
33rd Design Automation Conference 
Permission to make digital/hard copy of all or part of this work for
personal or class-room use is granted without fee provided that copies
are not made
or distributed for profit or commercial advantage, the
copyright notice, the title of the publication and its date appear,
and notice is given that copying is
by permission of ACM, Inc. To
copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permssion and/or a fee.
DAC 96 - 06/96 Las Vegas, NV, USA 1996 ACM, Inc. 0-89791-833-9/96/0006..$3.50

New Algorithms for Gate Sizing: A Comparative Study

Olivier Couderty Ramsey Haddady Srilatha Manney

Synopsys Inc., 700 East Middle�eld Rd. University of Colorado, Dept. of ECE

Mountain View, CA 94043, USA Boulder, CO 80309, USA

Abstract

Gate sizing consists of choosing for each node of a
mapped network a gate implementation in the library
so that some cost function is optimized under some
constraints. It has a signi�cant impact on the delay,
power dissipation, and area of the �nal circuit. This
paper compares �ve gate sizing algorithms targeting dis-
crete, non-linear, non-unimodal, constrained optimiza-
tion. The goal is to overcome the non-linearity and non-
unimodality of the delay and the power to achieve good
quality results within a reasonable CPU time, e.g., han-
dling a 10000 node network in 2 hours. We compare the
�ve algorithms on constraint free delay optimization and
delay constrained power optimization, and show that one
method is superior to the others.

1 Introduction

Early work on gate sizing targeting area/delay opti-
mization can be found in [20, 12]. Using a RC delay
model, TILOS [8] expresses the delay and area as posyn-
omials. Geometric programming or heuristics based
greedy approaches can be used to solve such a posyn-
omial formulation [23, 22]. Linear programming is used
in [2] thanks to a piecewise linear delay model. A convex
programming formulation based on pseudo-posynomial
is presented in [22], and is solved using an interior point
method. Gate sizing is formulated as non-linear program-
ming in [4, 11, 15] and solved with Lagrangian multipli-
ers [19, pp. 60{74]. Analytical delay/power/area models
or continuous sizing are used in [20, 10, 22, 3] to avoid
facing the combinatorial explosion, or to �ll the lack of
�rst and second derivatives.

These approaches su�er from some of the following prob-
lems. (1) The delay and power cost models are no longer

yThis work was partially funded by ARPA under contract no.
F33615-95-C1627.

realistic, or are over-simpli�ed to �t an optimization tech-
nique. (2) Some methods use continuous sizing with the
idea of solving an easier problem and then projecting
the continuous solution on a discrete solution. But gate
sizing is essentially a discrete problem, and projective
methods can even fail to �nd a feasible solution. (3)
Some methods make crude assumptions on the optimal-
ity criterion, e.g., minimizing a weighted power and delay
product is the best delay/power tradeo�, while the prob-
lem is about constrained optimization. (4) Somemethods
assume that the objective function and/or the feasible
region are convex, which does not hold with accurate de-
lay and power models. (5) Also some of the approaches
mentioned above are too CPU intensive to be applied to
circuits with more than 1000 nodes.

From the practical point of view, gate sizing consists
of optimizing the power and/or area under some delay
constraints, or optimizing the delay under some power
and/or area constraints. The constraints can also include
design rules checking (DRC), such as maximum fanout
load or maximumtransition time. Accurate delay models
make gate sizing a non-linear, non-convex, constrained,
discrete, optimization problem. Experiences show that it
is not unimodal, i.e., several local extrema exist.

This paper addresses gate sizing as de�ned above. Sec-
tion 2 discusses constraint free delay optimization. It
describes �ve di�erent algorithms: genetic, polytope,
greedy, Hooke & Jeeves, and GS [5] (Global Sizing). Sec-
tion 3 addresses power minimization under delay con-
straints. Experimental results of Section 4 will show that
GS is the best of these approaches for delay optimization,
and that it is better than the widely used greedy algo-
rithm for delay-constrained power optimization.

