
A System Design Methodology for Software/Hardware
Co-Development of Telecommunication Network Applications

Bill Lin

IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
E-mail: billlin@imec.be

Tel: +32/16/28.15.41 ; Fax: +32/16/28.15.15

Abstract

In this paper, we describe a system design methodology for the
concurrent development of hybrid software/hardware systems
for telecom network applications. This methodology is based
on the results of an investigation and evaluation of an actual
industrial system design application for ATM-based broad-
band networks. The aim of this methodology is to provide an
integrated design flow from system specification to implemen-
tation.

1 Introduction
Modern telecommunication systems are rapidly increasing in
design complexity. Elaborate network management is needed
to support a wide variety of broadband multimedia services.
The design of these systems is often a collaborative effort tak-
ing place at multiple sites. Such complex systems require a
combination of both hardware and software components in or-
der to deliver the required functionalities at the desired level
of processing performance and programmability. These hard-
ware and software components must be designed concurrently
to minimize time to market.

Example telecom network applications include system
components for ATM-based broadband networks, mobile net-
work infrastructures to support GSM-based cellular commu-
nication, SONET and SDH based networks, and interactive
video-on-demand servers.

In current industrial design practice, specification for-
malisms are mainly used to model each hardware or soft-
ware component separately. System design, preceding hard-
ware/software partitioning, proceeds still to a large degree in
an informal manner. The system specification handed over
to hardware and software designers is usually an informal de-
scription in the form of a report document, and is often suscep-
tible to ambiguous interpretations. Significant time is spent in
interpreting and understanding these specifications, and still a
lot of mismatches occur between the expected and the actual
behavior of designed components, leading to a lengthy sys-
tem integration and test phase after component design. Cur-
rently, the system integration and test phase can account for
nearly 50% of the design cycle for typical telecom network de-
signs in system houses. There is a clear need for suitable sys-
tem level specification formalisms and validation techniques to
overcome this problem.

Once the hardware and software parts are identified, more
formal specification models and design techniques are em-

ployed. In the case of software, C or C++ is used. In the case
of hardware, a register transfer language like VHDL or Ver-
ilog is used. The different hardware and software components
of a complete system are specified and synthesized separately,
which often introduces implementation mismatches, in addi-
tion to specification mismatches. Small changes at the sys-
tem level often require very substantial changes to the hard-
ware or software models of the components. While automated
code generators exist for producing machine code from C or
C++, and automated hardware synthesis tools exist for produc-
ing hardware implementations from VHDL or Verilog, there is
a general lack of tools to bridge the gap from the global sys-
tem level design specification to these traditional hardware and
software design methods. Moreover, there is a general lack of
a coherent design methodology for structuring the system de-
sign flow.

In this paper, we outline a design methodology and a sys-
tem design flow for the design of hybrid software/hardware
systems that are typically found in telecom network applica-
tions. This methodology is based on the results of an inves-
tigation and evaluation of an actual industrial system applica-
tion for ATM (AsynchronousTransfer Mode) based broadband
networks at Alcatel Bell [26]. Specifically, a user transparent
connectionless router for interconnecting geographically dis-
tributed high speed local area networks to an ATM connection
oriented public transport network has been investigated. This
case study is described in Section 2.

As a result of this investigation, we have developed a sys-
tem design methodology based on a concurrent object-oriented
programming model as the system behavioral specification
formalism. This proposed specification model is described in
Section 3. Simulation and debugging tools are provided, lever-
aging on the wide corpus of existing software development
tools, for the early conceptual validation of the system spec-
ification before proceeding to the implementation design flow.

For implementation, we provide automated design tools for
transforming the system level model into the traditional lev-
els of design entries for hardware and software implementa-
tion. In particular, conventional C++ [24] and VHDL [16]
models are generated for the parts of the system to be imple-
mented in software and hardware, respectively. New system-
level synthesis functionalities are required to achieve these au-
tomations, These new functionalities are part of a system de-
sign flow, which is outlined in Section 4. It is important to note
that traditional hardware and software design methods, mostly

33rd Design Automation Conference 
Permission to make digital/hard copy of all or part of this work for personal or class-room use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage, the copyright notice, the title of the publication and its date appear, and notice is given that copying is
by permission of ACM, Inc. To copy otherwise, or to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
DAC 96 - 06/96 Las Vegas, NV, USA 1996 ACM, Inc. 0-89791-833-9/96/0006.. $3.50

commercially available, are used in our design flow, thereby
not reinventing new solutions where adequate ones already ex-
ist. The remaining two sections of this paper, Section 5 and
Section 6, present related work and concluding remarks, re-
spectively. The work outlined in this paper is embodied in a
system design compiler called Matisse. This system design
compiler is incorporated into the CoWare heterogeneous de-
sign environment under development at IMEC [8].

