0

x)

do if d(v) > d(u) + w(e)

then return ``FALSE''

return ``TRUE''

End.

Compared to the original algorithm, we modify the initial-
ization step such that d(x0) is 0 as usual, but d(xi)(i 6= 0) is
initialized to, instead of 1, W (x0 ! xi) for the edge x0 ! xi
in the X-graph. Also we add a test: d(x0) < 0 for early termi-
nation.

Theorem 1 The shortest paths from x0 to every vertex in the

X-graph can be obtained by running the Modi�ed Bellman-Ford

algorithm on the reduced X-graph. Assume that the corre-

sponding negative graph is cycle free.

In summary, the algorithm to �nd a placement of all bu�ers
in their enclosing merging blocks is presented as follows. Let
Gcx and Gcy be the sub-graphs of X-graph and Y -graph re-
spectively with the outgoing edges of x0 and y0 removed and
the edges corresponding to the separation sets removed. Let
G
0
x and G

0
y be the reduced X-graph and reduced Y -graph re-

spectively.



Algorithm 3: Buffer-Placement (M)

Input:A list of merging blocks M.

Output:``False'' if not placeable. Otherwise

a list of buffer center coordinates (xi; yi)'s

Begin

Q ;;

Rotate all merging blocks by 45�;

Prepare all inequalities;

Construct Gcx and Gcy;

for each selection of inequalities from the

separation sets do

Construct the negative graphs Gnx and Gny;

Do depth-first search on Gnx and Gny;

if both Gnx and Gny have no cycles then
Add the edges of Gnx to Gcx and form G

0
x;

call MBF(G0
x);

if MBF return ``TRUE'' then

Add the edges of Gny to Gcy and form

G
0
y;

call MBF(G0
y);

if MBF return ``TRUE'' then

Rotate each (d(xi); d(yi)) by �45� and

put into list Q;

return Q;

End.

We have �nished the discussion of the bottom-up phase,
with bu�er placement being the most sophisticated step. We
now describe the top-down phase.

E. Top-Down Embedding

At the end of the bottom-up clustering phase, a list of trees
with non-redundant delay and wirelength values are created.
After a user selects the desired tree based on its delay and
wirelength value, the top-down phase proceeds. We state it as
follows.

Algorithm 4: Top-Down-Embedding (v)

Begin

if v has no child then
return;

if v is the root then

Choose any pl(v) 2 mb(v);

else

Let p be the parent node of v;

Construct trrp as follows:

core(trrp)  pl(p);

radius(trrp) jevj;
if v is not buffered then

Choose any pl(v) 2 mb(v) \ trrp;

Let v1 and v2 be the two children of v;

call Top-Down-Embedding (v1);

call Top-Down-Embedding (v2);

else

Choose any pl(v) 2 mb(v) \ trrp;

Find the original unbuffered node v0

and its merging block mb(v0);

Construct trrv such that:

core(trrv)  pl(v);

radius (trrv) l(v0);

Choose any pl(v0) 2 mb(v0) \ trrv;

Let v1 and v2 be the two children of v0;

call Top-Down-Embedding (v1);

call Top-Down-Embedding (v2);

End.

When a unbu�ered node v visited, the operation is the same
as the top-down phase of the DME algorithm, except that it

chooses embedding points pl(v)'s from merging blocks instead
of merging segments. When v is a bu�ered node, a wire with
length l (can be 0) is inserted between v and v0, the original
unbu�ered node. Therefore, if l > 0, we need to embed two
nodes v and v0, and bu�er center is placed at v. The top-down
phase can be seen as embedding an incomplete binary tree,
some of whose internal nodes (corresponding to bu�er centers)
only have one child. The time complexity of Algorithm 4 is
O(N) (N is the number of clock pins).

IV. Experimental Results

Our algorithm was implemented in C++ on the Sun SPARC-
5 workstation. We ran experiments on benchmark data r1-r5
[14]. The parameters of clock bu�ers are those used in [12].
The output resistance is 122 
, input capacitance is 400fF, and
the bu�er internal delay is 75 ps. We assume the dimension of
a clock bu�er is 400 microns � 400 microns. We also assume
the clock diver at the root has 10 
 output resistance. For
comparison, we used the clock tree topology of r1-r5 obtained
by the algorithm of [7], and exhaustively tried all possible com-
binations of levels in order to insert bu�ers. In other words,
the counterpart performs bu�er insertion after tree topology
is determined, while our algorithm simultaneously determines
tree topology and positions of bu�ers.
The results are shown in Figure 10-14. In each �gure the

vertical axis is phase delay (D), and the horizontal axis is wire-
length (W). The curve labeled \Ours" represents the results
produced by our algorithm, and the curve labeled \Post" (for
post-processing) represents the results from the counterpart.
The number associated with each point is the number of bu�ers
used. They show that our algorithm produces signi�cantly bet-
ter results than the counterpart in the sense that most points of
the counterpart are redundant to the points of our algorithm.
Especially, when more bu�ers are inserted, the di�erence be-
comes larger. The only exception is in the case of r3, where
our algorithm and the counterpart obtain comparable results.
The reason is that the counterpart by chance generates a clock
tree whose subtrees at the same level are balanced in both de-
lay and capacity. However, for r3, our algorithm still performs
better when more bu�ers are inserted.
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