2 Delay Optimization

This section addresses constraint free delay optimiza-
tion. Greedy algorithm is the most widely used method
for gate sizing. It iteratively resizes nodes on or near
the critical path (see below) of the network using vari-
ous heuristics [9, 23, 8, 3, 12]. The goal of this paper is
to explore new alternatives and show that a better opti-
mization method evolves from these considerations.

We have chosen four highly non-linear optimization ori-
ented methods1. We distinguish two optimization strate-
gies, depending on how they �nd a direction in the search

1We excluded simulated annealing because it does not �t well

space along which the objective function is susceptible
to being improved. The �rst strategy (e.g., genetic and
polytope algorithms) consists of using a set of con�gura-
tions in the search space to determine a search direction.
The second strategy (e.g., Hooke & Jeeves, greedy, and
GS algorithms), exploits local information to determine
a search direction from one con�guration. Before going
through these approaches, we brie
y overview delay eval-
uation.

2.1 Delay Evaluation and Notations

To each point n of a network is associated an arrival
time AT (n), which is the time at which the signal is
propagated from the primary inputs to n, and a required
time RT (n), which is the time at which the signal must
arrive to meet point-to-point delay constraints. The slack
S is de�ned as S (n) = RT (n)�AT (n). The set of points
that has the minimal slack value constitute the critical
path of the circuit, i.e., the slowest topological path. If
the smallest slack is non negative, the delay constraints
are met. The reader is referred to [7, pp. 225{289] for
more details on delay computation, path sensitization,
and false paths.

The time needed for a signal to propagate from an in-
put of a gate to an input of the next gate depends on
the intrinsic delay of the gate, the output load (the out-
put capacitance seen at the output of the gate) and on
the input transition time (the time needed by the input
signal to achieve its transition). The reader is referred
to [1, 24, 18, 13, 21, 14] for the presentation of some delay
models. An extensive study of di�erent input transition
time sensitive delay models shows that a table lookup ap-
proach is more accurate than most of the multi-coe�cient
(linear, polynomial, or posynomial) approximations [14].
We will use such a table lookup based approach, which
is within 3% of SPICE.

For the sake of simplicity, we will consider delay opti-
mization as maximizing the smallest slack of the design.
We denote N a network, and n a node of a network. We
denote g or gk a gate, g(n) the current gate implement-
ing a node n, and G(n) = fg1; g2; : : :g the set of possible
gates to implement a node n. We call a move a single
gate resizing. A move from gi to gj is called a move of
distance j � i. We denote g(N) the current implemen-
tation of a network N . When considering a subnetwork
N 0 of N , we will denote n0 the node of N 0 corresponding
with the node n of N .

2.2 1st Strategy: Genetic and Polytope

A genetic algorithm applies several breeding opera-
tors to generate new con�gurations from a population
(a set of con�gurations in the search space), and keeps
the best solutions to yield the next population. We use
the operators Crossover , Smooth, and Mutate. Function
Crossover builds a solution with the pre�x and the su�x
of two randomly selected solutions. The probability of
a solution to be chosen increases exponentially with its
�tness, i.e., how good it is regarding the current popula-
tion. Function Smooth averages together two randomly

with combinatorial optimization, and is di�cult to tune.

1

2
3

4m

contraction
worst

reflection

expansion
search direction

centroid

Figure 1: Polytope algorithm.

selected solutions. Function Mutate randomly changes a
few parameters (i.e., which gate implements a node) of a
randomly selected solution.

Fig. 1 illustrates the polytope algorithm [19, pp. 284{
292]. It tries to improve the best solution of a set of
m con�gurations (i.e., a polytope made of m vertices
in the search space) by iteratively replacing the worst
one, which is denoted worst , with a better one. To do
so, one looks along a search direction that may improve
worst , i.e., the direction passing through worst and the
centroid of the polytope. This yields a new solution,
re
ection. If it is better than all the other ones, one looks
further in the search direction by computing expansion ,
and the best of these two solutions replaces worst . If
re
ection only improves upon worst , the latter is replaced
with re
ection. If it does not even improve worst , a
con�guration contraction is computed, and it replaces
worst if it is better. Otherwise, a number of strategies
can be used. For example, one determines whether the
polytope is tight or loose around the current best vertex,
and consequently the other vertices are shrunk towards
or bloated away from the current best vertex.