2 Case Study: Connectionless Router for ATM
As a case study, we have investigated an actual industrial
ATM-based broadband network application developed by Al-
catel Bell. The application is a user transparent connection-
less router called the ACTS (Alcatel Connectionless Trans-
port Server) [26] that provides the necessary functions for the
direct provision and support of data communication between
geographically distributed computers or local area networks
(LANs) over a broadband ATM-cell based transport network.

ATM [9] is a fast packet switching transfer mode that sup-
ports high-speed integrated services by splitting all communi-
cations into equal 53-byte cells. These cells can be used to
carry every kind of information, be it computer data, video,
or voice. By using small cells to transfer data, the technology
enables networks to provide the flexible multiplexing needed
to support a wide variety of traffic, ranging from high to low
bandwidths, and from bursty to steady bit rates. In addition,
ATM is characterized by a connection oriented mode of oper-
ation.

Since local area networks are connectionless oriented, the
ATM network needs to be augmented with special user trans-
parent connectionless routers to provide connectionless ser-
vices. This is the role of the ACTS. This router can for example
support Switched Multi-megabit Data Services (SMDS) [2] in
a B-ISDN environment. The SMDS protocol features pack-
ets of variable length, which are transported by one or more
fixed-size ATM cells. The communication service offered is
connectionless, meaning that a sender does not have to set up
a connection prior to sending data, but can start transmitting
data immediately. The router is responsible for storing incom-
ing data, finding out where to route them, and forward them.
This situation is depicted in Figure 1.

In its current implementation, the ACTS consists of sev-
eral custom ASICs and a programmable processor for execu-
tive control. In future implementations of similar systems, the
functionalities of several of these processors will be integrated
into a single VLSI chip, and some functionalities previously
implemented in hardware will migrate to software to exploit
the increasing processing performance of emerging embedded
microprocessors.

3 The Programming Model
In this section, we outline the essential concepts and rationale
behind the programming model that we use in Matisse. De-
tailed language syntax is beyond the scope of this paper.

From our application experience on a number of indus-
trial broadband telecom network applications, we can con-
clude that behavior of these applications are best characterized

Servers

ATM backbone networkATM backbone network

LAN

LAN
Connectionless

Server

ATM

switch

ATM

switch

Connectionless

Server

Figure 1: A user transparent connectionless router intercon-
necting LANs to the ATM network.

by control-flow dominated data processing algorithms. Ex-
pressiveness in terms of control flow is essential. The algo-
rithms and the data structures that they operate on are usu-
ally tightly coupled. In many cases, the data represents the
real conceptual core of the application rather than the algo-
rithms. Support for concurrency is essential, but parallelism
tends to be at the task-level and is usually coarse to medium
scale. Although the implementation target is often a mixture of
software and hardware, telecom network applications are often
conceived at the top-level from a software perspective.

Given the above considerations, we have followed an
object-oriented approach to parallelism as the basis of our pro-
gramming model, as we believe it provides a natural model of
concurrency for the applications considered: objects encapsu-
late processes and (remote) member function calls encapsulate
interprocess communication. In addition, we believe object-
oriented features like encapsulation, inheritance, and polymor-
phism are invaluable in any large scale development. Specifi-
cally, we use an active object semantic model that combines
parallelism with object oriented principles. We have imple-
mented the programming model on top of the widely used
object-oriented programming language C++ [24] by introduc-
ing minimal syntactic extensions to it.

An active object differs from a passive object (as found in
standard C++) in that it additionally encapsulates a process, as
well as state and operations. The process allows an active ob-
ject to execute its member functions in parallel with the ac-
tivity of the rest of the program. In a typical program, only
a small number of objects will be active, providing the paral-
lel structure of the program. The majority of objects will be
standard passive objects, existing as members of active objects
or in data structures managed by active objects. This provides
support for coarse to medium scale parallelism.

Communication between active objects is via the use of (re-
mote) member function calls. A member function call to an ac-
tive object behaves in the same way as a standard C++ mem-

class msg_buffer {
 void send_msg (int item) ;
 int recv_msg () ;
 void overwrite_bottom(int item);
 int read_top () ;
}

buf

class producer {
 msg_buffer *buf ;
 void body () {

buf->send_msg(5);
. . .

}}

foo

class consumer {
 msg_buffer *buf ;
 void body () {

x = buf->recv_msg();
. . .

}}

bar

Figure 2: Simple example of model.

ber function call, in that the caller is suspended until the called
member function terminates. This rendezvous semantics pro-
vides synchronization between active objects that are operat-
ing concurrently. Argument passing (in both directions) is the
principle mechanism of data transfers. In addition to the ba-
sic notions of active objects, and communication and synchro-
nization via (remote) member function calls, our programming
model also provides mechanisms for mutual exclusion based
on Hoare’s monitor paradigm [15]. A simple example of the
model is illustrated in Figure 2.

Since we have implemented our model on top of C++, the
language also supports mechanisms for expressing (abstract)
data types, assignment and arithmetic operations, and control-
flow statements like if-then-else, switch-case, and for- and
while- loops. Also, we can leverage upon the wide corpus of
existing software compilation and runtime support tools for the
software implementation path, and on existing execution envi-
ronments [10, 12] and debugging tools [13] for early concep-
tual validation of the system specification.

In developing the model, the aim of maintaining as much
compatibility with C++ as possible has been a central issue.
We have avoided unnecessary differences from C++ where
possible. This enables us to leverage on the wide corpus of ex-
isting software compilation and runtime support tools for our
software implementation path. This is important since soft-
ware implementation represents a substantial part of many of
our target applications. In addition, compatibility with C++
enables new users already familiar with C++ to be productive
in a very short amount of time. Also, existing execution envi-
ronments and debugging tools can be easily adapted for early
conceptual validation of the system specification.

While concurrent programming models based on object-
oriented principles are not new, e.g. [4, 23, 1, 3, 7, 21], our
aim here is different. These language environments typically
assume elaborate runtime environments that can support dy-
namic process management, object migration between proces-

VHDL
C++

Compiler

machine
code

Hardware

RAM

RAM µP
Core

glue logic

Hardware

C++

Compiler

machine
code

High-Level
Concurrent Object-Oriented
System Specification Model

Refinement to
Sequential C++ code

HW/SW
Architecture &

Communication Design

HW/SW
Communication &
Interface Synthesis

VHDL
Code Synthesis

C++

Compiler

machine
code

Synthesis

gate
netlist

VHDL

Synthesis

gate
netlist

VHDL

Synthesis

gate
netlist

Heterogeneous
Encapsulation
Environment

µP
Core

Figure 3: The Matisse system design flow in the CoWare en-
vironment.

sors, network transparency, among other runtime features. In-
stead, our language environment must be suitable for embed-
ded applications where the implementation may be partly in
hardware and where software implementations are assumed
to be supported by ultra-small real-time kernels that only of-
fer bare minimum support for task scheduling and interprocess
communication. These microkernels can be less than 3K byte
in code size, in contrast to distributed runtime environments
that are many orders of magnitude larger. The software imple-
mentation part of the design flow is outlined in Section 4.4, and
the hardware implementation path is outlined in Section 4.5.

4 The Design Methodology

The programming model described in the previous section pro-
vides the system designers with a specification formalism that
can be used to specify the system level behavior of typical tele-
com network applications. This allows designers to use a for-
mal specification formalism instead of informal report docu-
ments as a medium of exchange to lower level implementa-
tion paths. In this section, we describe the design tools that
are a part of our design flow from system specification to im-
plementation. The design flow is shown in Figure 3. Sec-
tion 4.1 describes our simulation and debugging strategy. Sec-
tion 4.2 describes a target abstract machine model for imple-
mentation. The concurrent specification model is implemented
on this target machine model by partitioning it into software
and hardware parts. Section 4.3 describes our view on soft-
ware/hardware partitioning. Starting from the partitioning,
conventional C++ modules are automatically generated for the
software parts for entry to existing C++ compilers and VHDL
code modules are automatically synthesized for the hardware
parts for entry to existing VHDL-based hardware synthesis
tools. Section 4.4 describes the software generation step, and
Section 4.5 describes the VHDL code synthesis step. Sec-
tion 4.6 outlines how the hardware/software communication is
implemented. Finally, Section 4.7 outlines the role of a hetero-
geneous design environment for capturing the different stages
of system design.