2.3 Issues Regarding 2nd Strategy

The local information that can be used to determine
a search direction is the variation of the slack of a node
when its gate implementation is changed. One cannot use
an analytical delay model because of the lack of accuracy,
nor a continuous sizing assumption, which will provide a
�rst order partial derivative, because sizing is essentially
a discrete problem. Thus the sensitivity or �tness of a
move must be evaluated by delay recomputation.

Sizing a gate e�ects its load and its output transition
times, which e�ects the propagation time and output
transition times of its fanin (because their output loads
change) and of its fanout gates (because their input tran-
sition times change). Consequently, the propagation time
and output transition times of its fanin gates and of its
transitive fanout gates need to be recomputed. Moreover,
sizing changes the sensitivity of the paths, and therefore
e�ects the slack of all the gates. This means that updat-
ing the delay after a single move has a cost linear w.r.t.
the number of nodes of the circuit, which is computa-
tionally too expensive in an iterative algorithm.

Let us denote �Cost (called \gradient") the variation
of some function Cost when resizing a node. As said

+δ

n2

n1

new

expansion

se
ar

ch
 di

re
cti

on

start

+δ

−δ

−δ

Figure 2: Hooke & Jeeves algorithm.

above, evaluating �S of a move must be done within the
complete circuit. In practice, although a move can e�ect
the slack of every node, its e�ect on the slack gradients
decreases quickly, approximately geometrically by fanin
and fanout level. This enables us to do two things.

(a) instead of evaluating the gradient of a node n within
the whole circuit, which is too computationally ex-
pensive even with an incremental delay computation
algorithm, we evaluate it within a subnetwork N 0

extracted around n, made of one or two transitive
levels of fanin and fanout. Gradient evaluation be-
comes cheaper, since it only depends on the richness
of the library and on the maximum fanout of the
network, regardless of its number of nodes.

(b) after some moves have been performed, the gradient
of a node n is re-computed only if n has been suf-
�ciently perturbed, i.e., if one of its close neighbors
has been resized. Thus gradient recomputations are
avoided for a small loss of accuracy.

Since a local sizing potentially e�ects the whole circuit,
an approach that considers several moves at the same
time and that takes into account the interactions of these
moves is more \aware" of the global e�ect of local moves
than a single move based iterative method. This raises
the need for a global optimization process as opposed
for example to a local greedy approach. Moreover, delay
optimization can encounter several local extrema because
of the non-convexity of the delay model. This raises the
need for a method that can avoid being trapped in a
suboptimal solution.

2.4 Hooke & Jeeves Algorithm

The idea of the Hooke & Jeeves algorithm [19, pp. 263{
276] is to determine a search direction in a multi-
dimension space using a minimum amount of informa-
tion. The local information is the variation of the objec-
tive function when moving a parameter by ��. At the
beginning, � is large to allow a wide search, and is then
decreased to focus on a local minimum. The composition
of the elementary moves that improve the objective func-
tion determines the search direction. Fig. 2 illustrates
this process in a 2-dimension space.

Let best be the current best solution. For each node n of
the network start, we compute the slack variation (within

function GoToLocalMin(N;Cost ;LocalCost)
update = N ;
moves = �
loop f

old cost = Cost(N);
foreach n 2 update f

Extract subnetwork N 0 around n;
init cost = LocalCost(N 0);
n:move = 0;
n:grad = 0;
foreach g 2 Gates(n) and g 6= g(n) f

g(n0) = g;
grad = LocalCost(N 0)� init cost ;
if (grad < n:grad) f

n:move = g;
n:grad = grad ;

g
g
if (n:move 6= 0) f

moves = moves [fng;
g else f

moves = moves � fng;
g

g
moved = ApplyMultiMove(N;Cost ;moves);
update = PerturbedNodes(moved);

g until Converge(old cost ;Cost(N);moved);

Figure 3: GS algorithm.

a subnetwork surrounding n) that results from moving
n's current implementation k to the k + �-th and k � �-
th gate. We record the best of these two moves if one
of them yields an improvement. Then all the recorded
moves are applied simultaneously to generate the new
con�guration new. If it is better than best, it becomes the
new best solution, and we take as the next starting point
the con�guration expansion, which goes further along the
direction that has just improved the objective function.
Otherwise, we restart the search from best, and � is decre-
mented to restrict the search to two closer neighbors of
each node's current gate implementation.