4.1 Simulation and Debugging

As our specification formalism is based on minimal syntactic
extensions to C++, a wide corpus of existing software develop-
ment tools may be leveraged. For simulation, we make use of
existing runtime environments like PVM [10] and Nexus [12]
that provide a transparent runtime layer above conventional
operating systems like UNIX1 for execution of distributedpro-
grams across a network of possibly heterogeneous worksta-
tions. Support for simulation and early validation at high lev-
els of abstractions is essential in order to enable increased pro-
ductivity and competitiveness. Augmenting the execution en-
vironment are debugging tools. Programs described in our
model may be debugged by the same debuggers that are used
to debug standard C++ programs. Existingdebuggers likedbx
and GNU’s gdb are thread-aware. These debuggers can be
used in conjunction with runtime layers like PVM and Nexus
with the necessary preprocessing. In addition, analysis tools
like profilers can be similarly adapted. We use these tools in
our design flow for system validation.

4.2 Target Abstract Machine Model

This section describes the underlying target abstract machine
model of Matisse. The implementation model is based on an
abstract machine consisting of a networked collection of vir-
tual processing objects, each being a processor/memory pair.
This model is depicted in Figure 4. The model assumes that
each virtual processor supports only a single active object.
All data storage (e.g. for data structures) for an active object
is mapped to the local (virtual) memory of the correspond-
ing virtual processing object. This local memory model cor-
responds very closely to the notion of data encapsulation in
the object model. Communication between virtual process-
ing objects occurs via messages that are communicated over
an abstract communication network. This communication net-
work is implemented differently depending on whether the vir-
tual processing objects are mapped to software or hardware,
and whether several virtual processing objects are mapped
to the same physical software processor. This abstract ma-
chine model provides an intermediate abstraction for reasoning
about the relationship between the active object programming
model and the eventual implementation.

The mapping of virtual processing objects to real proces-
sors depends on whether the implementation is in software
or in hardware. In the case of software, several virtual pro-
cessing objects can be mapped on to the same physical soft-
ware processor and the same physical local memory. A ultra-
lightweight real-time operating system kernel is used to man-
age these tasks and the memory partitions. In the case of hard-
ware, each virtual processing object is in fact mapped phys-
ically to a separate hardware processor with its own phys-
ical local memory. This is because hardware is inherently
parallel. For the communication network, we currently im-
plemented dedicated point-to-point channels between physical
processors. The implementation of the low level channel hard-
ware is described in [19].

1Trademark of AT&T Bell Laboratories.

P

M

P

M

P

M

message message

active
object

active
object

active
object

message

.......

.......

.......

Communication Network

Virtual
Processing

Object

Figure 4: A target abstract machine model.

4.3 Software/hardware partitioning

Software/hardware partitioning is driven by the designer by
means of directives. System partitioning decisions are driven
by factors that are often not easily quantifiable. These factors
often cannot be easily formulated into simple cost equations
that an automated tool can optimize. Therefore, we believe
that such decisions should be best left to the designer who is
in a better position to make such judgements. We instead try
to automate the refinement steps to lower level hardware and
software tools as these steps tend to be the most problematic
for designers.

4.4 Software implementation

For software implementation, we use existing C++ compil-
ers to produce machine code for the embedded processor tar-
get. However, these compilers are aimed at compiling conven-
tional C++ code, which is sequential. To manage concurrent
tasks running on the same processor, we make use of ultra-
lightweight real-time microkernels, which provide bare min-
imum services for task scheduling and interprocess communi-
cation. These services are provided at the level of library func-
tion calls. Currently, we make use of a solution based on a
commercial real-time kernel called Virtuoso [27, 20].

To make use of such real-time microkernels and conven-
tional C++ compilers, automated compilation tools are pro-
vided in our design flow to transform our concurrent specifi-
cation model to a level of design entry suitable for these tools.

4.5 Hardware implementation

Starting from system specification model, refinement to lower
level hardware and software design frameworks is automated.
Designers will be able to start from the same system specifi-
cation model instead of having to re-specify and re-interpret
the system specification into lower level hardware description
languages like VHDL. This will help to eliminate time and ef-
fort spent in understanding and interpreting an informal speci-
fication, which is again often susceptible to ambiguity and mis-
matches.

Specifically, we use behavioral VHDL as the level of design
entry to current commercial hardware synthesis tools. This
VHDL is automatically generated from the parts of the system
specification that are assigned to custom hardware. Several
first generation commercial behavioral synthesis tools are ap-
pearing on the market. Examples include the Behavioral Com-
piler from Synopsys and Mistral-2 DSP Compiler from Men-
tor. These compilers incorporate many of the key results from
the last decade of high-level synthesis research (see e.g. [6]).
We are currently experimenting with the Synopsys Behavioral
Compiler [25] as the backend in our design flow, which already
provides basic functionalities like dependency graph construc-
tion, scheduling, resource and register assignment, and datap-
ath and controller synthesis.

Despite the availability of these high-level synthesis func-
tionalities, there is still a significant gap from our system level
model to the behavioral VHDL model. The object model has
to be translated into VHDL’s package and entity models. Also,
provisions for dynamic data structures inherent in the object-
oriented programming model must be supported. Behavioral
synthesis tools today only support simple data types like static
records and arrays. Dynamic data structures are not supported.
Instead, the designer has to explicitly map them in terms of
memory locations and memory operations. Hardware behav-
ior must be explicitlyprovided to manage the runtime behavior
of the memory. For applications in the telecom network do-
main, this can be a significant limitation. Moreoever, the ab-
stract notion of data structures and having algorithms operate
on them, the basic premise of object-oriented programming, is
partially lost. In our refinement step to behavioral VHDL, we
automate the allocation of physical memory, the mapping of
dynamic data structures to memory locations, the refinement
of data structure accesses to primitive memory operations, and
the synthesis of dynamic memory management behavior for
the runtime management of the memory. Some of these issues
have been addressed in [11].

With these additional hardware synthesis functionalities,
the designer can start from the same level of design entry as the
system specification. This means changes at the system level
specification are easily accommodated since the compilation to
lower level hardware design steps is automated.

4.6 Software/hardware communication synthesis

Different parts of the specification will be assigned to software
or hardware. Since we are building an application-specific so-
lution, different software programmable processors from dif-
ferent vendors may be used, thus resulting in a heterogeneous
hardware/software architecture. The implementation of such
heterogeneous embedded architectures, while ensuring that the
different system components are correctly integrated together,
is a surprisingly difficult task. Designers spend an enormous
amount of time on this task, partly in understanding how to
interface to the different processors being used, how to get
the hardware and software parts to communicate correctly, and
how to synchronize between different components operating
on different clocks. This is a highly error proned task, often
responsible for many low-level implementation mismatches,

leading to a length test phase after implementation.
Our approach to this problem is based on an orches-

trated combination of architectural strategies, parameterized
libraries, and CAD tools for automating low-level design tasks
that are error proned and time consuming. More specifically,
tools are provided to implement the communication structure
between the software and hardware components, thus solv-
ing the system integration and architecture co-implementation
problems. The communication structure will support point-to-
point communication, shared bus based communication, and
shared memory based communication. In addition, the com-
munication and architecture synthesis tools will also support
the embedding of real-time kernels for multi-tasking support
on a software processor. Although there are many existing
commercial real-time kernels available, they are not readily
portable to application-specific embedded architectures. To
solve this problem, tools are also provided to automate the low-
level configuration of real-time kernels so that they can be used
with the communication structures and embedded architecture
that we generate. These tools are embodied in a system called
Symphony [19, 20].

4.7 Heterogeneous co-design and co-simulation

Based on a common system specification model for capturing
control-flow dominated data processing applications, lower
level hardware and software specification models are gener-
ated for further synthesis. This is complementary to hard-
ware/software co-design flows from system data flow models
for DSP applications (e.g. [17]), which are also based on a
common top-level representation. However, there are design
situations where it would be best to mix different formal sys-
tem design models. This is one manifestation of heterogeneity.