2.5 Global Sizing

Global Sizing [5] (GS) is a mix of a multi-dimension
descent based optimization, a perturbation propagation
based heuristic that avoids gradient recomputations, and
a global perturbation technique to get out of local mini-
mums. We �rst present the general purpose optimization
algorithm, then the delay optimization algorithm.

2.5.1 General Purpose Optimization Procedure

Fig. 3 shows the GS algorithm. It takes as input
a network N , a global cost function Cost to be mini-
mized, and a local cost function LocalCost (so far, as-
sume that it is equal to Cost). The set update con-
tains the nodes whose gradients need to be computed
(initially it contains all the nodes), and moves is the set
of all nodes that can potentially be resized (initially it is

function DelayOptimize(N;S);
best slack = �1;
GoToLocalMin(N;�S;�S);
while S(N) > best slack f

best slack = S(N);
best sol = g(N);
GoToLocalMin(N;�TS ;�TS);
GoToLocalMin(N;�S;�S);

g
g(N) = best sol ;

Figure 4: Delay optimization with GS.

empty). For every node n of update , the best gradient
n:grad and its associated move n:move is computed w.r.t
LocalCost, using a subnetwork for the evaluation, as ex-
plained in (a) above. Then the function ApplyMultiMove
takes the set moves of all non-zero gradient nodes and
determines a multiple move. This can be done in several
way: along the descent direction, or by conjugation of
directions [19, pp. 293{327]; by looking at the maximal
subset of moves that minimizes Cost . The set moved of
nodes that have actually been resized is then returned,
from which PerturbedNodes derives the new set of nodes
whose gradients need to be recomputed at the next iter-
ation, as explained in (b) above.

2.5.2 Constraint Free Delay Optimization

Fig. 4 shows the delay optimization procedure, which
takes as input a network N and a slack function S that
expresses the timing constraints. We note TS (N) the
sum of the slacks of all nodes of the network N . An
optimization and a perturbation step are iterated until
no more improvement is found. The optimization step
consists of maximizing the slack. The perturbation step
is used to get out of the local minimum and look for an-
other, potentially better, local minimum, and is indeed
another optimization step, namely maximizing TS . Its
e�ect is to globally speed up every nodes, so that the
con
icts between the critical paths are relaxed , and the
next maximization of S(N) can achieve a better result2.

3 Power Optimization

Experimental results presented in Section 4 show
that GS and greedy beat out the other techniques for
constraint free delay optimization. Thus we compare
only these two methods for delay-constrained power
optimization3 (it applies as well for area optimization).

3.1 Power Optimization with GS

To minimize the power, a greedy algorithm iteratively
applies the move that saves as much power as possible,

2We tried several perturbation functions, e.g., guarded random-
ization, (un)guarded sumof outputs' slacks maximization,but none
of them were as good as maximizing TS(N).

3An overview on power estimation can be found in [16, 6].

function PowerOptimize(N;S);
DelayOptimize(N;S);
if S(N) < 0 then S = S � S(N);
GoToLocalMin(N; [�NEG(S); P]; [�NEG(S);Relax]);

Figure 5: Power optimization under delay constraints.

or the best move of the least critical node, until it cannot
move anything without violating a delay constraint.

Fig. 5 shows how GS is used to optimize the power un-
der delay constraints. The function NEG is de�ned as:
NEG(x) = x if x < 0, else 0. The notation [c1; c2; : : :]
as a cost function means that the cost c1 is minimized in
priority, then c2, etc

4. First the delay is optimized. If the
delay constraints cannot be met, they are automatically
restated so that power is optimized for the best found de-
lay. Second, the power (P) is minimized while enforcing
the delay constraints (�NEG(S))5.