Even for co-design flows where a common formal system
design model is used, such as the one described here, hetero-
geneity will naturally manifest itself by the virtue of the fact
that different implementation technologies will be used. For
example, C/C++ models will most likely be used for software
targets, and VHDL/Verilog models will most likely be used as
a lower level design entry for hardware targets. In general,
there are many immediate steps from system specification to
final implementation, and different computational models are
required at different levels of the refinement trajectory.

Thus, a heterogeneous co-design environment is needed
that can integrate multiple computational domains at differ-
ent levels of abstraction within a single environment. We
are currently developing one such environment called CoW-
are [8]. Ptolemy [5] is another such environment. A key prob-
lem is the encapsulation of different design tools. For exam-
ple, the Matisse system described in this paper, the Symphony
system for hardware/software communication, the Synopsys
compiler, and C++ compilers for different processors used, are
all being integrated into our CoWare environment.

5 Related Work
Data flow models have been successfully used to model DSP-
oriented systems (e.g. the SDF/DDF domains in Ptolemy [5]
and the Grape2 system [18]). Commercial offerings include

SPW from Alta/Cadence, COSSAP from Synopsys, and DSP-
Station from Mentor. While sophisticated compilers have
been developed for mapping these models into hardware and
software, they are not well suited for control-dominated data
processing behaviors found in telecom network management
applications that heavily rely on tight interactions between
control-flow algorithms and stored data structures (e.g. the
case study in Section 2).

Hierarchical FSM models, as exemplified in commercial
systems like Statemate from iLogix, have proved to be a pow-
erful formalism for reactive control behaviors. These models
do not support well programming constructs like abstract data
structures and do not support object-oriented features.

Distributed programming languages have been proposed
for programming general-purpose multiprocessor systems or a
distributed network of workstations [4, 23, 1, 3, 7, 21, 10, 12].
While the programming models are strongly related to the one
we use in this work, their implementation targets are different.
They rely on elaborate runtime environments for their execu-
tion, and they are intended for pure software implementations.
In contrast, our implementation target is an embedded solution
that is designed and optimized to provide specific functionality
for a particular application, using a combinational of both soft-
ware and hardware components. Often single chip solutions
are sought. This target has a significant impact on the design
flow and methodology.

Heterogeneous design environments, like the Ptolemy sys-
tem [5] and the CoWare system [8] under development at
IMEC, aim to provide an open environment where different
models of computation, and their accompanying simulation
and design methods, can be smoothly integrated. The work
presented here is complementary as it can be embedded into
such heterogeneous environments so that it can be used in com-
bination with other design models and methods. In fact, the
work presented in this paper is being incorporated into the
CoWare design environment at IMEC.

6 Conclusion
We have presented in this paper a system design methodol-
ogy for the co-development of hybrid software/hardware sys-
tems for telecom network applications. This methodology
was based on the results of an investigation and evaluation of
an actual industrial system design application for ATM-based
broadband networks. Specifically, the case study of a user
transparent connectionless router for ATM has been investi-
gated. The proposed methodology is based on a concurrent
object-oriented programming model, and we have presented
new design steps that are a part of an integrated design flow
from system specification to implementation. In the future, we
plan to further validate our methodology and design tools on
other relevant industrial design applications in the area of tele-
com networks.

Acknowledgments. This work is part of a joint collaboration between IMEC
and Alcatel-Bell. The author would like to thank M. Genoe, G. Van Wauwe, E. Huyskens,
and L. Cloetens from Alcatel-Bell for their contributionsand support in this project. The
work outlined in this paper are the result of ongoing research work at IMEC, to which
many peopleare contributing. In particular, the author is grateful to the contributionsfrom
G. de Jong, J. Silva, S. Vercauteren, and C. Ykman.

References
[1] H. E. Bal, M. F. Kaashock, and A. S. Tanenbaum. “Orca: A Language for Parallel

Programming of Distributed Systems”, IEEE Transactions on Software Engineer-
ing, 18(3), March 1992.