The local cost function Relax used for evaluating the gra-
dient balances the gain in power with a delay dependent
function � that acts as a bene�t/penalty function. It
takes into account how much power and slack is won or
lost, and on how critical the node is. In this formula-
tion, S0 is the initial slack, i.e., �S = S � S0. The
small constant � and the normalization constant � are
precomputed according to the characteristics of the ini-
tial network.

Relax = (��P � �) � �(
�S

�+ jS0j
); where

�(x) =

�
1 + x if x � 0
1

1�x
otherwise

The ideas underlying this optimization method are as
follows. (1) Optimizing the delay gives plenty of alterna-
tives for power optimization, i.e., going far away from the
infeasible region makes power optimization less likely to
be trapped in a local minimum. (2) Staying in the feasi-
ble region during the optimization avoids the complicated
tuning of barrier/penalty based constraint optimization
method or ping-ponging (both of these constrained op-
timization methods allow the solution to be temporally
in the infeasible region). (3) The power optimization is
done within the feasible region by relaxing the delay con-
straints using a penalty/bene�t function, as opposed for
instance to a greedy method that resizes as many non-
critical nodes as possible to their minimal power. Such
a greedy method can be trapped in a low quality local
minimum, because resizing a few nodes to their local min-
imal power too \quickly" creates critical paths that can
prevent most of the other nodes from being resized and
saving more power.

4[c1; c2; : : :] < [c0
1
; c0

2
; : : :] if and only if there is some index k

such that ck < c0
k
and cj = c0

j
for j < k.

5Note that at this point, S is necessarily non negative, thus
taking �NEG(S) as a priority cost enforces the minimization to
be done within the feasible region.

Example %delay improvement CPU
Name Nodes Ave Space Gen HJ Poly Greed GS Gen HJ Poly Greed GS

C2670:H:cb60 701 3:76 10165 0:92 0:00 1:57 1:94 2:77 105 21 245 27 32
C2670:H:cmos 674 4:95 10192 6:29 7:14 6:83 6:93 7:14 40 51 102 6 16
C5315:H:cmos 1001 4:82 10432 2:35 3:05 3:27 3:51 4:20 61 48 222 31 43
pair:H:cmos 1202 5:31 10610 3:66 5:36 4:98 5:60 5:36 141 108 340 33 74
C3540:L:ibm 850 7:68 10635 0:26 5:87 4:91 5:61 7:36 43 198 359 97 234
C7552:H:cmos 1358 5:12 10695 1:16 3:59 2:03 2:38 3:53 197 183 385 39 92
C6288:H:lca3 1727 4:02 10730 19:31 16:85 22:17 24:60 24:75 3455 241 7426 2422 477
des:M:cb60 2687 3:84 101132 0:16 0:00 4:44 5:67 7:23 426 71 5608 349 440
F642925:M:cb60 11692 3:43 103530 24:44 11:74 21:30 25:55 26:59 6656 141 12053 2023 887
F642925:M:cbc7 11479 4:51 104088 2:98 9:61 10:26 11:66 11:89 393 143 10320 2918 814
F642925:M:cmos 11408 4:53 104472 24:25 26:43 24:73 26:50 27:17 3613 250 7763 1084 782
F642925:M:lca3 14136 5:30 104708 30:18 28:12 28:30 33:43 33:31 8759 171 12029 8604 1496
tandem:M:cmos 15061 4:31 106057 25:93 26:60 22:73 24:93 27:45 5668 219 16201 5182 616
F642925:M:ibm 20225 6:54 106896 40:88 44:55 43:06 45:03 48:47 6198 1739 11559 14177 8826
F642925:L:ibm 21174 6:56 107375 53:68 55:19 17:00 54:40 57:43 10744 3302 9092 30813 13579
tandem:M:ibm 16181 7:90 109484 45:82 30:53 34:83 45:77 48:21 22010 365 19554 5468 2313

For each circuit, the table gives the number of Nodes, the Average number of sizes for the sizeable nodes,
and the size of the search Space. The CPU time is in seconds on a 60 MHz SuperSparc (85.4 SpecInt).

Table 1: Comparison of the �ve algorithms on delay optimization.