[2] Bellcore, “Generic System Requirements in Support of Switched Multi-megabit
Data Service”. TR-TSV-0007772,no 1, May 1991.

[3] A. Black, N. Hutchison, E. Jul, and H. Levy. “Object Structure in the Emerald Sys-
tem”, In Proceedings of the ACM Conference on Object-Oriented Programming
Systems, Languages, and Applications, pages 78-86, 1986.

[4] G. Booch, Object-Oriented Design with Applications, Menlo Park, CA, Ben-
jamin/Cummings, 1991.

[5] J. T. Buck et al. “Ptolemy: A framework for simulating and prototyping heteroge-
neous systems”, International Journal on Computer Simulation, January 1994.

[6] R. Camposano and W. Wolf (editors), Trends in High-Level Synthesis, Kluwer Aca-
demic Publishers, 1993.

[7] D. Caromel. “Toward a Method of Object-Oriented Concurrent Programming”,
Communications of the ACM, September 1993.

[8] H. De Man, I. Bolsens, B. Lin, K. Van Rompaey, S. Vercauteren, and D. Verk-
est. “Co-design of DSP systems”, NATO ASI Hardware/Software Co-Design,
Tremezzo, June 1995.

[9] M. De Prycker, “AsynchronousTransfer Mode, Solution for BroadbandISDN”, El-
lis Horwood, 1991.

[10] J. Dogarra, G. Geist, R. Manchek, and V. Sunderam. “Integrated PVM Framework
Supports Heterogeneous Network Computing”, In Computers in Physics, April
1993.

[11] G. de Jong, B. Lin, C. Verdonck, S. Wuytack, F. Catthoor, “Background Memory
Management for Dynamic Data Structure Intensive Processing Systems”, ICCAD,
November 1995.

[12] I. Foster, C. Kesselman, S. Tuecke, “Nexus: Runtime Supportfor Task-Parallel Pro-
gramming Languages”, Technical report, Mathematics and Computer Science Di-
vision, Argonne National Laboratory, 1994.

[13] GNU distribution. Free Software Foundation. 1994.

[14] D. Harel. “Statecharts: A Visual Formalism for Complex Systems”, Sci. Comput.
Program, vol.8, pp. 231-274, 1987.

[15] C.A.R. Hoare. “Monitors: An operating system structuring concept”, Communica-
tions of the ACM, 17(10):549-557, October 1974.

[16] “IEEE Standard VHDL Language Reference Manual”, IEEE Std. 1076-1987,
IEEE, New York, NY, 1988.

[17] A. Kalavade, E. A. Lee. “A Hardware/Software Codesign Methodology for DSP
Applications”, IEEE Design & Test, Sept. 1993.

[18] R. Lauwereins et al. “Grape-II: A system level prototyping environment for DSP
applications”, IEEE Computer, pp.35-43, February 1995.

[19] S. Vercauteren, B. Lin, H. De Man. “Constructing Application-Specific Heteroge-
neous Embedded Architectures from Custom HW/SW Applications”, ACM/IEEE
Design Automation Conference, June, 1996.

[20] S. Vercauteren, B. Lin, H. De Man. “A Strategy for Real-Time Kernel Support in
Application-Specific HW/SW Embedded Architectures”, ACM/IEEE Design Au-
tomation Conference, June, 1996.

[21] B. Meyer. “Systematic Concurrent Object-Oriented Programming”, Communica-
tions of the ACM, September 1993.

[22] “Mistral-2 Architecture Compiler”, Mentor Graphics, Beaverton, OR.

[23] J. Rumbaugh et al., Object-oriented modeling and design, Prentice-Hall, 1991.

[24] B. Stroustrup, “The C++ Programming Language”, Addison-Wesley, 1986.

[25] “Synopsys Behavioral Compiler”, Synopsys, Mountain View, CA.

[26] Y. Therasse, G. Petit, M. Delvaux, “VLSI architecture of a SMDS/ATM router”, in
Annales des Télécommunications, 48,no3-4, 1993.

[27] E. Verhulst, “Virtuoso, DSP programming tools covering from distributed multi-
tasking to synchronous dataflow”, Eonics Inc., 1994.

	CD-ROM Home Page
	1996 Home Page
	DAC96
	Front Matter
	Table of Contents
	Session Index
	Author Index