Algorithm Ave Wins E� CPU

GS 9:51 84 99:8 519
greedy 8:72 6 72:3 1142
polytope 7:19 0 52:8 2797
Hooke & Jeeves 6:64 5 46:2 173
genetic 6:83 0 36:4 1382

The table gives the Average percent of delay improve-
ment and the overall E�ectiveness. Wins is the number
of cases where the algorithm beat or tied all the other
algorithms. The average CPU time is in seconds on a
60 MHz SuperSparc (85.4 SpecInt).

Table 2: Result summary for delay optimization.

4 Experimental Evaluation

We took 92 di�erent mapped circuits as a benchmark
suite. The mapped circuits came from 9 di�erent logical
circuits mapped to 5 di�erent libraries with three di�er-
ent delay oriented mapping e�orts. We ran the �ve delay
optimization algorithms presented in this paper. Table 1
details some of the results, and Table 2 summarizes the
e�ectiveness of the di�erent approaches. The e�ective-
ness measure (E�) works as follows. The available im-
provement is the di�erence between the initial delay and
the best delay found by all the algorithms. Each algo-
rithm earns a score based on how much of that available
improvement it �nds (e.g., it wins 100% when it �nds the
best delay, and 0% if it does not �nd any improvement).
E� is the average of these scores over all test cases. The
motivation for this measure is to equally reward algo-
rithms that do well in cases where there is not a large
possible improvement from the initial circuit.

The genetic algorithm fared the worst when using the E�

measure, but ranked better by the Ave measure. This is
because it did well on some examples that had large per-
centages of available delay improvement, but did poorly
on examples with small percentages of available delay
improvement. In either case it uses lots of CPU time.
The polytope was fairly reliable at getting a medium im-
provement in the solution, and this helped it beat out
Hooke & Jeeves on average. Hooke & Jeeves was more
bimodal: frequently getting stuck early in a local mini-
mum, but occasionally breaking out and �nding the best
improvement of any algorithm. Hooke & Jeeves also is
signi�cantly faster than Polytope.

Table 2 shows that GS beats out the other approaches,
including the widely used greedy algorithm. For small
search spaces, it is hard to declare which algorithm is
faster. However, for large search spaces GS is consis-
tently faster. The best-�t polynomial expressing the
CPU time as a function of sizeable nodes is like jN j1:75

for the greedy algorithm, while it is like jN j1:20 for GS,
with a crossover point around 1300 nodes.

Fig. 6 shows typical optimal power/delay curves com-
puted with the GS and greedy algorithms. Both of the
methods started with the same network (an optimaldelay
con�guration). We then set di�erent delay constraints
and let the algorithms optimize the power. Overall, the
optimal power/delay curve computed by GS is always
better than the one computed by the greedy algorithm,
with only a 10% increase in CPU time. The worst di�er-
ence between the curves range typically from 1% to 7.5%
(5.2% on average), and over 25% for some examples.

5 Conclusion

This paper has presented an extensive study of �ve
di�erent approaches for gate sizing. It has shown that a

9

9.5

10

10.5

11

11.5

12

12.5

9 9.5 10 10.5 11 11.5 12 12.5 13 13.5 14 14.5

po
w

er

delay

C3540.med.ibm

GS
greedy

5400

5500

5600

5700

5800

5900

6000

6100

45000 50000 55000 60000 65000 70000 75000

po
w

er

delay

C6288.high.cmos

GS
greedy

Figure 6: Optimal power/delay curves found by GS and greedy algorithms.

method based on multiple moves, perturbations, and re-
laxation can achieve better delay and delay-constrained
power optimization than the widely used greedy ap-
proach. This general purpose optimization algorithm is
able to handle fairly large circuits in a reasonable CPU
time (10000 nodes in 2 hours) with an improvement in
the quality of the result.

References

[1] D. Auvergne, N. Azemard, D. Deschacht, M. Robert,
\Input Waveform Slope E�ects in CMOS Delays", in
IEEE J. Solid-State Cir., 25-6, Dec. 1990.

[2] M. Berkelaar, J. Jess, \Gate Sizing in MOS Digital Cir-
cuits with Linear Programming", EDAC'90, 1990.

[3] M. Borah, R. M. Owens, M. J. Irwin, \Transistor Siz-
ing for Minimizing Power Consumption of CMOS Cir-
cuits under Delay Constraint", 1995 Int'l Symp. on Low
Power Design, pp. 167{172, Dana Point CA, April 1995.

[4] M. A. Cirit, \Transistor Sizing in CMOS Circuits", 24th
DAC, pp. 121{124, June 1987.

[5] O. Coudert, \Gate Sizing: a General Purpose Optimiza-
tion Approach", in Proc. of ED&TC'96, Paris, France,
March 1996.

[6] DesignPower, Starter Kit, Synopsys.

[7] S. Devadas, A. Ghosh, K. Keutzer, Logic Synthesis,
McGraw-Hill, 1994.

[8] J. P. Fishburn, A. E. Dunlop, \TILOS: a Posyno-
mial Programming Approach to Transistor Sizing", IC-
CAD'85, pp. 326{328, Nov. 1985.

[9] J. P. Fishburn, \LATTIS: an Iterative Speedup Heuris-
tics for Mapped Logic", 29th DAC, June 1992.

[10] B. Hoppe, G. Neuendorf, D. Schmitt-Landsiedel, \Opti-
mization of High-Speed CMOS Logic Circuits with An-
alytical Models for Signal Delay, Chip Area and Dy-
namic Power Dissipation", in IEEE Trans. on CAD, 9-3,
pp. 236{246, March 1990.

[11] K. S. Hedlund, \AESOP: A Tool for Automated Tran-
sistor Sizing", 24th DAC, pp. 114{120, June 1987.

[12] C. M. Lee, H. Soukup, \An Algorithm for CMOS Timing
and Area Optimization", IEEE J. of Solid-State Cir.,
19-5, pp. 781{787, Oct. 1984.

[13] Motorola HDC Series Design Manual.

[14] A. Martinez, \Automated Library Characterization and
Timing Model Accuracy Issues when Interfacing to Dif-
ferent CAD Tools", Hewlett-Packard, Santa Clara.

[15] D. P. Marple, \Transistor Size Optimization in the Tailor
Layout System", 26th DAC, pp. 43{48, June 1989.

[16] F. N. Najm, \A Survey of Power Estimation Techniques
in VLSI Circuits", in IEEE Trans. on VLSI Systems,
2-4, pp. 446{455, Dec. 1994.

[17] P. Pen�eld, J. Rubinstein, \Signal Delay in RC Tree
Networks", in 2nd Caltech VLSI Conf., March 1981.

[18] R. W. Phelps, \Advanced Library Characterization for
High Performance ASIC", Texas Instruments, Dallas.

[19] S. S. Rao, Optimization: Theory and Applications,Wiley
Eastern Ld., 1978.

[20] A. E. Ruehli, P. K. Wol�, G. Goertzel, \Analytical
Power/Timing Optimization Technique for Digital Sys-
tem", in 14th DAC, pp. 142{146, June 1977.

[21] T. Sakurai, A. R. Newton, \Delay Analysis of Series-
Connected MOSFET Circuits", in IEEE J. of Solid-
State Cir., 26-2, pp. 122{131, Feb. 1991.

[22] S. S. Sapatnekar, V. B. Rao, P. M. Vaidya, S. M. Kang,
\An Exact Solution to the Transistor Sizing Problem for
CMOS Circuits Using Convex Optimization", in IEEE
Trans. on CAD, 12-11, pp. 1621{1634, Nov. 1993.

[23] J. M. Shyu, A. Sangiovanni-Vincentelli, J. P. Fishburn,
A. E. Dunlop, \Optimization-Based Transistor Sizing",
in IEEE J. of Solid State Cir., 23-2, April 1988.

[24] G. Zewi, U. Barkai, Z. Becker, J. Ben-Simon, E. Kadar,
\An Accurate Slope-Dependent Delay Model", in
TAU'90, Haifa, Israel, 1990.

	CD-ROM Home Page
	1996 Home Page
	DAC96
	Front Matter
	Table of Contents
	Session Index
	Author Index

